首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Digestive efficiency traits are promising selection criteria to improve feed efficiency in pigs. However, the genetic relationships between digestive efficiency and sow reproductive traits are mostly unknown and need to be estimated. In this study, reproductive traits were available for 61 601 litters recorded on 21 719 Large White purebred sows. The traits were comprised of the number of born alive (NBA) and the number of weaned piglets (NWP), the number of stillbirths (NSB) and piglet mortality during suckling (PM). For a subset of 32 518 litters, the mean (MBW) and CV of piglet birth weights (CVBW) were deduced from individual piglet weights as well as the proportion of piglets weighing less than 1 kg (PPL1K). Growth and feed efficiency traits were available for 4 643 Large White male pigs related to sows with reproductive performances. They comprised average daily gain (ADG), daily feed intake (DFI) and feed conversion ratio (FCR). A subset of 1 391 pigs had predictions for digestibility coefficients (DC) of energy, organic matter and nitrogen obtained by analysing faecal samples with near-infrared spectrometry. Estimated heritabilities were low for NBA, NSB, NWP and PM (0.08 ± 0.01 to 0.11 ± 0.01) and low to moderate for litter weight characteristics (0.14 ± 0.02 to 0.38 ± 0.01). Heritability estimates were moderate to high for ADG, DFI and FCR (0.37 ± 0.04 to 0.54 ± 0.05) and moderate for DC traits (0.26 ± 0.06 to 0.38 ± 0.07). Genetic correlations were low between ADG, or alternatively FCR, and reproductive traits. They were significantly different from zero with MBW (0.19 ± 0.06 with ADG and ?0.15 ± 0.06 with FCR) and PPL1K (?0.19 ± 0.07 with ADG and 0.18 ± 0.07 with FCR). All genetic correlations between DFI and reproductive traits were low and not significantly different from zero. Genetic correlations between DC traits and NBA were significantly different from zero for DC of organic matter and energy (<?0.25 ± 0.11). DC traits were moderately correlated with MBW (>0.30 ± 0.11), CVBW (<?0.36 ± 0.11) and PPL1K (<?0.37 ± 0.11) at the genetic level. Genetic correlations between DC traits and PM were significantly negative and hence favourable (<?0.38 ± 0.12). Finally, genetic correlations between DC traits and NWP were close to zero. These results suggested that sows closely related to growing pigs with the best digestive efficiency would produce heavier and more homogeneous piglets, with slightly smaller litter sizes at birth but better survival. Hence, there is usable genetic variation in DC that could be exploited to define new selection strategies in maternal lines aiming at improving not only feed efficiency but also piglet survival.  相似文献   

2.
Body weight and body measurements are commonly used to represent growth and measured at several growth stages in beef cattle. Those economically important traits should be genetically improved. To achieve breeding programs, genetic parameters are prerequisite, as they are needed for designing and predicting outcomes of breeding programs, as well as estimating of breeding values. (Co)variance components were estimated for BW and body measurements on Brahman cattle born between 1990 and 2016 from 17 research herds across Thailand. The traits measured were BW, heart girth (GR), hip height (HH) and body length (BL) and were measured at birth, 200 days, 400 days and 600 days of age. The number of records varied between traits from 18 890 for birth BW to 876 for GR at 600 days. Estimation of variance components was performed using restricted maximum likelihood using univariate and multivariate animal models. Pre-weaning traits were influenced by genetic and/or permanent environmental effects of the dam, except for BL. Heritability estimates from birth to 600 days of age ranged from 0.28±0.01 to 0.50±0.06 for BW, 0.27±0.01 to 0.43±0.09 for GR, 0.28±0.01 to 0.58±0.08 for HH and 0.34±0.01 to 0.51±0.08 for BL using univariate analysis. Heritability estimates for the traits studied increased with age. A similar trend was observed for the phenotypic and genetic correlations between subsequent BW and body measurements. A positive correlation was observed between different traits measured at a similar age, ranging from 0.22±0.01 to 0.72±0.01 for the phenotypic correlation and 0.25±0.04 to 0.97±0.11 for the genetic correlation. Also, a positive correlation was observed for similar traits across different age classes ranging from 0.07±0.03 to 0.76±0.02 for the phenotypic correlation and 0.24±0.11 to 0.92±0.05 for the genetic correlation. Therefore, all correlations between body measurements at the same age and across age classes were positive. The results show the potential improvement of growth traits in Brahman cattle, and those traits can be improved simultaneously under the same breeding program.  相似文献   

