首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nogo-66 receptor 1 (NgR1) is a glycosylphosphatidylinositol-anchored receptor for myelin-associated inhibitors that restricts plasticity and axonal regrowth in the CNS. NgR1 is cleaved from the cell surface of SH-SY5Y neuroblastoma cells in a metalloproteinase-dependent manner; however, the mechanism and physiological consequence of NgR1 shedding have not been explored. We now demonstrate that NgR1 is shed from multiple populations of primary neurons. Through a loss-of-function approach, we found that membrane-type matrix metalloproteinase-3 (MT3-MMP) regulates endogenous NgR1 shedding in primary neurons. Neuronal knockdown of MT3-MMP resulted in the accumulation of NgR1 at the cell surface and reduced the accumulation of the NgR1 cleavage fragment in medium conditioned by cortical neurons. Recombinant MT1-, MT2-, MT3-, and MT5-MMPs promoted NgR1 shedding from the surface of primary neurons, and this treatment rendered neurons resistant to myelin-associated inhibitors. Introduction of a cleavage-resistant form of NgR1 reconstitutes the neuronal response to these inhibitors, demonstrating that specific metalloproteinases attenuate neuronal responses to myelin in an NgR1-dependent manner.  相似文献   

2.
Localization of membrane type I matrix metalloproteinase (MT1-MMP) to the leading edge is thought to be a crucial step during cancer cell invasion. However, its mechanisms and functional impact on cellular invasion have not been clearly defined. In this report, we have identified the MT-LOOP, a loop region in the catalytic domain of MT1-MMP (163PYAYIREG170), as an essential region for MT1-MMP to promote cellular invasion. Deletion of the MT-LOOP effectively inhibited functions of MT1-MMP on the cell surface, including proMMP-2 activation, degradation of gelatin and collagen films, and cellular invasion into a collagen matrix. This is not due to loss of the catalytic function of MT1-MMP but due to inefficient localization of the enzyme to β1-integrin-rich cell adhesion complexes at the plasma membrane. We also found that an antibody that specifically recognizes the MT-LOOP region of MT1-MMP (LOOPAb) inhibited MT1-MMP functions, fully mimicking the phenotype of the MT-LOOP deletion mutant. We therefore propose that the MT-LOOP region is an interface for molecular interactions that mediate enzyme localization to cell adhesion complexes and regulate MT1-MMP functions. Our findings have revealed a novel mechanism regulating MT1-MMP during cellular invasion and have identified the MT-LOOP as a potential exosite target region to develop selective MT1-MMP inhibitors.  相似文献   

3.
Blockage of the metastasis process remains a significant clinical challenge, requiring innovative therapeutic approaches. For this purpose, molecules that inhibit matrix metalloproteinases activity or induce the expression of their natural inhibitor, the tissue inhibitor of metalloproteinases (TIMPs), are potentially interesting. In a previous study, we have shown that synthetic ligands binding to cell surface nucleolin/nucleophosmin and known as HB 19 for the lead compound and NucAnt 6L (N6L) for the most potent analog, inhibit both tumor growth and angiogenesis. Furthermore, they prevent metastasis in a RET transgenic mice model which develops melanoma. Here, we investigated the effect of N6L on the invasion capacity of MDA-MB-435 melanoma cells. Our results show that the multivalent pseudopeptide N6L inhibited Matrigel invasion of MDA-MB-435 cells in a modified Boyden chamber model. This was associated with an increase in TIMP-3 in the cell culture medium without a change in TIMP-3 mRNA expression suggesting its release from cell surface and/or extracellular matrix. This may be explained by our demonstrated N6L interaction with sulfated glycosaminoglycans and consequently the controlled bioavailability of glycosaminoglycan-bound TIMP-3. The implication of TIMP-3 in N6L-induced inhibition of cell invasion was evidenced by siRNA silencing experiments showing that the loss of TIMP-3 expression abrogated the effect of N6L. The inhibition of tumor cell invasion by N6L demonstrated in this study, in addition to its previously established inhibitory effect on tumor growth and angiogenesis, suggests that N6L represents a promising anticancer drug candidate warranting further investigation.  相似文献   

