首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Injection of endotoxins (bacterial lipopolysaccharide: LPS) several days prior to immunization causes the suppression of antibody response. The suppressive effects of several kinds of LPS preparations on the plaque-forming cell (PFC) antibody response in the spleen of mice were examined after immunization with sheep red blood cells (SRBC). Glycolipids obtained from heptoseless mutants (Re form) of salmonella or its lipid A preparation coupled artificially with bovine serum albumin (BSA) are capable, like LPS obtained from a wild type (S form) strain, of inducing suppression of the PFC response, while alkaline-detoxified LPS can not. The refractory periods of the PFC response induced by LPS injection last only a few days. However, the use of cyclophosphamide (CY) together with LPS can extend the refractory periods of antigenic stimulation for several weeks. Injections of LPS and CY can also induce unresponsive states of OH agglutinin antibody response to antigenic stimulation with formalin-killed organisms of Escherichia coli or Salmonella enteritidis (presumably both thymus-independent antigens). These unresponsive states induced by LPS and CY are easily terminated by a transfer of syngeneic bone marrow cells but not by thymocyte transfer.  相似文献   

2.
Amyloid proteins are widespread in nature both as pathological species involved in several diseases and as functional entities that can provide protection and storage for the organism. Lipids have been found in amyloid deposits from various amyloid diseases and have been shown to strongly affect the formation and structure of both pathological and functional amyloid proteins. Here, we investigate how fibrillation of the functional amyloid FapC from Pseudomonas is affected by two lysolipids, the zwitterionic lipid 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine and the anionic lipid 1-myristoyl-2-hydroxy-sn-glycero-3-phospho-(1′-rac-glycerol) (LPG). Small-angle X-ray scattering, circular dichroism, dynamic light scattering, and thioflavin T fluorescence measurements were performed simultaneously on the same sample to ensure reproducibility and allow a multimethod integrated analysis. We found that LPG strongly induces fibrillation around its critical micelle concentration (cmc) by promoting formation of large structures, which mature via accumulation of intermediate fibril structures with a large cross section. At concentrations above its cmc, LPG strongly inhibits fibrillation by locking FapC in a core–shell complex. In contrast, lipid 1-myristoyl-2-hydroxy-sn-glycero-3-phosphocholine induces fibrillation at concentrations above its cmc, not via strong interactions with FapC but by being incorporated during fibrillation and likely stabilizing the fibrillation nucleus to reduce the lag phase. Finally, we show that LPG is not incorporated into the fibril during assembly but rather can coat the final fibril. We conclude that lipids affect both the mechanism and outcome of fibrillation of functional amyloid, highlighting a role for lipid concentration and composition in the onset and mechanism of fibrillation in vivo.  相似文献   

3.
The cell wall component of Pseudomonas solanacearum that induces disease resistance in tobacco was highly heat stable at neutral or alkaline pH but highly labile at acid pH. Activity was unaffected by nucleases and proteases but destroyed by a mixture of beta-glycosidases. Washing of bacterial cell walls released a lipopolysaccharide (LPS) fraction with high inducer activity. Purified LPS, extracted by a variety of procedures from whole cells, isolated cell walls, and culture filtrates of both smooth and rough forms of P. solanacearum, induced disease resistance in tobacco at concentrations as low as 50 microgram/ml. The LPS from the non-plant pathogens Escherichia coli B, E. coli K, and Serratia marcescens was also active. Cell wall protein, free phospholipid, and nucleic acids were not necessary for activity. Moreover, since LPS from rough forms was active, the O-specific polysaccharide of the LPS was not required for activity. Hydrolysis of the remaining core-lipid A linkage or deacylation of lipid A destroyed inducer activity. When injected into tobacco leaves, purified LPS attached to tobacco mesophyll cell walls and induced ultrastructural changes in the host cell similar to those induced by attachment of whole heat-killed bacteria.  相似文献   