3.
The objective of this study was to estimate the genetic parameters for thermoregulation traits and the relationships with performance of Large White lactating sows reared in a tropical humid climate. The thermoregulation traits were rectal temperature (RT), cutaneous temperature (CT) and respiratory rate (RR) during lactation measured in the afternoon (1200 h) and in the morning (0700 h). The production traits were sow’s average daily feed intake (ADFI), litter BW gain (LBWg) and sow’s proportion of BW change between farrowing and weaning (BWc). Complete data included 931 lactating performance on 329 Large White sows from the INRA experimental unit in Guadeloupe (French West Indies). Random regression models using linear spline functions were used for longitudinal data (RT, CT, RR and daily feed intake). Results showed that when ignoring values at the beginning and the end of lactation, the traits studied can be treated as the same trait throughout days of lactation, with fairly constant heritability and variance. However, largest heritabilities and genetic variances were estimated in mid-lactation. Heritability estimates on average performance during lactation were low to moderate for thermoregulation traits (0.35±0.09 for RT, 0.34±0.12 for CT and 0.39±0.13 for RR). Heritability estimates for production traits were 0.26±0.08 for ADFI, 0.20±0.07 for BWc and 0.31±0.09 for LBWg. Significant genetic correlations between thermoregulation traits and production traits were only obtained for ADFI and RR (0.35±0.12). From this study it can be concluded that thermoregulation traits are heritable, indicating that there are genetic differences in heat stress tolerance in lactating Large White sows.  相似文献   

4.
The difficulties and costs of measuring individual feed intake in dairy cattle are the primary factors limiting the genetic study of feed intake and utilisation, and hence the potential of their subsequent industry-wide applications. However, indirect selection based on heritable, easily measurable, and genetically correlated traits, such as conformation traits, may be an alternative approach to improve feed efficiency. The aim of this study was to estimate genetic and phenotypic correlations among feed intake, production, and feed efficiency traits (particularly residual feed intake; RFI) with routinely recorded conformation traits. A total of 496 repeated records from 260 Holstein dairy cows in different lactations (260, 159 and 77 from first, second and third lactation, respectively) were considered in this study. Individual daily feed intake and monthly BW and body condition scores of these animals were recorded from 5 to 305 days in milk within each lactation from June 2007 to July 2013. Milk yield and composition data of all animals within each lactation were retrieved, and the first lactation conformation traits for primiparous animals were extracted from databases. Individual RFI over 301 days was estimated using linear regression of total 301 days actual energy intake on a total of 301 days estimated traits of metabolic BW, milk production energy requirement, and empty BW change. Pair-wise bivariate animal models were used to estimate genetic and phenotypic parameters among the studied traits. Estimated heritabilities of total intake and production traits ranged from 0.27±0.07 for lactation actual energy intake to 0.45±0.08 for average body condition score over 301 days of the lactation period. RFI showed a moderate heritability estimate (0.20±0.03) and non-significant phenotypic and genetic correlations with lactation 3.5 % fat-corrected milk and average BW over lactation. Among the conformation traits, dairy strength, stature, rear attachment width, chest width and pin width had significant (P<0.05) moderate to strong genetic correlations with RFI. Combinations of these conformation traits could be used as RFI indicators in the dairy genetic improvement programmes to increase the accuracy of the genetic evaluation of feed intake and utilisation included in the index.  相似文献   