4.
Tissue inhibitor of metalloproteinases-3 (TIMP-3) plays a key role in regulating extracellular matrix turnover by inhibiting matrix metalloproteinases (MMPs), adamalysins (ADAMs), and adamalysins with thrombospondin motifs (ADAMTSs). We demonstrate that levels of this physiologically important inhibitor can be regulated post-translationally by endocytosis. TIMP-3 was endocytosed and degraded by a number of cell types including chondrocytes, fibroblasts, and monocytes, and we found that the endocytic receptor low density lipoprotein receptor-related protein-1 (LRP-1) plays a major role in TIMP-3 internalization. However, the cellular uptake of TIMP-3 significantly slowed down after 10 h due to shedding of LRP-1 from the cell surface and formation of soluble LRP-1 (sLRP-1)-TIMP-3 complexes. Addition of TIMP-3 to HTB94 human chondrosarcoma cells increased the release of sLRP-1 fragments of 500, 215, 160, and 110 kDa into the medium in a concentration-dependent manner, and all of these fragments were able to bind to TIMP-3. TIMP-3 bound to sLRP-1, which was resistant to endocytosis, retained its inhibitory activity against metalloproteinases. Extracellular levels of sLRP-1 can thus increase the half-life of TIMP-3 in the extracellular space, controlling the bioavailability of TIMP-3 to inhibit metalloproteinases.  相似文献   

5.
ADAMDEC1 is a proteolytically active metzincin metalloprotease displaying rare active site architecture with a zinc-binding Asp residue (Asp-362). We previously demonstrated that substitution of Asp-362 for a His residue, thereby reconstituting the canonical metzincin zinc-binding environment with three His zinc ligands, increases the proteolytic activity. The protease also has an atypically short domain structure with an odd number of Cys residues in the metalloprotease domain. Here, we investigated how these rare structural features in the ADAMDEC1 metalloprotease domain impact the proteolytic activity, the substrate specificity, and the effect of inhibitors. We identified carboxymethylated transferrin (Cm-Tf) as a new ADAMDEC1 substrate and determined the primary and secondary cleavage sites, which suggests a strong preference for Leu in the P1′ position. Cys392, present in humans but only partially conserved within sequenced ADAMDEC1 orthologs, was found to be unpaired, and substitution of Cys392 for a Ser increased the reactivity with α2-macroglobulin but not with casein or Cm-Tf. Substitution of Asp362 for His resulted in a general increase in proteolytic activity and a change in substrate specificity was observed with Cm-Tf. ADAMDEC1 was inhibited by the small molecule inhibitor batimastat but not by tissue inhibitor of metalloproteases (TIMP)-1, TIMP-2, or the N-terminal inhibitory domain of TIMP-3 (N-TIMP-3). However, N-TIMP-3 displayed profound inhibitory activity against the D362H variants with a reconstituted consensus metzincin zinc-binding environment. We hypothesize that these unique features of ADAMDEC1 may have evolved to escape from inhibition by endogenous metalloprotease inhibitors.  相似文献   

6.
Hepatic stellate cells (HSC) are central players in liver fibrosis that when activated, proliferate, migrate to sites of liver injury, and secrete extracellular matrix. Obesity, a known risk factor for liver fibrosis is associated with reduced levels of adiponectin, a protein that inhibits liver fibrosis in vivo and limits HSC proliferation and migration in vitro. Adiponectin-mediated activation of adenosine monophosphate-activated kinase (AMPK) inhibits HSC proliferation, but the mechanism by which it limits HSC migration to sites of injury is unknown. Here we sought to elucidate how adiponectin regulates HSC motility. Primary rat HSCs were isolated and treated with adiponectin in migration assays. The in vivo actions of adiponectin were examined by treating mice with carbon tetrachloride for 12 weeks and then injecting them with adiponectin. Cell and tissue samples were collected and analyzed for gene expression, signaling, and histology. Serum from patients with liver fibrosis was examined for adiponectin and tissue inhibitor of metalloproteinase-1 (TIMP-1) protein. Adiponectin administration into mice increased TIMP-1 gene and protein expression. In cultured HSCs, adiponectin promoted TIMP-1 expression and through binding of TIMP-1 to the CD63/β1-integrin complex reduced phosphorylation of focal adhesion kinase to limit HSC migration. In mice with liver fibrosis, adiponectin had similar effects and limited focal adhesion kinase phosphorylation. Finally, in patients with advanced fibrosis, there was a positive correlation between serum adiponectin and TIMP-1 levels. In sum, these data show that adiponectin stimulates TIMP-1 secretion by HSCs to retard their migration and contributes to the anti-fibrotic effects of adiponectin.  相似文献   