4.
The cell wall component of Pseudomonas solanacearum that induces disease resistance in tobacco was highly heat stable at neutral or alkaline pH but highly labile at acid pH. Activity was unaffected by nucleases and proteases but destroyed by a mixture of beta-glycosidases. Washing of bacterial cell walls released a lipopolysaccharide (LPS) fraction with high inducer activity. Purified LPS, extracted by a variety of procedures from whole cells, isolated cell walls, and culture filtrates of both smooth and rough forms of P. solanacearum, induced disease resistance in tobacco at concentrations as low as 50 microgram/ml. The LPS from the non-plant pathogens Escherichia coli B, E. coli K, and Serratia marcescens was also active. Cell wall protein, free phospholipid, and nucleic acids were not necessary for activity. Moreover, since LPS from rough forms was active, the O-specific polysaccharide of the LPS was not required for activity. Hydrolysis of the remaining core-lipid A linkage or deacylation of lipid A destroyed inducer activity. When injected into tobacco leaves, purified LPS attached to tobacco mesophyll cell walls and induced ultrastructural changes in the host cell similar to those induced by attachment of whole heat-killed bacteria.  相似文献   

5.
Multidrug resistance of bacteria and persistent infections related to biofilms, as well as the low availability of new antibacterial drugs, make it urgent to develop new antibiotics. Here, we evaluate the antibacterial and anti-biofilm properties of ticlopidine (TP), an anti-platelet aggregation drug, TP showed antibacterial activity against both gram-positive (MRSA) and gram-negative (E. coli, and P. aeruginosa) bacteria over a long treatment period. TP significantly reduced the survival of gram-negative bacteria in human blood though impact on gram-positives was more limited. TP may cause death in MRSA by inhibiting staphyloxanthin pigment synthesis, leading to oxidative stress, while scanning electron microscopy imaging indicate a loss of membrane integrity, damage, and consequent death due to lysis in gram-negative bacteria. TP showed good anti-biofilm activity against P. aeruginosa and MRSA, and a stronger biofilm degradation activity on P. aeruginosa compared to MRSA. Measuring fluorescence of the amyloid-reporter Thioflavin T (ThT) in biofilm implicated inhibition of amyloid formation as part of TP activity. This was confirmed by assays on the purified protein in P. aeruginosa, FapC, whose fibrillation kinetics was inhibited by TP. TP prolonged the lag phase of aggregation and reduced the subsequent growth rate and prolonging the lag phase to very long times provides ample opportunity to exert TP's antibacterial effect. We conclude that TP shows activity as an antibiotic against both gram-positive and gram-negative bacteria thanks to a broad range of activities, targeting bacterial metabolic processes, cellular structures and the biofilm matrix.  相似文献   

6.
Radovan D  Smirnovas V  Winter R 《Biochemistry》2008,47(24):6352-6360
Type II diabetes mellitus is a disease which is characterized by peripheral insulin resistance coupled with a progressive loss of insulin secretion that is associated with a decrease in pancreatic islet beta-cell mass and the deposition of amyloid in the extracellular matrix of beta-cells, which lead to islet cell death. The principal component of the islet amyloid is a pancreatic hormone called islet amyloid polypeptide (IAPP). High-pressure coupled with FT-IR spectroscopic and AFM studies were carried out to elucidate further information about the aggregation pathway as well as the aggregate structures of IAPP. To this end, a comparative fibrillation study of IAPP fragments was carried out as well. As high hydrostatic pressure (HHP) is acting to weaken or even prevent hydrophobic self-organization and electrostatic interactions, application of HHP has been used as a measure to reveal the importance of these interactions in the fibrillation process of IAPP and its fragments. IAPP preformed fibrils exhibit a strong polymorphism with heterogeneous structures, a large population of which are rather sensitive to high hydrostatic pressure, thus indicating a high percentage of ionic and hydrophobic interactions and loose packing of these species. Conversely, fragments 1-19 and 1-29 are resistant to pressure treatment, suggesting more densely packed aggregate structures with less void volume and strong cooperative hydrogen bonding. Furthermore, the FT-IR data indicate that fragment 1-29 has intermolecular beta-sheet conformational properties different from those of fragment 1-19, the latter exhibiting polymorphic behavior with more disordered structures and less strongly hydrogen bonded fibrillar assemblies. The data also suggest that hydrophobic interactions and/or less efficient packing of amino acids 30-37 region leads to the marked pressure sensitivity observed for full-length IAPP.  相似文献   