5.
The profitability of dual-purpose breeding farms can be increased through genetic improvement of carcass traits. To develop a genetic evaluation of carcass traits of young bulls, breed-specific genetic parameters were estimated in three French dual-purpose breeds. Genetic correlations between these traits and veal calf, type and milk production traits were also estimated. Slaughter performances of 156 226 Montbeliarde, 160 361 Normande and 8691 Simmental young bulls were analyzed with a multitrait animal model. In the three breeds, heritabilities were moderate for carcass weight (0.12 to 0.19±0.01 to 0.04) and carcass conformation (0.21 to 0.26±0.01 to 0.04) and slightly lower for age at slaughter (0.08 to 0.17±0.01 to 0.03). For all three breeds, genetic correlations between carcass weight and carcass conformation were moderate and favorable (0.30 to 0.52±0.03 to 0.13). They were strong and favorable (−0.49 to −0.71±0.05 to 0.15) between carcass weight and age at slaughter. Between age at slaughter and carcass conformation, they were low and unfavorable to moderate and favorable (−0.25 to 0.10±0.06 to 0.18). Heavier young bulls tend to be better conformed and slaughtered earlier. Genetic correlations between corresponding young bulls and veal production traits were moderate and favorable (0.32 to 0.70±0.03 to 0.09), implying that selecting sires for veal calf production leads to select sires producing better young bulls. Genetic correlations between young bull carcass weight and cow size were moderately favorable (0.22 to 0.45±0.04 to 0.10). Young bull carcass conformation had moderate and favorable genetic correlations (0.11 to 0.24±0.04 to 0.10) with cow width but moderate and unfavorable genetic correlations (−0.21 to −0.36±0.03 to 0.08) with cow height. Taller cows tended to produce heavier young bulls and thinner cows to produce less conformed ones. Genetic correlations between carcass traits of young bulls and cow muscularity traits were low to moderate and favorable. Finally, genetic correlations between carcass traits of young bulls and milk production traits were low and unfavorable to moderate and favorable. These results indicate the existence for all three breeds of genetic variability for the genetic improvement of carcass traits of young bulls as well as favorable genetic correlations for their simultaneous selection and no strong unfavorable correlation with milk production traits.  相似文献   

6.
The association of molecular variants with phenotypic variation is a main issue in biology, often tackled with genome-wide association studies (GWAS). GWAS are challenging, with increasing, but still limited, use in evolutionary biology. We used redundancy analysis (RDA) as a complimentary ordination approach to single- and multitrait GWAS to explore the molecular basis of pigmentation variation in brown trout (Salmo trutta) belonging to wild populations impacted by hatchery fish. Based on 75,684 single nucleotide polymorphic (SNP) markers, RDA, single- and multitrait GWAS allowed the extraction of 337 independent colour patterning loci (CPLs) associated with trout pigmentation traits, such as the number of red and black spots on flanks. Collectively, these CPLs (i) mapped onto 35 out of 40 brown trout linkage groups indicating a polygenic genomic architecture of pigmentation, (ii) were found to be associated with 218 candidate genes, including 197 genes formerly mentioned in the literature associated to skin pigmentation, skin patterning, differentiation or structure notably in a close relative, the rainbow trout (Onchorhynchus mykiss), and (iii) related to functions relevant to pigmentation variation (e.g., calcium- and ion-binding, cell adhesion). Annotated CPLs include genes with well-known pigmentation effects (e.g., PMEL, SLC45A2, SOX10), but also markers associated with genes formerly found expressed in rainbow or brown trout skins. RDA was also shown to be useful to investigate management issues, especially the dynamics of trout pigmentation submitted to several generations of hatchery introgression.  相似文献   

