共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS The present report describes a simple and useful method for synchronizing mass cultures of the ciliate Tetrahymena pyriformis. The method employs a nutritional approach which involves starvation of the cells in a non-nutrient phosphate buffer followed by refeeding with an enriched nutritional growth medium. It takes 240 minutes after refeeding before the first cells start to divide. Radioautographic and DNA determinations taken together show that starved cells are stalled in the GI nuclear DNA condition and that essentially all of the cells replicate their DNA prior to their first cell division. 相似文献
2.
3.
4.
James A. Richards Martina Bucsaiova Emily E. Hesketh Chiara Ventre Neil C. Henderson Kenneth Simpson Christopher O. C. Bellamy Sarah E. M. Howie Stephen M. Anderton Jeremy Hughes Stephen J. Wigmore 《PloS one》2015,10(9)
Background & Aims
Acute liver injury is a clinically important pathology and results in the release of Danger Associated Molecular Patterns, which initiate an immune response. Withdrawal of the injurious agent and curtailing any pathogenic secondary immune response may allow spontaneous resolution of injury. The role B cells and Immunoglobulin M (IgM) play in acute liver injury is largely unknown and it was proposed that B cells and/or IgM would play a significant role in its pathogenesis.Methods
Tissue from 3 models of experimental liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury) and patients transplanted following paracetamol overdose were stained for evidence of IgM deposition. Mice deficient in B cells (and IgM) were used to dissect out the role B cells and/or IgM played in the development or resolution of injury. Serum transfer into mice lacking IgM was used to establish the role IgM plays in injury.Results
Significant deposition of IgM was seen in the explanted livers of patients transplanted following paracetamol overdose as well as in 3 experimental models of acute liver injury (ischemia-reperfusion injury, concanavalin A hepatitis and paracetamol-induced liver injury). Serum transfer into IgM-deficient mice failed to reconstitute injury (p = 0.66), despite successful engraftment of IgM. Mice deficient in both T and B cells (RAG1-/-) mice (p<0.001), but not B cell deficient (μMT) mice (p = 0.93), were significantly protected from injury. Further interrogation with T cell deficient (CD3εKO) mice confirmed that the T cell component is a key mediator of sterile liver injury. Mice deficient in B cells and IgM mice did not have a significant delay in resolution following acute liver injury.Discussion
IgM deposition appears to be common feature of both human and murine sterile liver injury. However, neither IgM nor B cells, play a significant role in the development of or resolution from acute liver injury. T cells appear to be key mediators of injury. In conclusion, the therapeutic targeting of IgM or B cells (e.g. with Rituximab) would have limited benefit in protecting patients from acute liver injury. 相似文献5.
Long-Term Phosphate Starvation and Respiratory Metabolism in Suspension-Cultured Catharanthus roseus Cells 总被引:1,自引:0,他引:1
In order to clarify the metabolic adaptation of respiratorypathways in plants to limited levels of Pi, the effects of long-termstarvation of Pi on the activities of various enzymes relatedto respiratory metabolism were examined in suspension-culturedCatharanthus roseus cells. When the activities were expressedas units per g fresh weight, only those of phosphoenolpyruvate-hydrolyzing(PEP-hydrolyzing) enzyme (which may possibly be equivalent tothe acid phosphatase activity derived from vacuoles) and PEPcarboxylase were higher in the Pi-starved cells than in controlcells. Activities of other enzymes in the Pi-starved cells werelower than or similar to those of the control cells. Time-coursestudies indicated that PEP-hydrolyzing activity was inducibleby starvation of Pi. However, in contrast to the results reportedby Duff et al. [(1989a) Plant Physiol. 90: 1275.], fluctuationsin the activity of PP1:fructose-6-phosphate 1-phosphotransferaseduring starvation of Pi were similar to those in levels of phosphofructokinaseand 6-phosphogluconate dehydrogenase. These data suggest thatthe concept of the phosphate starvation-inducible bypasses,which are engineered via the coarse control (i.e., induction)of specified enzymes and were proposed initially by Duff etal. in Brassica nigra cells, is not directly applicable to Catharanthusroseus cells in suspension. Tracer experiments using [U-14C]glutamineindicated that a significant proportion of respiratory substratescould be supplied from the enlarged pool of amino acids duringstarvation of Pi. These assumptions are supported by the observedfluctuations in levels of free amino acids and of protein inP1-fed and P1-deficient Catharanthus roseus cells.