7.
一株铜绿假单胞菌及其产生的鼠李糖脂特性研究   总被引:1,自引:0,他引:1  
研究高效代谢表面活性剂的菌种,并对菌种和表面活性剂的理化性质进行分析。采用菌种16S rDNA序列分析对菌种进行鉴定,采用紫外光谱扫描、色谱柱层析、薄层层析、单糖分析对生物表面活性剂的种类进行鉴定,并对表面活性剂的理化性质进行研究。从油田采出水中筛选出一株高效代谢生物表面活性剂的菌株T-1,经16S rDNA鉴定为铜绿假单胞菌属(Pseudomonas aeruginosa)。该菌种以甘油和大豆油为碳源的培养基培养4 d后,其发酵液表面张力30.216 mN/m,EI24为100%。根据表面活性剂的红外光谱分析并结合薄层分析,可确定T-1样品中含有糖脂类物质,进一步的表面活性剂的单糖分析显示水解终产物为单一的鼠李糖,最终确定其产物为鼠李糖脂,苯酚-硫酸法测定其鼠李糖脂产率为5.2 g/L,从发酵液提取的棕黄色生物表面活性剂粗品,其表观临界胶束浓度为45 mg/L,该鼠李糖脂对环境(耐温、耐酸碱、耐盐)具有较强的适应性。该表面活性剂对恶劣环境具有较强的耐受性,可应用于微生物采油等用途。  相似文献   

8.
Lipopolysaccharides (LPS) are a main constituent of the outer membrane of Gram-negative bacteria. Salmonella enterica, like many other bacterial species, are able to chemically modify the structure of their LPS molecules through the PhoPQ pathway as a defense mechanism against the host immune response. These modifications make the outer membrane more resistant to antimicrobial peptides (AMPs), large lipophilic drugs, and cation depletion, and are crucial for survival within a host organism. It is believed that these LPS modifications prevent the penetration of large molecules and AMPs through a strengthening of lateral interactions between neighboring LPS molecules. Here, we performed a series of long-timescale molecular dynamics simulations to study how each of three key S. enterica lipid A modifications affect bilayer properties, with a focus on membrane structural characteristics, lateral interactions, and the divalent cation bridging network. Our results discern the unique impact each modification has on strengthening the bacterial outer membrane through effects such as increased hydrogen bonding and tighter lipid packing. Additionally, one of the modifications studied shifts Ca2+ from the lipid A region, replacing it as a major cross-linking agent between adjacent lipids and potentially making bacteria less susceptible to AMPs that competitively displace cations from the membrane surface. These results further improve our understanding of outer membrane chemical properties and help elucidate how outer membrane modification systems, such as PhoPQ in S. enterica, are able to alter bacterial virulence.  相似文献   

9.
10.
This study examined the effects of glutathione on the fibrillation of hen egg-white lysozyme. We found that the fibrillation of lysozyme was considerably reduced by GSH while no anti-aggregating activity was detected with only GSSG. SDS-PAGE results also revealed that the addition of GSH led to an early occurrence of prominent lysozyme hydrolysis. Moreover, GSH was effective in inhibiting lysozyme fibrillation when GSH was added within 6 days of incubation. We conclude that the attenuation of lysozyme fibrillation is strongly dependent upon the redox environment. Our data may contribute to decipher the molecular mechanism of amyloid fibrillation.  相似文献   

11.
Wen WS  Lai JK  Lin YJ  Lai CM  Huang YC  Wang SS  Jan JS 《Biopolymers》2012,97(2):107-116
The fibrillation of hen egg-white lysozyme (HEWL) in the absence and presence of simple, unstructured D,L-lysine-co-glycine (D,L-Lys-co-gly) and D,L-lysine-co-L-phenylalanine (D,L-Lys-co-Phe) copolypeptides was studied by using a variety of analytical techniques. The attenuating and decelerating effects on fibrillation are significantly dependent on the polypeptide concentration and the composition ratios in the polypeptide chain. Interestingly, D,L-Lys-co-gly and D,L-Lys-co-Phe copolypeptides with the same composition ratio have comparable attenuating effects on fibrillation. The copolypeptide with highest molar fraction of glycine residue exhibits the strongest suppression of HEWL fibrillation. The copolypeptide has the highest hydrophobic interacting capacity due to the more molar ratio of apolar monomer in the polymer backbone. The major driving forces for the association of HEWL and copolypeptides are likely to be hydrogen bonding and hydrophobic interactions, and these interactions reduce the concentration of free protein in solution available to proceed to fibrillation, leading to the increase of lag time and attenuation of fibrillation. The results of this work may contribute to the understanding of the molecular factors affecting amyloid fibrillation and the molecular mechanism(s) of the interactions between the unstructured polypeptides and the amyloid proteins.  相似文献   