7.
Community-based sheep breeding programs (CBBPs) have been adopted strategically to improve Bonga sheep, the most popular sheep breed in Ethiopia. The present study was undertaken to estimate genetic parameters and genetic trends for growth traits and inbreeding levels in each Bonga sheep CBBP. Data pertaining to growth traits, spanning a period of seven years (2012–2017), were collected from 14 Bonga sheep CBBPs. Data were analyzed using the General Linear Model procedure of SAS to study the performance of the breed over the years. The genetic parameters were estimated by univariate and multivariate animal model using restricted maximum likelihood method of WOMBAT software. The genetic trends were estimated by the regression of the average breeding values of the animals on the year of birth. The overall least square means ± SE of BW (kg) were 3.10 ± 0.010, 16.1 ± 0.07, 24.7 ± 0.20, 30.4 ± 0.40 and 34.0 ± 0.84 for birth weight (BWT), weaning weight (WWT), six-month weight (SMWT), nine-month weight (NMWT) and yearling weight (YWT), respectively. Direct heritability estimates from selected models were 0.56 ± 0.030, 0.36 ± 0.030, 0.22 ± 0.040, 0.17 ± 0.070 and 0.13 ± 0.150 for BWT, WWT, SMWT, NMWT and YWT, respectively. Six-month weight was the selection trait and presented positive trends for 10 CBBPs, and negative trends for four CBBPs. Moderate to high heritability estimates and positive genetic trends indicated scope for further improvement of BW. Additionally, the positive and high correlation between BW traits indicated that selection for just one trait would also improve the other traits through correlated responses.  相似文献   

8.
Improving feed efficiency is a key breeding goal in the beef cattle industry. In this study, we estimated the genetic parameters for feed efficiency and carcass traits in Senepol cattle raised in tropical regions. Various indicators of feed efficiency [gain to feed ratio (G:F), feed conversion ratio (FCR), residual weight gain (RG), residual intake and body weight gain (RIG), and residual feed intake (RFI)] as well as growth [final BW, average daily gain (ADG), and DM intake (DMI)], and carcass [rib-eye area (REA), backfat thickness (BF), intramuscular fat score, and carcass conformation score] traits were included in the study. After data editing, records from 1 393 heifers obtained between 2009 and 2018 were used for the analyses. We fitted an animal model that included contemporary group (animals from the same farm that were evaluated in the same test season) as the fixed effect, and a linear effect of animal age at the beginning of the test as a covariate; in addition to random direct additive genetic and residual effects. The (co)variance components were estimated by Bayesian inference in uni- and bivariate analyses. Our results showed that feed efficiency indicators derived from residual variables such as RG, RIG, and RFI can be improved through genetic selection (h2 = 0.14 ± 0.06, 0.13 ± 0.06, and 0.20 ± 0.08, respectively). Variables calculated as ratios such as G:F and FCR were more influenced by environmental factors (h2 = 0.08 ± 0.05 and 0.09 ± 0.05), and were, therefore, less suitable for use in breeding programs. The traits with the greatest and impact on genetic progress in feed efficiency were ADG, REA, and BF. The traits with the greatest and least impact on growth and carcass traits were RG and RFI, respectively. Selection for feed efficiency will result in distinct overall effects on the growth and carcass traits of Senepol heifers. Direct selection for lower RFI may reduce DMI and increase carcass fatness at the finishing stage, but it might also result in reduced growth and muscle deposition. Residual BW gain is associated with the highest weight gain and zero impact on REA and BF, however, it is linked to higher feed consumption. Thus, the most suitable feed efficiency indicator was RIG, as it promoted the greatest decrease in feed intake concomitant with faster growth, with a similar impact on carcass traits when compared to the other feed efficiency indicators.  相似文献   