1Part 41 in the series Metabolic Regulation in PlantCell Cultrue
2Present Address: Morinaga Mild Industry, 5-1-83, Higashihara,Zamma-shi, Kanagawa, 228 Japan 相似文献
6.
Autophagy in Tobacco Suspension-Cultured Cells in Response to Sucrose Starvation 总被引:14,自引:2,他引:14
下载免费PDF全文

The response of tobacco (Nicotiana tabacum) suspension-cultured cells (BY-2) to nutrient starvation was investigated. When the cells that were grown in Murashige-Skoog medium containing 3% (w/v) sucrose were transferred to the same medium without sucrose, 30 to 45% of the intracellular proteins were degraded in 2 d. An analysis with sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that proteins were degraded nonselectively. With the same treatment, protease activity in the cell, which was measured at pH 5.0 using fluorescein thiocarbamoyl-casein as a substrate, increased 3- to 7-fold after 1 d. When the cysteine protease inhibitor (2S,3S)-trans-epoxysuccinyl-L-leucylamido-3-methyl-butane (10 [mu]M) was present in the starvation medium, both the protein degradation and the increase in the protease activity were effectively inhibited. Light microscopy analysis showed that many small spherical bodies accumulated in the perinuclear region of the cytosol 8 h after the start of the inhibitor treatment. These bodies were shown to be membrane-bound vesicles of 1 to 6 [mu]m in diameter that contained several particles. Quinacrine stained these vesicles and the central vacuole; thus, both organelles are acidic compartments. Cytochemical enzyme analysis using 1-naphthylphosphate and [beta]-glycerophosphate as substrates showed that these vesicles contained an acid phosphatase(s). We suggest that these vesicles contribute to cellular protein degradation stimulated under sucrose starvation conditions. 相似文献
7.
Yabu T Imamura S Mizusawa N Touhata K Yamashita M 《Marine biotechnology (New York, N.Y.)》2012,14(4):491-501
Autophagy is well established as a starvation-induced process in yeast and mammalian cells and tissues. To elucidate the cellular mechanisms induced by starvation in fish, we characterized the induction of autophagy in cultured zebrafish cells under starvation conditions. As an autophagic marker protein, the microtubule-associated protein 1-light chain 3B protein (MAP1-LC3B) was cloned from the fish cells, and its expression and localization were characterized. In zebrafish embryonic (ZE) cells, posttranslational modifications produced two distinct forms of MAP1-LC3B, i.e., a cytosolic form and a membrane-bound form (types I and II, respectively). Immunofluorescence microscopy revealed fluorescently labeled autophagosomes in cells stably transfected with a green fluorescent protein (GFP)–MAP1-LC3B fusion protein and showed that this protein accumulated in punctate dots in a time-dependent manner in response to amino acid starvation. Starvation also induced the degradation of long-lived proteins. Treatment with 3-methyladenine and wortmannin, two class-III inhibitors of phosphoinositide 3-kinase (PI3K), repressed autophagy under starvation conditions, indicating that the PI3K class-III pathway regulates starvation-induced autophagy in fish. 相似文献
8.