12.
Shigella flexneri serotype 2a is a major public health concern in the developing and under-developed countries which contributes to shigellosis endemic and mortality. Thus, there is an urgent need for a rapid diagnostic test for effective therapy and disease management. Previous study showed that a ∼35 kDa antigenic protein from S. flexneri is a potential biomarker. We therefore modelled the three-dimensional structure of the antigen to probe its functionality which could aid in the development of an antigen-based diagnostic. Results showed that the antigen is a transmembrane protein consists of OmpA and OmpA-like domains. The OmpA domain is a beta-barrel embedded in the outer membrane with four surface-exposed extracellular loops. The OmpA-like domain is linked to the OmpA domain with a 17 amino acids linker and located in the periplasmic. Docking of peptidoglycan into the groove of OmpA-like domain might help in catalyzing the bacterial cell wall formation. Both domains are expected to be involved in the virulence, structural stability, pathogenesis and survival of Shigella thus made the 35 kDa protein a suitable shigellosis diagnostic biomarker. This structural elucidation will also enable a better identification of the epitope regions for the development of specific binders to the 35 kDa antigen.  相似文献   

13.
Protein aggregation and amyloid fibrillation can lead to several serious diseases and protein drugs ineffectiveness; thus, the detection and inhibition of these processes have been of great interest. In the present study, the inhibition of insulin amyloid fibrillation by laser irradiation was investigated using dynamic light scattering (DLS), transmission electron microscopy (TEM), far-UV circular dichroism (far-UV CD), and thioflavin T (ThT) fluorescence. During heat-induced aggregation, the size distribution of two insulin solutions obtained by online and offline dynamic light scattering were different. The laser-on insulin in the presence of 0.1 M NaCl exhibited fewer fibrils than the laser-off insulin, whereas no insulin fibril under laser irradiation was observed in the absence of 0.1 M NaCl for 45 h incubation. Moreover, our CD results showed that the laser-irradiated insulin solution maintained mainly an α-helical conformation, but the laser-off insulin solution formed bulk fibrils followed by a significant increase in β-sheet content for 106 h incubation. These findings provide an inhibition method for insulin amyloid fibrillation using the laser irradiation and demonstrate that the online long-time laser measurements should be carefully used in the study of amyloid proteins because they may change the original results.  相似文献   

14.
The outer membrane of Gram-negative bacteria is of great scientific interest because it mediates the action of antimicrobial agents. The membrane surface is composed of lipopolysaccharide (LPS) molecules with negatively charged oligosaccharide headgroups. To a certain fraction, LPSs additionally display linear polysaccharides termed O-side chains (OSCs). Structural studies on bacterial outer surfaces models, based on LPS monolayers at air-water interfaces, have so far dealt only with rough mutant LPSs lacking these OSCs. Here, we characterize monolayers of wild-type LPS from Escherichia coli O55:B5 featuring strain-specific OSCs in the presence of defined concentrations of monovalent and divalent ions. Pressure-area isotherms yield insight into in-plane molecular interactions and monolayer elastic moduli. Structural investigations by x-ray and neutron reflectometry reveal the saccharide conformation and allow quantifying the area per molecule and the fraction of LPS molecules carrying OSCs. The OSC conformation is satisfactorily described by the self-consistent field theory for end-grafted polymer brushes. The monolayers exhibit a significant structural response to divalent cations, which goes beyond generic electrostatic screening.  相似文献   

15.
Recent reports give strong support to the idea that amyloid fibril formation and the subsequent development of protein deposition diseases originate from conformational changes in corresponding amyloidogenic proteins. In this review, recent findings are surveyed to illustrate that protein fibrillogenesis requires a partially folded conformation. This amyloidogenic conformation is relatively unfolded, and shares many structural properties with the pre-molten globule state, a partially folded intermediate frequently observed in the early stages of protein folding and under some equilibrium conditions. The inherent flexibility of such an intermediate is essential in allowing the conformational rearrangements necessary to form the core cross-beta structure of the amyloid fibril.  相似文献   