9.
Pigs are housed in groups during the test period. Social effects between pen mates may affect average daily gain (ADG), backfat thickness (BF), feed conversion rate (FCR), and the feeding behaviour traits of pigs sharing the same pen. The aim of our study was to estimate the genetic parameters of feeding behaviour and production traits with statistical models that include social genetic effects (SGEs). The data contained 3075 Finnish Yorkshire, 3351 Finnish Landrace, and 968 F1-crossbred pigs. Feeding behaviour traits were measured as the number of visits per day (NVD), time spent in feeding per day (TPD), daily feed intake (DFI), time spent in feeding per visit (TPV), feed intake per visit (FPV), and feed intake rate (FR). The test period was divided into five periods of 20 days. The number of pigs per pen varied from 8 to 12. Two model approaches were tested, i.e. a fixed group size model and a variable group size model. For the fixed group size model, eight random pigs per pen were included in the analysis, while all pigs in a pen were included for the variable group size model. The linear mixed-effects model included sex, breed, and herd*year*season as fixed effects and group (batch*pen), litter, the animal itself (direct genetic effect (DGE)), and pen mates (SGEs) as random effects. For feeding behaviour traits, estimates of the total heritable variation (T2 ± SE) and classical heritability (h2 ± SE, values given in brackets) from the variable group size model (e.g. period 1) were 0.34 ± 0.13 (0.30 ± 0.04) for NVD, 0.41 ± 0.10 (0.37 ± 0.04) for TPD, 0.40 ± 0.15 (0.14 ± 0.03) for DFI, 0.53 ± 0.15 (0.28 ± 0.04) for TPV, 0.66 ± 0.17 (0.28 ± 0.04) for FPV, and 0.29 ± 0.13 (0.22 ± 0.03) for FR. The effect of social interaction was minimal for ADG (T2 = 0.29 ± 0.11 and h2 = 0.29 ± 0.04), BF (T2 = 0.48 ± 0.12 and h2 = 0.38 ± 0.07), and FCR (T2 = 0.37 ± 0.12 and h2 = 0.29 ± 0.04) using the variable group size model. In conclusion, the results indicate that social interactions have a considerable indirect genetic effect on the feeding behaviour and FCR of pigs but not on ADG and BF.  相似文献   

10.
In the Upper Oldman River, Alberta, introduced non‐native hatchery rainbow trout (Oncorhynchus mykiss) hybridize with native westslope cutthroat trout (O. clarkii), resulting in a hybrid swarm. Rainbow trout dominate at low elevations (< 1250 m) in the river mainstem, cutthroat in high‐elevation tributaries (> 1400 m), and hybrids are numerically dominant in the mid‐elevation range. We hypothesized that metabolism of rainbow trout would exceed that of cutthroat trout, and that the elevation gradient in genetic makeup would be mirrored by a gradient in metabolic traits, with intermediate traits in the hybrid‐dominated ecotone. Metabolic traits were measured and regressed against the genetic makeup of individuals and elevation. Rainbow trout had higher oxygen consumption rates (OCRs), higher white muscle lactate dehydrogenase (LDH), and citrate synthase (CS) activity, and higher plasma acetylcholinesterase (AchE) than cutthroat trout. Hybrids had intermediate OCRs and AchE, but LDH activity as high as rainbow trout. While hybrid zones are usually modelled as a balance between cross species mating and selection against hybrids, ecotonal hybrid zones, where hybrids proliferate in intermediate habitats and have traits that appear well suited to ecotonal conditions, have been proposed for some plants and animals, and may have important implications for resource management and conservation. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 56–72.  相似文献   

11.
This study compares the performance (in terms of survival and growth), biochemical and fatty acid compositions among all female diploid (AFD) and triploid (AFT) rainbow trout (Oncorhynchus mykiss). AFD and AFT fish with mean initial weights of 1,040.1 ± 1.3 and 1,039.7 ± 1.6 g, respectively, were reared and fed from March to August with a commercially extruded trout feed in a commercial freshwater fishfarm located in the Black Sea region (Samsun, Turkey). Survival was reduced throughout the experimental period in the AFT group with increasing water temperatures. At the end of the experiment, survival rates were 98.57 ± 1.43% and 82.38 ± 7.39% for the AFD and AFT groups, respectively. The AFD group showed significantly better growth performances in terms of weight gain, feed conversion rate (FCR), relative growth rate (RGR) and specific growth rate (SGR) than the AFT group (p < .05). Significantly less protein and greater fat content were also observed in the AFT group (p < .05). There was no significant difference between groups for fatty acid composition in meat, except for stearic acid (SA, C18:0) and docosahexaenoic acid (DHA, 22:6 n‐3). While the greatest SA concentration was in the AFT group, the greatest DHA concentration was observed in the AFD group (p < .05). The results indicate that female triploid rainbow trout are more susceptible to suboptimal environmental conditions (especially to higher water temperatures) than female diploids. Although poor triploid performance was observed in this study, relative productivity might be enhanced by rearing triploids in optimal environmental conditions.  相似文献   