Yamamoto Y Masamoto K Rikiishi S Hachiya A Yamaguchi Y Matsumoto H 《Plant physiology》1996,112(1):217-227
Al toxicity in cultured tobacco cells (Nicotiana tabacum L. cv Samsun; nonchlorophyllic cell line SL) has been investigated in nutrient medium. In this system, Al and Fe(II) (ferrous ion) in the medium synergistically result in the accumulation of both Al and Fe, the peroxidation of lipids, and eventually death in cells at the logarithmic phase of growth (+P cells). A lipophilic antioxidant, N,N[prime]-diphenyl-p-phenylenediamine, protected +P cells from the peroxidation of lipids and from cell death, suggesting that a relationship exists between the two. Compared with +P cells, cells that had been starved of Pi (-P cells) were more tolerant to Al, accumulated 30 to 40% less Al and 70 to 90% less Fe, and did not show any evidence of the peroxidation of lipids during Al treatment. These results suggest that -P cells exhibit Al tolerance because their plasma membranes are protected from the peroxidation of lipids caused by the combination of Al and Fe(II). It seems likely that the exclusion of Fe from -P cells might suppress directly Fe-mediated peroxidation of lipids. Furthermore, since -P cells accumulated [beta]-carotene, it is proposed that this carotenoid pigment might function as a radical-trapping antioxidant in the plasma membrane of cells starved of Pi. 相似文献
9.
10.
I. V. Uryvaeva 《Biology Bulletin》2001,28(6):616-623
The cellular basis of liver growth is reviewed from overall recent and previous data. According to the present-day ideas, the adult mammalian liver contains at least two cellular populations with many properties similar to the stem cells of renewing tissues that provide for the liver postnatal growth and parenchyma regeneration under various conditions. According to the present nomenclature, the differentiated parenchyma cells—hepatocytes—are a unipotent committed population of stem cells. In addition, there is a system of nonparenchymal multipotent stem cells or oval cells in the liver. Certain key models of liver growth, regeneration, and repopulation that contributed to development of these notions are considered. The recent data are discussed in the context of yet unclear cellular mechanisms providing for the tremendous replicative potential of hepatocytes, the role of polyploidy in the growth effects, and the sources of malignant transformation in the liver. 相似文献
11.
Long-Term Starvation Survival of Rod and Spherical Cells of Arthrobacter crystallopoietes 总被引:14,自引:7,他引:14
下载免费PDF全文

Jerald C. Ensign 《Journal of bacteriology》1970,103(3):569-577
Spherical and rod-shaped cells of Arthrobacter crystallopoietes, harvested during exponential growth, were subjected to total starvation for periods of time as long as 80 days. Viability measurements were made by plate count and slide culture procedures. Both cell forms remained 100% viable for 30 days. Thereafter, viability of rods and spheres decreased equally at a slow rate. After 60 days of starvation, more than 65% of both cell forms were viable. No significant cell lysis occurred as evidenced by microscopic examination, the small amount of 260-nm absorbing material found in the starvation buffer, and stability of radioactively labeled deoxyribonucleic acid in the cells. Endogenous respiration decreased 80-fold during the first 2 days of starvation, accompanied by a 30% decrease in dry weight of the cells. Thereafter, cellular carbon was oxidized to CO(2) at the constant level of 0.03%/hr over the remaining 78-day starvation period. 相似文献
12.
自噬是真核细胞中的一种保守的代谢信号通路。人们已经知道自噬与肿瘤发生等疾病密切相关,但对于自噬的分子机制仍然不是很清楚。鉴定更多的自噬相关蛋白对于进一步阐明自噬的分子机制具有重要意义。该研究使用饥饿法处理HeLa细胞,通过电镜观察以及检测自噬标记蛋白LC3-I的转换,证实HeLa细胞发生了明显的自噬。之后,使用双向电泳结合串联质谱分析鉴定细胞自噬时发生变化的蛋白质。结果发现果糖二磷酸醛缩酶A、GAPDH和ATP合成酶O亚基的量在HeLa细胞发生自噬后明显降低。实时定量PCR结果证明饥饿诱导后,这三种蛋白的mRNA水平都发生了明显的下降。使用自噬抑制剂3-Methyladenine预处理HeLa细胞后再行饥饿,三种蛋白mRNA的表达水平与正常细胞相当而明显高于饥饿诱导的细胞。结果表明这三种蛋白在饥饿诱导的自噬中表达下调,其分子机制还有待进一步研究。 相似文献
13.
An Iron Requirement For the Synchronous Progression of Colonic Cells Following Fasting and Refeeding
Evidence is presented to show dietary iron to be a major co-factor in the colonic hyperplasia observed following fasting and refeeding. the iron component serves to remove a fasting induced colonic G1 cycle block and produce the resultant synchronous progression of cells through the cycle. Deleting iion from the refed diet results in no colonic hyperplasia and/or synchronous progression of cells. the results are discussed from the viewpoint of colonic steady state cell renewal and as a possible tool for the study of in vivo steady state cell renewal. 相似文献
14.
