共查询到20条相似文献,搜索用时 15 毫秒
1.
We used 11-cis 13-demethylretinal to examine the physiological consequences of retinal's noncovalent interaction with opsin in intact rod and cone photoreceptors during visual pigment regeneration. 11-Cis 13-demethylretinal is an analog of 11-cis retinal in which the 13 position methyl group has been removed. Biochemical experiments have shown that it is capable of binding in the chromophore pocket of opsin, forming a Schiff-base linkage with the protein to produce a pigment, but at a much slower rate than the native 11-cis retinal (Nelson, R., J. Kim deReil, and A. Kropf. 1970. Proc. Nat. Acad. Sci. USA. 66:531-538). Experimentally, this slow rate of pigment formation should allow separate physiological examination of the effects of the initial binding of retinal in the pocket and the subsequent formation of the protonated Schiff-base linkage. Currents from solitary rods and cones from the tiger salamander were recorded in darkness before and after bleaching and then after exposure to 11-cis 13-demethylretinal. In bleach-adapted rods, 11-cis 13-demethylretinal caused transient activation of phototransduction, as evidenced by a decrease of the dark current and sensitivity, acceleration of the dim flash responses, and activation of cGMP phosphodiesterase and guanylyl cyclase. The steady state of phototransduction activity was still higher than that of the bleach-adapted rod. In contrast, exposure of bleach-adapted cones to 11-cis 13-demethylretinal resulted in an immediate deactivation of transduction as measured by the same parameters. These results extend the validity of a model for the effects of the noncovalent binding of a retinoid in the chromophore pockets of rod and cone opsins to analogs capable of forming a Schiff-base and imply that the noncovalent binding by itself may play a role for the dark adaptation of photoreceptors. 相似文献
2.
3.
Phosducin regulates the expression of transducin betagamma subunits in rod photoreceptors and does not contribute to phototransduction adaptation 下载免费PDF全文
Krispel CM Sokolov M Chen YM Song H Herrmann R Arshavsky VY Burns ME 《The Journal of general physiology》2007,130(3):303-312
For over a decade, phosducin's interaction with the βγ subunits of the G protein, transducin, has been thought to contribute to light adaptation by dynamically controlling the amount of transducin heterotrimer available for activation by photoexcited rhodopsin. In this study we directly tested this hypothesis by characterizing the dark- and light-adapted response properties of phosducin knockout (Pd−/−) rods. Pd−/− rods were notably less sensitive to light than wild-type (WT) rods. The gain of transduction, as measured by the amplification constant using the Lamb-Pugh model of activation, was 32% lower in Pd−/− rods than in WT rods. This reduced amplification correlated with a 36% reduction in the level of transducin βγ-subunit expression, and thus available heterotrimer in Pd−/− rods. However, commonly studied forms of light adaptation were normal in the absence of phosducin. Thus, phosducin does not appear to contribute to adaptation mechanisms of the outer segment by dynamically controlling heterotrimer availability, but rather is necessary for maintaining normal transducin expression and therefore normal flash sensitivity in rods. 相似文献
4.
Norton AW Hosier S Terew JM Li N Dhingra A Vardi N Baehr W Cote RH 《The Journal of biological chemistry》2005,280(2):1248-1256
The mammalian rod photoreceptor phosphodiesterase (PDE6) holoenzyme is isolated in both a membrane-associated and a soluble form. Membrane binding is a consequence of prenylation of PDE6 catalytic subunits, whereas soluble PDE6 is purified with a 17-kDa prenyl-binding protein (PDEdelta) tightly bound. This protein, here termed PrBP/delta, has been hypothesized to reduce activation of PDE6 by transducin, thereby desensitizing the photoresponse. To test the potential role of PrBP/delta in regulating phototransduction, we examined the abundance, localization, and potential binding partners of PrBP/delta in retina and in purified rod outer segment (ROS) suspensions whose physiological and biochemical properties are well characterized. The amphibian homologue of PrBP/delta was cloned and sequenced and found to have 82% amino acid sequence identity with mammalian PrBP/delta. In contrast to bovine ROS, all of the PDE6 in purified frog ROS is membrane-associated. However, addition of recombinant frog PrBP/delta can solubilize PDE6 and prevent its activation by transducin. PrBP/delta also binds other prenylated photoreceptor proteins in vitro, including opsin kinase (GRK1/GRK7) and rab8. Quantitative immunoblot analysis of the PrBP/delta content of purified ROS reveals insufficient amounts of PrBP/delta (<0.1 PrBP/delta per PDE6) to serve as a subunit of PDE6 in either mammalian or amphibian photoreceptors. The immunolocalization of PrBP/delta in frog and bovine retina shows greatest PrBP/delta immunolabeling outside the photoreceptor cell layer. Within photoreceptors, only the inner segments of frog double cones are strongly labeled, whereas bovine photoreceptors reveal more PrBP/delta labeling near the junction of the inner and outer segments (connecting cilium) of photoreceptors. Together, these results rule out PrBP/delta as a PDE6 subunit and implicate PrBP/delta in the transport and membrane targeting of prenylated proteins (including PDE6) from their site of synthesis in the inner segment to their final destination in the outer segment of rods and cones. 相似文献
5.