12.
Astaxanthin from a transgenic maize line was evaluated as feed supplement source conferring effective pigmentation of rainbow trout flesh. An extraction procedure using ethanol together with the addition of vegetal oil was established. This resulted in an oily astaxanthin preparation which was not sufficiently concentrated for direct application to the feed. Therefore, a concentration process involving multiple phase partitioning steps was implemented to remove 90 % of the oil. The resulting astaxanthin raw material contained non-esterified astaxanthin with 12 % 4-keto zeaxanthin and 2 % zeaxanthin as additional carotenoids. Isomeric analysis confirmed the exclusive presence of the 3S, 3′S astaxanthin enantiomer. The geometrical isomers were 89 % all-E, 8 % 13-Z and 3 % 9-Z. The incorporation of the oily astaxanthin preparation into trout feed was performed to deliver 7 mg/kg astaxanthin in the final feed formulation for the first 3.5 weeks and 72 mg/kg for the final 3.5 weeks of the feeding trial. The resulting pigmentation of the trout fillets was determined by hue values with a colour meter and further confirmed by astaxanthin quantification. Pigmentation properties of the maize-produced natural astaxanthin incorporated to 3.5 µg/g dw in the trout fillet resembles that of chemically synthesized astaxanthin. By comparing the relative carotenoid compositions in feed, flesh and feces, a preferential uptake of zeaxanthin and 4-keto zeaxanthin over astaxanthin was observed.  相似文献   

13.
Porphyra dioica meal was added at levels of 5, 10 and 15% to a diet for rainbow trout formulated to be isonitrogenous and isolipidic. The control diet was a commercial trout diet without seaweed meal. The experimental groups were fed in triplicate for 12.5 weeks, during which fish weight increased on average from 107–261 g. Seaweed meal inclusion did not affect significantly weight gain (WG), specific growth rate (SGR), feed efficiency (FE), protein efficiency ratio (PER) and apparent digestibility coefficient of the dry matter (ADCdm) for any of the diets. Voluntary feed intake (VFI) increased for all seaweed diets compared to the control diet but not significantly (P?>?0.05). Final weight (FW) was significantly smaller for the 15% P. dioica inclusion and hepatosomatic index (HSI) for the 10% and 15% inclusion. Carcass protein content increased for all three experimental diets, and was significantly higher for the diet with 10% seaweed inclusion. Rainbow trout fed with Porphyra meal presented a dark orange pigmentation of the flesh at the end of the trial, compared to the whitish color from the control fish. These results suggest that P. dioica can effectively be included in diets for rainbow trout up to 10% without significant negative effects on weight gain and growth performance. The pigmentation effect of the fish flesh by adding P. dioica meal to the feed is of a considerable interest to the organic salmon-farming industry.  相似文献   

14.
Data on sow body weight (BW) and fatness (n = ~2250 pregnant sows) and reproductive data (including historical: n = ~18 000) were used to examine the genetic and phenotypic associations between body condition before and after farrowing, gestational outcomes, lactation feed intake and the gilts' ability to survive unculled to farrow in the second parity. Within-trait genetic correlations were very high between weight (0.77 ± 0.06) and fat depth (0.91 ± 0.04) recorded before farrowing and at weaning. Litter size traits were generally uncorrelated genetically with aspects of sow BW and body condition. However, genetic correlations indicated that sows producing heavier piglets at birth had litters with increased gain (0.36 ± 0.16), and were characterised by greater weight (-0.72 ± 0.08) and fat change (-0.19 ± 0.15) during lactation, reflected to a lesser extent by lower weight (-0.12 ± 0.11) and fatness (-0.17 ± 0.10) at weaning. Genetic correlations (r(a)) between reproductive traits and lactation feed intake were generally low, but favourable. However, lactation intake was positively correlated with measures of sow size (r(a) = ~0.55), such that selection for lactation feed intake would likely be accompanied by increased mature sow size. Phenotypic correlations (r(p)) showed that sow survival to the second parity (FAR12) was positively influenced by litter size and fat depth at weaning, supporting attributes of increased fatness before farrowing, less weight loss during lactation and an increased lactation intake.  相似文献   