7.
Tissue inhibitor of metalloproteinases-2 (TIMP-2) is a broad spectrum inhibitor of the matrix metalloproteinases (MMPs), which function in extracellular matrix catabolism. Here, phage display was used to identify variants of human TIMP-2 that are selective inhibitors of human MMP-1, a collagenase whose unregulated action is linked to cancer, arthritis, and fibrosis. Using hard randomization of residues 2, 4, 5, and 6 (L1) and soft randomization of residues 34-40 (L2) and 67-70 (L3), a library was generated containing 2 × 10(10) variants of TIMP-2. Five clones were isolated after five rounds of selection with MMP-1, using MMP-3 as a competitor. The enriched phages selectively bound MMP-1 relative to MMP-3 and contained mutations only in L1. The most selective variant (TM8) was used to generate a second library in which residues Cys(1)-Gln(9) were soft-randomized. Four additional clones, selected from this library, showed a similar affinity for MMP-1 as wild-type TIMP-2 but reduced affinity for MMP-3. Variants of the N-terminal domain of TIMP-2 (N-TIMP-2) with the sequences of the most selective clones were expressed and characterized for inhibitory activity against eight MMPs. All were effective inhibitors of MMP-1 with nanomolar K(i) values, but TM8, containing Ser(2) to Asp and Ser(4) to Ala substitutions, was the most selective having a nanomolar K(i) value for MMP-1 but no detectable inhibitory activity toward MMP-3 and MMP-14 up to 10 μM. This study suggests that phage display and selection with other MMPs may be an effective method for discovering tissue inhibitor of metalloproteinase variants that discriminate between specified MMPs as targets.  相似文献   

8.
Extracellular short fibulins, fibulin-3, -4, and -5, are components of the elastic fiber/microfibril system and are implicated in the formation and homeostasis of elastic tissues. In this study, we report new structural and functional properties of the short fibulins. Full-length human short fibulins were recombinantly expressed in human embryonic kidney cells and purified by immobilized metal ion affinity chromatography. All three fibulins showed various levels of degradation after the purification procedure. N-terminal sequencing revealed that all three fibulins are highly susceptible to proteolysis within the N-terminal linker region of the first calcium-binding epidermal growth factor domain. Proteolytic susceptibility of the linker correlated with its length. Exposure of these fibulins to matrix metalloproteinase (MMP)-1, -2, -3, -7, -9, and -12 resulted in similar proteolytic fragments with MMP-7 and -12 being the most potent proteases. Fibulin-3 proteolysis was almost completely inhibited in cell culture by the addition of 25 μm doxycycline (a broad spectrum MMP inhibitor). Reducible fibulin-4 dimerization and multimerization were consistently observed by SDS-PAGE, Western blotting, and mass spectrometry. Atomic force microscopy identified monomers, dimers, and multimers in purified fibulin-4 preparations with sizes of ∼10–15, ∼20–25, and ∼30–50 nm, respectively. All short fibulins strongly adhered to human fibroblasts and smooth muscle cells. Although only fibulin-5 has an RGD integrin binding site, all short fibulins adhere at a similar level to the respective cells. Solid phase binding assays detected strong calcium-dependent binding of the short fibulins to immobilized heparin, suggesting that these fibulins may bind cell surface-located heparan sulfate.  相似文献   

9.
Synthetic inhibitors of matrix metalloproteinases (MMPs), designed previously, as well as tissue inhibitors of metalloproteinases (TIMPs) lack enzyme selectivity, which has been a major obstacle for developing inhibitors into safe and effective MMP-targeted drugs. Here we designed a fusion protein named APP-IP-TIMP-2, in which the ten amino acid residue sequence of APP-derived MMP-2 selective inhibitory peptide (APP-IP) is added to the N terminus of TIMP-2. The APP-IP and TIMP-2 regions of the fusion protein are designed to interact with the active site and the hemopexin-like domain of MMP-2, respectively. The reactive site of the TIMP-2 region, which has broad specificity against MMPs, is blocked by the APP-IP adduct. The recombinant APP-IP-TIMP-2 showed strong inhibitory activity toward MMP-2 (Kiapp = 0.68 pm), whereas its inhibitory activity toward MMP-1, MMP-3, MMP-7, MMP-8, MMP-9, or MT1-MMP was six orders of magnitude or more weaker (IC50 > 1 μm). The fusion protein inhibited the activation of pro-MMP-2 in the concanavalin A-stimulated HT1080 cells, degradation of type IV collagen by the cells, and the migration of stimulated cells. Compared with the decapeptide APP-IP (t½ = 30 min), APP-IP-TIMP-2 (t½ ≫ 96 h) showed a much longer half-life in cultured tumor cells. Therefore, the fusion protein may be a useful tool to evaluate contributions of proteolytic activity of MMP-2 in various pathophysiological processes. It may also be developed as an effective anti-tumor drug with restricted side effects.  相似文献   