Signal mechanisms of phototransduction in retinal rod 总被引:2,自引:0,他引:2
J I Korenbrot 《CRC critical reviews in biochemistry》1985,17(3):223-256
6.
Dan Larhammar Karin Nordstr?m Tomas A. Larsson 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2009,364(1531):2867-2880
Vertebrate cones and rods in several cases use separate but related components for their signal transduction (opsins, G-proteins, ion channels, etc.). Some of these proteins are also used differentially in other cell types in the retina. Because cones, rods and other retinal cell types originated in early vertebrate evolution, it is of interest to see if their specific genes arose in the extensive gene duplications that took place in the ancestor of the jawed vertebrates (gnathostomes) by two tetraploidizations (genome doublings). The ancestor of teleost fishes subsequently underwent a third tetraploidization. Our previously reported analyses showed that several gene families in the vertebrate visual phototransduction cascade received new members in the basal tetraploidizations. We here expand these data with studies of additional gene families and vertebrate species. We conclude that no less than 10 of the 13 studied phototransduction gene families received additional members in the two basal vertebrate tetraploidizations. Also the remaining three families seem to have undergone duplications during the same time period but it is unclear if this happened as a result of the tetraploidizations. The implications of the many early vertebrate gene duplications for functional specialization of specific retinal cell types, particularly cones and rods, are discussed. 相似文献
7.
Rod photoreceptors are activated by light through activation of a cascade that includes the G protein-coupled receptor rhodopsin, the G protein transducin, its effector cyclic guanosine monophosphate (cGMP) phosphodiesterase and the second messengers cGMP and Ca2+. Signalling is localised to the particular rod outer segment disc, which is activated by absorption of a single photon. Modelling of this cascade has previously been performed mostly by assumption of a well-stirred cytoplasm. We recently published the first fully spatially resolved model that captures the local nature of light activation. The model reduces the complex geometry of the cell to a simpler one using the mathematical theories of homogenisation and concentrated capacity. The model shows that, upon activation of a single rhodopsin, changes of the second messengers cGMP and Ca2+ are local about the particular activated disc. In the current work, the homogenised model is computationally compared with the full, non-homogenised one, set in the original geometry of the rod outer segment. It is found to have an accuracy of 0.03% compared with the full model in computing the integral response and a 5200-fold reduction in computation time. The model can reconstruct the radial time-profiles of cGMP and Ca2+ in the interdiscal spaces adjacent to the activated discs. Cellular electrical responses are localised near the activation sites, and multiple photons sufficiently far apart produce essentially independent responses. This leads to a computational analysis of the notion and estimate of 'spread' and the optimum distribution of activated sites that maximises the response. Biological insights arising from the spatio-temporal model include a quantification of how variability in the response to dim light is affected by the distance between the outer segment discs capturing photons. The model is thus a simulation tool for biologists to predict the effect of various factors influencing the timing, spread and control mechanisms of this G protein-coupled, receptor-mediated cascade. It permits ease of simulation experiments across a range of conditions, for example, clamping the concentration of calcium, with results matching analogous experimental results. In addition, the model accommodates differing geometries of rod outer segments from different vertebrate species. Thus it represents a building block towards a predictive model of visual transduction. 相似文献
8.
《Developmental cell》2022,57(22):2584-2598.e11
9.