15.
The phenotypic plasticity of abdominal bristle number (segments 3 and 4 in females) was investigated in 10 isofemale lines from a French population, grown at 7 constant temperatures, ranging from 12‡ to 31‡C. Overall concave reaction norms were obtained with a maximum around 20‡-21‡C. Intraclass correlation (isofemale line heritability) was not affected by temperature. Correlations between segments 3 and 4 strongly contrasted a low within-line phenotypic correlation (r = 0.39 ± 0.04) and a high, between-line genetic correlation (r = 0.89 ± 0.03). A significant decrease of the genetic correlation was observed when comparing more different temperatures. Finally, among 7 other morphometrical traits which were measured on the same set of lines, 3 provided a significant positive genetic correlation with abdominal bristles: thoracic bristles, abdomen pigmentation and thoracic pigmentation.  相似文献   

16.
Current trends in the beef industry focus on selecting production traits with the purpose of maximizing calf weaning weight; however, such traits may ultimately decrease overall post-weaning productivity. Therefore, the objective of this study was to evaluate the effects of actual milk yield in mature beef cows on their offspring’s dry matter intake (DMI), BW, average daily gain, feed conversion ratio (FCR) and residual feed intake (RFI) during a ~75-day backgrounding feeding trial. A period of 24-h milk production was measured with a modified weigh-suckle-weigh technique using a milking machine. After milking, cows were retrospectively classified as one of three milk yield groups: Lower (6.57±1.21 kg), Moderate (9.02±0.60 kg) or Higher (11.97±1.46 kg). Calves from Moderate and Higher milk yielding dams had greater (P<0.01) BW from day 0 until day 75 at the end of the backgrounding feeding phase; however, day 75 BW were not different (P=0.36) between Lower and Moderate calves. Body weight gain was greater (P=0.05) for Lower and Moderate calves from the day 0 BW to day 35 BW compared with Higher calves. Overall DMI was lower (P=0.03) in offspring from Lower and Moderate cows compared with their Higher milking counterparts. With the decreased DMI, FCR was lower (P=0.03) from day 0 to day 35 in calves from Lower and Moderate milk yielding dams. In addition, overall FCR was lower (P=0.02) in calves from Lower and Moderate milk yielding dams compared with calves from Higher milk yielding dams. However, calving of Lower milk yielding dams had an increased (P=0.04) efficiency from a negative RFI value compared with calves from Moderate and Higher milking dams. Results from this study suggest that increased milk production in beef cows decreases feed efficiency during a 75-day post-weaning, backgrounding period of progeny.  相似文献   

17.
Genetic selection focused purely on production traits has proven very successful in improving the productive performance of livestock. However, heightened environmental and infectious disease challenges have raised the need to also improve the resilience of animals to such external stressors, as well as their efficiency in utilising available resources. A better understanding of the relationship between efficiency and production and health traits is needed to properly account for it in breeding programmes and to produce animals that can maintain high production performance in a range of environmental conditions with minimal environmental footprint. The aim of this study was to perform a meta-analysis of genetic parameters for production, efficiency and health traits in sheep and goats. The dataset comprised 963 estimates of heritability and 572 genetic correlations collated from 162 published studies. A threelevel meta-analysis model was fitted. Pooled heritability estimates for milk production traits ranged between 0.27 ± 0.03 and 0.48 ± 0.13 in dairy goats and between 0.21 ± 0.06 and 0.33 ± 0.07 in dairy sheep. In meat sheep, the heritability of efficiency traits ranged from 0.09 ± 0.02 (prolificacy) up to 0.32 ± 0.14 (residual feed intake). For health traits, pooled heritability was 0.07 ± 0.01 (faecal egg count) and 0.21 ± 0.01 (somatic cell score) in dairy goats and 0.14 ± 0.04 (faecal egg count) and 0.13 ± 0.02 (somatic cell score) in dairy sheep. In meat sheep, the heritability of disease resistance and survival traits ranged between 0.07 ± 0.02 (mastitis) and 0.50 ± 0.10 (breech strike). Pooled estimates of genetic correlations between resilience and efficiency traits in dairy goats were not significantly different from zero with the exception of somatic cell score and fat content (?0.19 ± 0.01). In dairy sheep, only the unfavourable genetic correlation between somatic cell score and protein content (0.12 ± 0.03) was statistically significant. In meat sheep only, the correlations between growth and faecal egg count (?0.28 ± 0.11) as well as between growth and dagginess (?0.33 ± 0.13) were statistically significant and favourable. Results of this meta-analysis provide evidence of genetic antagonism between production and health in dairy sheep and goats. This was not observed in meat sheep where most of the pooled estimates had high standard errors and were non-significant. Based on the obtained results, it seems feasible to simultaneously improve efficiency and health in addition to production by including the different types of traits in the breeding goal. However, a better understanding of potential trade-offs between these traits would be beneficial. Particularly, more studies focused on reproduction and resilience traits linked to the animal’s multi-trait response to challenges are required.  相似文献   