10.
Interleukin-1 (IL-1) signaling in fibroblasts is mediated through focal adhesions, organelles that are enriched with adaptor and cytoskeletal proteins that regulate signal transduction. We examined interactions of the focal adhesion kinase (FAK) with protein-tyrosine phosphatase-α (PTP-α) in IL-1 signaling. In wild type and FAK knock-out mouse embryonic fibroblasts, we found by immunoblotting, immunoprecipitation, immunostaining, and gene silencing that FAK is required for IL-1-mediated sequestration of PTPα to focal adhesions. Immunoprecipitation and pulldown assays of purified proteins demonstrated a direct interaction between FAK and PTPα, which was dependent on the FAT domain of FAK and by an intact membrane-proximal phosphatase domain of PTPα. Recruitment of PTPα to focal adhesions, IL-1-induced Ca2+ release from the endoplasmic reticulum, ERK activation, and IL-6, MMP-3, and MMP-9 expression were all blocked in FAK knock-out fibroblasts. These processes were restored in FAK knock-out cells transfected with wild type FAK, FAT domain, and FRNK. Our data indicate that IL-1-induced signaling through focal adhesions involves interactions between the FAT domain of FAK and PTPα.  相似文献   

11.
Notch1 is an evolutionarily conserved signaling molecule required for stem cell maintenance that is inappropriately reactivated in several cancers. We have previously shown that melanomas reactivate Notch1 and require its function for growth and survival. However, no Notch1-activating mutations have been observed in melanoma, suggesting the involvement of other activating mechanisms. Notch1 activation requires two cleavage steps: first by a protease and then by γ-secretase, which releases the active intracellular domain (Notch1NIC). Interestingly, although ADAM10 and -17 are generally accepted as the proteases responsible of Notch1 cleavage, here we show that MT1-MMP, a membrane-tethered matrix metalloproteinase involved in the pathogenesis of a number of tumors, is a novel protease required for the cleavage of Notch1 in melanoma cells. We find that active Notch1 and MT1-MMP expression correlate significantly in over 70% of melanoma tumors and 80% of melanoma cell lines, whereas such correlation does not exist between Notch1NIC and ADAM10 or -17. Modulation of MT1-MMP expression in melanoma cells affects Notch1 cleavage, whereas MT1-MMP expression in ADAM10/17 double knock-out fibroblasts restores the processing of Notch1, indicating that MT1-MMP is sufficient to promote Notch1 activation independently of the canonical proteases. Importantly, we find that MT1-MMP interacts with Notch1 at the cell membrane, supporting a potential direct cleavage mechanism of MT1-MMP on Notch1, and that MT1-MMP-dependent activation of Notch1 sustains melanoma cell growth. Together, the data highlight a novel mechanism of activation of Notch1 in melanoma cells and identify Notch1 as a new MT1-MMP substrate that plays important biological roles in melanoma.  相似文献   