The objective of this study is to verify the anatomic correlate of the second (2nd) outer retina band in optical coherence tomography (OCT), and to demonstrate the potential of using intrinsic optical signal (IOS) imaging for concurrent optoretinography (ORG) of phototransduction activation and energy metabolism in stimulus activated retinal photoreceptors. A custom-designed OCT was employed for depth-resolved IOS imaging in mouse retina activated by a visible light flicker stimulation. The spatiotemporal properties of the IOS changes at the photoreceptor outer segment (OS) and inner segment (IS) were quantitatively evaluated. Rapid IOS change was observed at the OS almost right away, and the IOS at the IS was relatively slow. Comparative analysis indicates that the OS-IOS reflects transient OS deformation caused by the phototransduction activation, and IS-IOS might reflect the energy metabolism caused by mitochondria activation in retinal photoreceptors. The consistency of the distribution of the IS-IOS and the 2nd OCT band supports the IS ellipsoid (ISe), which has abundant mitochondria, as the signal source of the 2nd OCT band of the outer retina. 相似文献
10.
Osawa S Jo R Xiong Y Reidel B Tserentsoodol N Arshavsky VY Iuvone PM Weiss ER 《The Journal of biological chemistry》2011,286(23):20923-20929
Phosphorylation of rhodopsin by G protein-coupled receptor kinase 1 (GRK1, or rhodopsin kinase) is critical for the deactivation of the phototransduction cascade in vertebrate photoreceptors. Based on our previous studies in vitro, we predicted that Ser(21) in GRK1 would be phosphorylated by cAMP-dependent protein kinase (PKA) in vivo. Here, we report that dark-adapted, wild-type mice demonstrate significantly elevated levels of phosphorylated GRK1 compared with light-adapted animals. Based on comparatively slow half-times for phosphorylation and dephosphorylation, phosphorylation of GRK1 by PKA is likely to be involved in light and dark adaptation. In mice missing the gene for adenylyl cyclase type 1, levels of phosphorylated GRK1 were low in retinas from both dark- and light-adapted animals. These data are consistent with reports that cAMP levels are high in the dark and low in the light and also indicate that cAMP generated by adenylyl cyclase type 1 is required for phosphorylation of GRK1 on Ser(21). Surprisingly, dephosphorylation was induced by light in mice missing the rod transducin α-subunit. This result indicates that phototransduction does not play a direct role in the light-dependent dephosphorylation of GRK1. 相似文献
11.
Na-Ca or Na-Ca-K exchange in rod photoreceptors 总被引:1,自引:0,他引:1
P P Schnetkamp 《Progress in biophysics and molecular biology》1989,54(1):1-29
12.
Sabrina Pankey Hiroshi Sunada Tetsuro Horikoshi Manabu Sakakibara 《Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology》2010,180(8):1205-1211
Dermal photoreceptors in the pond snail Lymnaea stagnalis mediate the whole-body withdrawal response, including pneumostome closure, elicited by a shadow passing over the pneumostome
area. The pneumostome closure response is part of the defense reaction in Lymnaea. The shadow or ‘light-off’ stimulus elicits activity in a higher order interneuron, RPeD11, which has a major role in mediating
defensive withdrawal behavior elicited by noxious or threatening stimuli. Here, we tested our hypothesis that cyclic nucleotide-gated
(CNG) channels are involved in the dermal photoreceptor-mediated transduction of the shadow stimulus. The response to the
shadow stimulus recorded in RPeD11 was abolished by 500 μM cis-diltiazem, which blocks cGMP-activated conductance of CNG channels. On the other hand, the shadow response elicited in RPeD11
was not blocked by 2-amino ethyldiphenyl borate (2-APB), a transient receptor potential (TRP) channel blocker. Consistent
with the electrophysiologic data, cis-diltiazem blocked the shadow-evoked withdrawal response, whereas 2-APB did not block the withdrawal response evoked by the
shadow stimulus in intact freely behaving Lymnaea. Together, these findings support the hypothesis that the second messenger in dermal photoreceptors involves CNG and not
TRP channels. 相似文献
13.