《Bioscience, biotechnology, and biochemistry》2013,77(11):2482-2485
We examined whether starvation affected the amount of EF-2 protein as well as the level of its mRNA in the liver and skeletal muscle of mice, to understand the molecular mechanism for nutritional adaptation of protein-turnover. Although the amount of EF-2 was diminished by starvation in each of the tissues examined, the amount of EF-2 mRNA did not decrease in parallel with the protein. 相似文献
15.
Ruiping Zhou Zhuokun Li Chengyi He Ronglin Li Hongbin Xia Chunyang Li Jia Xiao Zhi-Ying Chen 《PloS one》2014,9(8)
Mesenchymal stem cells (MSCs) have exhibited therapeutic effects in multiple animal models so that are promising liver substitute for transplantation treatment of end-stage liver diseases. However, it has been shown that over-manipulation of these cells increased their tumorigenic potential, and that reducing the in vitro culture time could minimize the risk. In this study, we used a D-galactosamine plus lipopolysaccharide (Gal/LPS)-induced acute liver failure mouse model, which caused death of about 50% of the mice with necrosis of more than 50% hepatocytes, to compare the therapeutic effects of human umbilical cord MSCs (hUCMSCs) before and after induction of differentiation into hepatocyte (i-Heps). Induction of hUCMSCs to become i-Heps was achieved by treatment of the cells with a group of growth factors within 4 weeks. The resulted i-Heps exhibited a panel of human hepatocyte biomarkers including cytokeratin (hCK-18), α-fetoprotein (hAFP), albumin (hALB), and hepatocyte-specific functions glycogen storage and urea metabolism. We demonstrated that transplantation of both cell types through tail vein injection rescued almost all of the Gal/LPS-intoxicated mice. Although both cell types exhibited similar ability in homing at the mouse livers, the populations of the hUCMSCs-derived cells, as judged by expressing hAFP, hCK-18 and human hepatocyte growth factor (hHGF), were small. These observations let us to conclude that the hUCMSCs was as effective as the i-Heps in treatment of the mouse acute liver failure, and that the therapeutic effects of hUCMSCs were mediated largely via stimulation of host hepatocyte regeneration, and that delivery of the cells through intravenous injection was effective. 相似文献
16.
Induction of an Extracellular Ribonuclease in Cultured Tomato Cells upon Phosphate Starvation 总被引:6,自引:4,他引:6
下载免费PDF全文

Suspension-cultured cells of tomato (Lycopersicon esculentum) start to secrete an RNA-degrading enzyme activity during transition from logarithmic to stationary growth phase. Using affinity chromatography on agarose-5-(4-aminophenyl-phosphoryl) uridine 3′(2′) monophosphate as a powerful and final enrichment step, the enzyme was purified to homogeneity and characterized as ribonuclease I (RNase I) according to the following data: (a) it has an Mr of 22,000 (sodium dodecyl sulfate-polyacrylamide gel electrophoresis), a pH-optimum of pH 5.5, a pl of 3.9, and its activity was found to be insensitive to EDTA; (b) the enzyme splits single-stranded RNA endonucleolytically by a phosphotransferase reaction yielding 2′,3′-cNMPs as primary monomeric products; (c) as studied with diribonucleoside monophosphates as substrates, the enzyme exhibits a pronounced preference for 5′ purine residues adjacent to the cleavage site. Most interestingly, in vivo synthesis and secretion was found to be induced when tomato cells were specifically starved for phosphate as mineral nutrient. (a) Extracellular enzyme activity increased about tenfold after transfer of phosphate-grown cells into medium lacking only phosphate. Accordingly, this increase in activity was not detectable when cells were constantly supplied with phosphate. (b) Biosynthetically labeling of the extracellular protein with radioactive amino acids was detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis/fluorography directly within the bulk of extracellular proteins. Therefore, we propose that the secreted tomato RNase I synthesized upon phosphate starvation is a component of a higher plant inducible rescue system for scavenging exogenous phosphate. 相似文献
17.