12.
Because of their important function, matrix metalloproteinases (MMPs) are promising drug targets in multiple diseases, including malignancies. The structure of MMPs includes a catalytic domain, a hinge, and a hemopexin domain (PEX), which are followed by a transmembrane and cytoplasmic tail domains or by a glycosylphosphatidylinositol linker in membrane-type MMPs (MT-MMPs). TIMPs-1, -2, -3, and -4 are potent natural regulators of the MMP activity. These are the inhibitory N-terminal and the non-inhibitory C-terminal structural domains in TIMPs. Based on our structural modeling, we hypothesized that steric clashes exist between the non-inhibitory C-terminal domain of TIMPs and the PEX of MMPs. Conversely, a certain mobility of the PEX relative to the catalytic domain is required to avoid these obstacles. Because of its exceedingly poor association constant and, in contrast with TIMP-2, TIMP-1 is inefficient against MT1-MMP. We specifically selected an MT1-MMP·TIMP-1 pair to test our hypothesis, because any improvement of the inhibitory potency would be readily recorded. We characterized the domain-swapped MT1-MMP chimeras in which the PEX of MMP-2 (that forms a complex with TIMP-2) and of MMP-9 (that forms a complex with TIMP-1) replaced the original PEX in the MT1-MMP structure. In contrast with the wild-type MT1-MMP, the diverse proteolytic activities of the swapped-PEX chimeras were then inhibited by both TIMP-1 and TIMP-2. Overall, our studies suggest that the structural parameters of both domains of TIMPs have to be taken into account for their re-engineering to harness the therapeutic in vivo potential of the novel TIMP-based MMP antagonists with constrained selectivity.  相似文献   

13.
Idiopathic pulmonary fibrosis is a devastating lung disorder of unknown etiology. Although its pathogenesis is unclear, considerable evidence supports an important role of aberrantly activated alveolar epithelial cells (AECs), which produce a large variety of mediators, including several matrix metalloproteases (MMPs), which participate in fibroblast activation and lung remodeling. MMP-1 has been shown to be highly expressed in AECs from idiopathic pulmonary fibrosis lungs although its role is unknown. In this study, we explored the role of MMP-1 in several AECs functions. Mouse lung epithelial cells (MLE12) transfected with human Mmp-1 showed significantly increased cell growth and proliferation at 36 and 48 h of culture (p < 0.01). Also, MMP-1 promoted MLE12 cell migration through collagen I, accelerated wound closing, and protected cells from staurosporine- and bleomycin-induced apoptosis compared with mock cells (p < 0.01). MLE12 cells expressing human MMP-1 showed a significant repression of oxygen consumption ratio compared with the cells with the empty vector. As under hypoxic conditions hypoxia-inducible factor-1α (HIF-1α) mediates a transition from oxidative to glycolytic metabolism, we analyzed activation of HIF-1α. Ηigher activation of this factor was detected in MMP-1-transfected cells under normoxia and hypoxia. Likewise, a significant decrease of both total and mitochondrial reactive oxygen species was observed in MMP-1-transfected cells. Paralleling these findings, attenuation of MMP-1 expression by shRNA in A549 (human) AECs markedly reduced proliferation and migration (p < 0.01) and increased the oxygen consumption ratio. These findings indicate that epithelial expression of MMP-1 inhibits mitochondrial function, increases HIF-1α expression, decreases reactive oxygen species production, and contributes to a proliferative, migratory, and anti-apoptotic AEC phenotype.  相似文献   

14.
本实验利用原位杂交对小鼠妊娠不同时期胎盘中MMP-2,TIMP-2,-3mRNA的表达进行了研究。结果表明;MMP-2主要在具有很强的侵润能力的海绵滋养层细胞中表达,到妊娠13.5天时,MMP-2的表达明显降低,说明此时的滋养层细胞基本上失去侵润能力。TMIP-1和TMIP-3在滋养层细胞和蜕膜细胞中都有表达,这两种抑制因子的协同表达,一方面能够调控滋养层细胞侵入子宫内膜的深度,另一方面,滋养层细胞自身既表达MMP-2又表达TIMPs,可能对其自身有保护作用,使得MMP的水解功能局限于子宫蜕膜的特定区域。在妊娠10.5天,滋养层巨细胞同时表达TIMP-1,-3mRNA,这可能与其功能的转换是一致的;因为此时小鼠滋养层巨细胞体积最大,且不再增殖,同时其功能屯从侵入型向内分泌型转换。所以,MMPs和TIMPs在小鼠滋养层细胞和子宫蜕膜中的协同表达表明其在着床过程中可能发挥重要作用。  相似文献   