2-Aminoethoxydiphenyl borate inhibits phototransduction and blocks voltage-gated potassium channels in Limulus ventral photoreceptors 总被引:2,自引:0,他引:2
2-Aminoethoxydiphenyl borate (2-APB) is a membrane-permeable modulator that inhibits the activation of inositol (1,4,5) trisphosphate (InsP(3)) receptors, store operated channels (SOCs) and TRP channels in cells that utilize the phosphoinositide cascade for cellular signaling. In Limulus ventral photoreceptors, light-induced calcium release via the phosphoinositide cascade is thought to activate the photocurrent. Injection of either exogenous InsP(3) or calcium ions can therefore mimic excitation by light. One hundred micromolar 2-APB reversibly inhibited the photocurrent of ventral photoreceptors in a concentration-dependent manner, acting on at least two processes thought to mediate the visual cascade. 2-APB reversibly inhibited both light and InsP(3)-induced calcium release, consistent with its role as an inhibitor of the InsP(3) receptor. In addition, 2-APB reversibly inhibited the activation of depolarizing current flow through the plasma membrane caused by pulsed pressure injection of calcium ions into the light-sensitive lobe of the photoreceptor. We also found that 100 micro M 2-APB reversibly inhibited both transient and sustained voltage-activated potassium current during depolarizing steps. 2-APB has previously been shown to block phototransduction in Drosophila photoreceptors. The lack of specificity of the action of 2-APB in Limulus indicates that this blockade need not necessarily arise from inhibition of InsP(3)-induced calcium release. 相似文献
14.
《The Journal of general physiology》1993,101(6):909-931
Heparin is thought to inhibit InsP3 binding to receptors involved in the intracellular release of Ca2+. Injection of heparin into Limulus ventral photoreceptors to high intracellular concentrations reduces the amplitude and slows the rate of rise of voltage-clamp currents induced by brief flashes, tends to make the responses to long flashes more "square," and tends to block the light-induced rise in [Ca2+]i detected by arsenazo III. In these ways, intracellular heparin mimics the effects of high concentrations of intracellular BAPTA or EGTA. In addition, the effects of heparin are attenuated by prior injection of BAPTA to high intracellular concentrations. Neomycin and spermine are thought to inhibit phospholipase C activity. Injections of spermine or neomycin to low intracellular concentrations largely mimic the effects of intracellular heparin. These findings suggest that the predominant effect of polyamines is to inhibit light-induced production of InsP3 by phospholipase C activity and thereby reduce the light-induced increase in [Ca2+]i. Our findings suggest that excitation can proceed in the absence of InsP3-induced increases in [Ca2+]i, but (a) the gain and speed of transduction are reduced and (b) adaptation is largely blocked. 相似文献
15.
Photoreceptors adapt to changes in illumination by altering transduction kinetics and sensitivity, thereby extending their working range. We describe a previously unknown form of rod photoreceptor adaptation in wild-type (WT) mice that manifests as a potentiation of the light response after periods of conditioning light exposure. We characterize the stimulus conditions that evoke this graded hypersensitivity and examine the molecular mechanisms of adaptation underlying the phenomenon. After exposure to periods of saturating illumination, rods show a 10–35% increase in circulating dark current, an adaptive potentiation (AP) to light exposure. This potentiation grows as exposure to light is extended up to 3 min and decreases with longer exposures. Cells return to their initial dark-adapted sensitivity with a time constant of recovery of ∼7 s. Halving the extracellular Mg concentration prolongs the adaptation, increasing the time constant of recovery to 13.3 s, but does not affect the magnitude of potentiation. In rods lacking guanylate cyclase activating proteins 1 and 2 (GCAP−/−), AP is more than doubled compared with WT rods, and halving the extracellular Mg concentration does not affect the recovery time constant. Rods from a mouse expressing cyclic nucleotide–gated channels incapable of binding calmodulin also showed a marked increase in the amplitude of AP. Application of an insulin-like growth factor-1 receptor (IGF-1R) kinase inhibitor (Tyrphostin AG1024) blocked AP, whereas application of an insulin receptor kinase inhibitor (HNMPA(AM)3) failed to do so. A broad-acting tyrosine phosphatase inhibitor (orthovanadate) also blocked AP. Our findings identify a unique form of adaptation in photoreceptors, so that they show transient hypersensitivity to light, and are consistent with a model in which light history, acting via the IGF-1R, can increase the sensitivity of rod photoreceptors, whereas the photocurrent overshoot is regulated by Ca-calmodulin and Ca2+/Mg2+-sensitive GCAPs. 相似文献
16.