18.
Giuseppina Pichiri Pierpaolo Coni Sonia Nemolato Tiziana Cabras Mattia Umberto Fanari Alice Sanna Eliana Di Felice Irene Messana Massimo Castagnola Gavino Faa 《PloS one》2013,8(8)
Thymosin beta-4 (Tβ4) is an ubiquitous multi-functional regenerative peptide, related to many critical biological processes, with a dynamic and flexible conformation which may influence its functions and its subcellular distribution. For these reasons, the intracellular localization and trafficking of Tβ4 is still not completely defined and is still under investigation in in vivo as well as in vitro studies.In the current study we used HepG2 cells, a human hepatoma cell line; cells growing in normal conditions with fetal bovine serum expressed high levels of Tβ4, restricted to the cytoplasm until 72 h. At 84 h, a diffuse Tβ4 cytoplasmic immunostaining shifted to a focal perinuclear and nuclear reactivity. In the absence of serum, nuclear reactivity was localized in small granules, evenly dispersed throughout the entire nuclear envelop, and was observed as earlier as at 48 h. Cytoplasmic immunostaining for Tβ4 in HepG2 cells under starvation appeared significantly lower at 48 h and decreased progressively at 72 and at 84 h. At these time points, the decrease in cytoplasmic staining was associated with a progressive increase in nuclear reactivity, suggesting a possible translocation of the peptide from the cytoplasm to the nuclear membrane. The normal immunocytochemical pattern was restored when culture cells submitted to starvation for 84 h received a new complete medium for 48 h.Mass spectrometry analysis, performed on the nuclear and cytosolic fractions of HepG2 growing with and without serum, showed that Tβ4 was detectable only in the cytosolic and not in the intranuclear fraction. These data suggest that Tβ4 is able to translocate from different cytoplasmic domains to the nuclear membrane and back, based on different stress conditions within the cell.The punctuate pattern of nuclear Tβ4 immunostaining associated with Tβ4 absence in the nucleoplasm suggest that this peptide might be localized in the nuclear pores, where it could regulate the pore permeability. 相似文献
19.
Induction of Specific mRNAs in Cultured Soybean Cells during Cytokinin or Auxin Starvation 总被引:1,自引:3,他引:1
下载免费PDF全文

We report the isolation of five cDNA clones whose corresponding mRNAs accumulate in cultured soybean cells (Glycine max cv Mandarin) during cytokinin or auxin starvation. The levels of three of these mRNAs decrease rapidly after addition of 5 micromolar zeatin to cytokinin-starved cells or after addition of 10 micromolar α-naphthaleneacetic acid to auxin-starved cells. These mRNAs also exhibit various patterns of accumulation in the tissues of intact soybean plants. Partial nucleotide sequence analysis demonstrates that one of the cDNAs in the collection, called SAM46, is 46% identical at the amino acid level to the iron superoxide dismutase gene of Escherichia coli. Expression of this cDNA in Escherichia coli cells results in detectable iron superoxide dismutase activity, confirming the identity of the cDNA. 相似文献
20.
In liver cells, cation-selective channels are permeable to Ca2+ and have been postulated to represent a pathway for receptor-mediated Ca2+ influx. This study examines the mechanisms involved in the regulation of these channels in a model liver cell line. Using patch-clamp recording techniques, it is shown that channel open probability is a saturable function of cytosolic [Ca2+], with half-maximal opening at 660 nm. By contrast, channel opening is not affected by membrane voltage or cytosolic pH. In intact cells, reduction of cytosolic [Cl−], a physiological response to Ca2+-mobilizing hormones and cell swelling, is also associated with an increase in channel opening. Finally, channel opening is inhibited by intracellular ATP through a mechanism that does not involve ATP hydrolysis. These findings suggest that opening of cation-selective channels is coupled to the metabolic state of the cell and provides a positive feedback mechanism for regulation of receptor-mediated Na+ and Ca2+ influx. Received: 8 October 1996 相似文献