15.
The avid binding of tissue inhibitors of metalloproteinases (TIMPs) to matrix metalloproteinases (MMPs) is crucial for the regulation of pericellular and extracellular proteolysis. The interactions of the catalytic domain (cd) of MMP-1 with the inhibitory domains of TIMP-1 and TIMP-2 (N-TIMPs) and MMP-3cd with N-TIMP-2 have been characterized by isothermal titration calorimetry and compared with published data for the N-TIMP-1/MMP-3cd interaction. All interactions are largely driven by increases in entropy but there are significant differences in the profiles for the interactions of both N-TIMPs with MMP-1cd as compared with MMP-3cd; the enthalpy change ranges from small for MMP-1cd to highly unfavorable for MMP-3cd (-0.1 ± 0.7 versus 6.0 ± 0.5 kcal mol(-1)). The heat capacity change (ΔC(p)) of binding to MMP-1cd (temperature dependence of ΔH) is large and negative (-210 ± 20 cal K(-1) mol(-1)), indicating a large hydrophobic contribution, whereas the ΔC(p) values for the binding to MMP-3cd are much smaller (-53 ± 3 cal K(-1) mol(-1)), and some of the entropy increase may arise from increased conformational entropy. Apart from differences in ionization effects, it appears that the properties of the MMP may have a predominant influence in the thermodynamic profiles for these N-TIMP/MMP interactions.  相似文献   

16.
Aortic aneurysm is dilation of the aorta primarily due to degradation of the aortic wall extracellular matrix (ECM). Tissue inhibitors of metalloproteinases (TIMPs) inhibit matrix metalloproteinases (MMPs), the proteases that degrade the ECM. Timp3 is the only ECM-bound Timp, and its levels are altered in the aorta from patients with abdominal aortic aneurysm (AAA). We investigated the causal role of Timp3 in AAA formation. Infusion of angiotensin II (Ang II) using micro-osmotic (Alzet) pumps in Timp3−/− male mice, but not in wild type control mice, led to adverse remodeling of the abdominal aorta, reduced collagen and elastin proteins but not mRNA, and elevated proteolytic activities, suggesting excess protein degradation within 2 weeks that led to formation of AAA by 4 weeks. Intriguingly, despite early up-regulation of MMP2 in Timp3−/−Ang II aortas, additional deletion of Mmp2 in these mice (Timp3−/−/Mmp2−/−) resulted in exacerbated AAA, compromised survival due to aortic rupture, and inflammation in the abdominal aorta. Reconstitution of WT bone marrow in Timp3−/−/Mmp2−/− mice reduced inflammation and prevented AAA in these animals following Ang II infusion. Treatment with a broad spectrum MMP inhibitor (PD166793) prevented the Ang II-induced AAA in Timp3−/− and Timp3−/−/Mmp2−/− mice. Our study demonstrates that the regulatory function of TIMP3 is critical in preventing adverse vascular remodeling and AAA. Hence, replenishing TIMP3, a physiological inhibitor of a number of metalloproteinases, could serve as a therapeutic approach in limiting AAA development or expansion.  相似文献   

17.
Binding of tissue inhibitor of metalloproteinase-2 (TIMP-2) to pro-MMP-2 and mature membrane type-1 MMP (MT1-MMP) on the cell surface is required for activation of MMP-2. It has been reported that following binding to cell surface receptors, TIMP-2 undergoes endocytosis and extensive degradation in lysosomes. The purpose of this study was to reexamine the fate of TIMP-2 following binding to transfected HT1080 cell surface MT1-MMP at 4 degrees C. Following 37 degrees C incubation, 125I-TIMP-2 release, endocytosis, and degradation were characterized under varying conditions. More than 85% of the total 125I-TIMP-2 bound to cells was released as intact functional molecules; <15% was degraded. Transfection of HT1080 cells with dominant negative mutant dynamin cDNA resulted in delayed endocytosis and release of 125I-TIMP-2 from cells. Pharmacologic agents that induce clustering of cell surface receptors (concanavalin A) and interfere with endosomal/lysosomal function (bafilomycin A(1)) resulted in enhanced binding of 125I-TIMP-2 to cell surface receptors. Abrogation of activation of proMT1-MMP with a furin inhibitor prevented binding and endocytosis of 125I-TIMP-2. Biotinylation of cell surface MT1-MMP followed by Western blotting confirmed the presence of mature MT1-MMP on the cell surface and degraded MT1-MMP in the intracellular compartment. In conclusion, these studies demonstrate that TIMP-2 is released from cells primarily as an intact functional molecule following binding to MT1-MMP on the cell surface.  相似文献   