16.
目的研究脂多糖(Lipopolysaccharide,LPS)对实验性变应性鼻炎的影响。方法SD大鼠40只随机分4组,其中,变应性鼻炎组经腹腔注射及鼻腔滴入卵清白蛋白(OVA)致敏,建立变应性鼻炎动物模型;LPS刺激组经鼻腔滴入LPS(10μg/100μL);变应性鼻炎 LPS刺激组为大鼠激发成变应性鼻炎后再以LPS滴入鼻腔。观察各组的症状变化,如喷嚏,流涕等。行常规HE及甲苯胺蓝染色观察各组鼻黏膜炎性细胞的浸润情况,并行高倍镜下嗜酸性粒细胞计数。结果①变应性鼻炎 LPS刺激组过敏症状评分高于其余各组(P<0.01);正常对照组及LPS刺激组症状评分差异无显著性(P>0.05)。②变应性鼻炎 LPS刺激组鼻黏膜中嗜酸性粒细胞计数高于变应性鼻炎组,差异有显著性(P<0.05);正常对照组及LPS刺激组鼻黏膜中嗜酸性粒细胞计数差异无显著性(P>0.05)。结论LPS刺激可以加重变应性鼻炎的症状及鼻黏膜组织的病理学改变。  相似文献   

17.
A study to quantify the effect of rhamnolipid biosurfactant structure on the degradation of alkanes by a variety of Pseudomonas isolates was conducted. Two dirhamnolipids were studied, a methyl ester form (dR-Me) and an acid form (dR-A). These rhamnolipids have different properties with respect to interfacial tension, solubility, and charge. For example, the interfacial tension between hexadecane and water was decreased to <0.1 dyne/cm by the dR-Me but was only decreased to 5 dyne/cm by the dR-A. Solubilization and biodegradation of two alkanes in different physical states, liquid and solid, were determined at dirhamnolipid concentrations ranging from 0.01 to 0.1 mM (7 to 70 mg/liter). The dR-Me markedly enhanced hexadecane (liquid) and octadecane (solid) degradation by seven different Pseudomonas strains. For an eighth strain tested, which exhibited extremely high cell surface hydrophobicity, hexadecane degradation was enhanced but octadecane degradation was inhibited. The dR-A also enhanced hexadecane degradation by all degraders but did so more modestly than the dR-Me. For octadecane, the dR-A only enhanced degradation by strains with low cell surface hydrophobicity.  相似文献   

18.
Journal of Evolutionary Biochemistry and Physiology - Neurodegenerative diseases are accompanied by neuroinflammation and excitotoxicity, in which microglia and astrocytes play an important role....  相似文献   

19.
BackgroundPolyamines can induce protein aggregation that can be related to the physiology of the cellular function. Polyamines have been implicated in protein aggregation which may lead to neuropathic and non neuropathic amyloidosis.Scope of reviewChange in the level of polyamine concentration has been associated with ageing and neurodegeneration such as Parkinson's disease, Alzheimer's disease. Lysozyme aggregation in the presence of polyamines leads to non neuropathic amyloidosis. Polyamine analogues can suppress or inhibit protein aggregation suggesting their efficacy against amyloidogenic protein aggregates.Major conclusionsIn this study we report the comparative interactions of lysozyme with the polyamine analogue, 1-naphthyl acetyl spermine in comparison with the biogenic polyamines through spectroscopy, calorimetry, imaging and docking techniques. The findings revealed that the affinity of binding varied as spermidine > 1-naphthyl acetyl spermine > spermine. The biogenic polyamines accelerated the rate of fibrillation significantly, whereas the analogue inhibited the rate of fibrillation to a considerable extent. The polyamines bind near the catalytic diad residues viz. Glu35 and Asp52, and in close proximity of Trp62 residue. However, the analogue showed dual nature of interaction where its alkyl amine region bind in same way as the biogenic polyamines bind to the catalytic site, while the naphthyl group makes hydrophobic contacts with Trp62 and Trp63, thereby suggesting its direct influence on fibrillation.General significanceThis study, thus, potentiates, the development of a polyamine analogue that can perform as an effective inhibitor targeted towards aggregation of amyloidogenic proteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号