Strissel KJ Lishko PV Trieu LH Kennedy MJ Hurley JB Arshavsky VY 《The Journal of biological chemistry》2005,280(32):29250-29255
Photoreceptor cells have a remarkable capacity to adapt the sensitivity and speed of their responses to ever changing conditions of ambient illumination. Recent studies have revealed that a major contributor to this adaptation is the phenomenon of light-driven translocation of key signaling proteins into and out of the photoreceptor outer segment, the cellular compartment where phototransduction takes place. So far, only two such proteins, transducin and arrestin, have been established to be involved in this mechanism. To investigate the extent of this phenomenon we examined additional photoreceptor proteins that might undergo light-driven translocation, focusing on three Ca(2+)-binding proteins, recoverin and guanylate cyclase activating proteins 1 (GCAP1) and GCAP2. The changes in the subcellular distribution of each protein were assessed quantitatively using a recently developed technique combining serial tangential sectioning of mouse retinas with Western blot analysis of the proteins in the individual sections. Our major finding is that light causes a significant reduction of recoverin in rod outer segments, accompanied by its redistribution toward rod synaptic terminals. In both cases the majority of recoverin was found in rod inner segments, with approximately 12% present in the outer segments in the dark and less than 2% remaining in that compartment in the light. We suggest that recoverin translocation is adaptive because it may reduce the inhibitory constraint that recoverin imposes on rhodopsin kinase, an enzyme responsible for quenching the photo-excited rhodopsin during the photoresponse. To the contrary, no translocation of rhodopsin kinase itself or either GCAP was identified. 相似文献
17.
18.
We have constructed a Raman microscope that has enabled us to obtain resonance Raman vibrational spectra from single photoreceptor cells. The laser beam which excites the Raman scattering is focused on the outer segment of the photoreceptor through the epiillumination system of a light microscope. Raman scattering from the visual pigment in the photoreceptor is collected by the objective and then dispersed onto a multichannel detector. High-quality spectra are recorded easily from individual outer segments that are 5 x 50 micrometer in size, and we have obtained spectra from cells as small as 1 x 10 micrometer. We have used the Raman microscope to study photostationary steady-state mixtures in pigments from toad (Bufo marinus) and goldfish (Carassius auratus) photoreceptors; these photoreceptors were frozen in glycerol glasses at 77 degrees K. Comparison of our toad red rod spectra with previously published spectra of bovine rod pigments demonstrates that the conformation of the chromophore in the first photointermediate, bathorhodopsin, is sensitive to variations in protein structure. We have also studied the first photointermediate in the goldfish rod photostationary steady-state. This bathoporphyropsin has a much lower ethylenic stretching frequency (1,507 cm-1) than that observed in the toad and bovine bathoproducts (approximately 1,535 cm-1). Preliminary results of our work on goldfish cone pigments are also reported. These are the first vibrational studies on the vertebrate photoreceptors responsible for color vision. 相似文献
19.
Phosphatidylinositol stimulates phosphorylation of protein components I and II in rod outer segments of frog photoreceptors 总被引:3,自引:0,他引:3
We studied the effect of phosphoinositides on the phosphorylation of endogenous proteins in the soluble fraction of the frog photoreceptor rod outer segments (ROS). Phosphatidylinositol (PI) stimulated the phosphorylation of two low molecular weight proteins, components I and II (12 and 11 kDa) which are known to be the preferential substrates of the cyclic GMP (cGMP)-dependent protein kinase in the ROS. Polyphosphoinositides (PPI) specifically inhibited the PI-dependent phosphorylation of these two components. On the other hand, PPI stimulated the phosphorylation of 38, 48 and 52 kDa proteins in the absence of PI. These data suggest that PI and PPI may function in the ROS by regulating the phosphorylation of some enzymes or regulator proteins in the transduction mechanism in the ROS. 相似文献
20.
The gain of rod phototransduction: reconciliation of biochemical and electrophysiological measurements 总被引:7,自引:0,他引:7
Leskov IB Klenchin VA Handy JW Whitlock GG Govardovskii VI Bownds MD Lamb TD Pugh EN Arshavsky VY 《Neuron》2000,27(3):525-537
We have resolved a central and long-standing paradox in understanding the amplification of rod phototransduction by making direct measurements of the gains of the underlying enzymatic amplifiers. We find that under optimized conditions a single photoisomerized rhodopsin activates transducin molecules and phosphodiesterase (PDE) catalytic subunits at rates of 120-150/s, much lower than indirect estimates from light-scattering experiments. Further, we measure the Michaelis constant, Km, of the rod PDE activated by transducin to be 10 microM, at least 10-fold lower than published estimates. Thus, the gain of cGMP hydrolysis (determined by kcat/Km) is at least 10-fold higher than reported in the literature. Accordingly, our results now provide a quantitative account of the overall gain of the rod cascade in terms of directly measured factors. 相似文献