18.
Zhu L  Du F  Yang L  Wu XM  Qian ZM 《Neurochemical research》2008,33(5):784-789
Previous studies showed that nerve growth factor (NGF) exerts protective effects on cultured neurons against various kinds of damage. However, a recent publication reported that exposure of NGF-treated PC12 cells to physical hypoxia resulted in a higher cell death rate when compared to the untreated controls. In the present study, we therefore investigated the effects of NGF on the hypoxic cortical neurons induced by potassium cyanide (KCN). We demonstrated that NGF at a higher concentration can significantly increase neuronal viability, decrease the release of lactate dehydrogenase and improve cellular morphology in the hypoxic cortical neurons. However, we also found that pretreatment of NGF was not able to completely revise the decreased cell viability and the increased leakage of lactate dehydrogenase (LDH) induced by KCN, although the indexes in the neurons treated with NGF and KCN were significantly higher than those in the neurons treated with KCN only. Analysis of the data showed that the incomplete revision of NGF should be not due to the dosage of NGF we used. It might be induced by the inability of NGF to inhibit all injury pathways induced by potassium cyanide.  相似文献   

19.
In the developing nervous system, neuronal growth cones explore the extracellular environment for guidance cues, which can guide them along specific trajectories toward their targets. Netrin-1, a bifunctional guidance cue, binds to deleted in colorectal cancer (DCC) and DSCAM mediating axon attraction, and UNC5 mediating axon repulsion. Here, we show that DSCAM interacts with UNC5C and this interaction is stimulated by netrin-1 in primary cortical neurons and postnatal cerebellar granule cells. DSCAM partially co-localized with UNC5C in primary neurons and brain tissues. Netrin-1 induces axon growth cone collapse of mouse cerebellum external granule layer (EGL) cells, and the knockdown of DSCAM or UNC5C by specific shRNAs or blocking their signaling by overexpressing dominant negative mutants suppresses netrin-1-induced growth cone collapse. Similarly, the simultaneous knockdown of DSCAM and UNC5C also blocks netrin-1-induced growth cone collapse in EGL cells. Netrin-1 increases tyrosine phosphorylation of endogenous DSCAM, UNC5C, FAK, Fyn, and PAK1, and promotes complex formation of DSCAM with these signaling molecules in primary postnatal cerebellar neurons. Inhibition of Src family kinases efficiently reduces the interaction of DSCAM with UNC5C, FAK, Fyn, and PAK1 and tyrosine phosphorylation of these proteins as well as growth cone collapse of mouse EGL cells induced by netrin-1. The knockdown of DSCAM inhibits netrin-induced tyrosine phosphorylation of UNC5C and Fyn as well as the interaction of UNC5C with Fyn. The double knockdown of both receptors abolishes the induction of Fyn tyrosine phosphorylation by netrin-1. Our study reveals the first evidence that DSCAM coordinates with UNC5C in netrin-1 repulsion.  相似文献   

20.
MT4-MMP (MMP17) belongs to a unique subset of membrane type-matrix metalloproteinases that are anchored to the cell surface via a glycosylphosphatidylinositol moiety. However, little is known about its biochemical properties. Here, we report that MT4-MMP is displayed on the cell surface as a mixed population of monomeric, dimeric, and oligomeric forms. Sucrose gradient fractionation demonstrated that these forms of MT4-MMP are all present in lipid rafts. Mutational and computational analyses revealed that Cys(564), which is present within the stem region, mediates MT4-MMP homodimerization by forming a disulfide bond. Substitution of Cys(564) results in a more rapid MT4-MMP turnover, when compared with the wild-type enzyme, consistent with a role for dimerization in protein stability. Expression of MT4-MMP in Madin-Darby canine kidney cells enhanced cell migration and invasion of Matrigel, a process that requires catalytic activity. However, a serine substitution at Cys(564) did not reduce MT4-MMP-stimulated cell invasion of Matrigel suggesting that homodimerization is not required for this process. Deglycosylation studies showed that MT4-MMP is modified by N-glycosylation. Moreover, inhibition of N-glycosylation by tunicamycin diminished the extent of MT4-MMP dimerization suggesting that N-glycans may confer stability to the dimeric form. Taken together, the data presented here provide a new insight into the characteristics of MT4-MMP and highlight the common and distinct properties of the glycosylphosphatidylinositol-anchored membrane type-matrix metalloproteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号