18.
The aim of the study was to compare the physico‐chemical parameters of milt from sea trout (Salmo trutta m. trutta), brook trout (Salvelinus fontinalis) and rainbow trout (Oncorhynchus mykiss). Milt was collected by stripping and spermatozoa concentrations, were determined and compared with sperm motility and spermatocrit values along with seminal plasma indices (pH, osmolality, sodium, potassium, chlorine, calcium, magnesium, glucose and protein concentrations). The highest spermatozoa concentration of 22.3 ± 6.7 × 109 ml?1 was found in the sea trout milt, and was significantly different of those observed in brook trout (11.9 ± 3.3 × 109 ml?1) and rainbow trout (10.7 ± 4.4 × 109 ml?1). The values for pH and K+ did not differ significantly among species. The mean pH was 8.0 in the milt of each species and the K+ concentrations ranged from 24.8 ± 7.2 to 30.5 ± 7.6 mm L?1. Considerable differences were determined for the Ca2+ ions concentrations. The highest value was found in sea trout (1.7 ± 0.3 mm L?1), while in the rainbow trout it was 0.7 ± 0.5 and in the brook trout 0.4 ± 0.1 mm L?1. The most pronounced differences were found in the glucose concentration cause of its unnaturally low concentration in rainbow trout of the mean value of 6.0 ± 15.2 mg L?1. The mean value in sea trout and brook trout was 185.0 ± 172.4 and 231.2 ± 148.4 mg L?1 respectively. For all species, protein mean values were below 1.3 g L?1. The mean osmolality was between 230.6 ± 98.6 and 272.0 ± 26.4 mOsm kg?1 in the species studied. No correlation was found between any components determined in milt and the spermatozoa motility (P > 0.05). The sperm concentration was positively correlated with the protein content in the milt of the three species studied, other less exhibited correlation was found.  相似文献   

19.

Background

When rainbow trout from a single breeding program are introduced into various production environments, genotype-by-environment (GxE) interaction may occur. Although growth and its uniformity are two of the most important traits for trout producers worldwide, GxE interaction on uniformity of growth has not been studied. Our objectives were to quantify the genetic variance in body weight (BW) and its uniformity and the genetic correlation (rg) between these traits, and to investigate the degree of GxE interaction on uniformity of BW in breeding (BE) and production (PE) environments using double hierarchical generalized linear models. Log-transformed data were also used to investigate whether the genetic variance in uniformity of BW, GxE interaction on uniformity of BW, and rg between BW and its uniformity were influenced by a scale effect.

Results

Although heritability estimates for uniformity of BW were low and of similar magnitude in BE (0.014) and PE (0.012), the corresponding coefficients of genetic variation reached 19 and 21%, which indicated a high potential for response to selection. The genetic re-ranking for uniformity of BW (rg = 0.56) between BE and PE was moderate but greater after log-transformation, as expressed by the low rg (-0.08) between uniformity in BE and PE, which indicated independent genetic rankings for uniformity in the two environments when the scale effect was accounted for. The rg between BW and its uniformity were 0.30 for BE and 0.79 for PE but with log-transformed BW, these values switched to -0.83 and -0.62, respectively.

Conclusions

Genetic variance exists for uniformity of BW in both environments but its low heritability implies that a large number of relatives are needed to reach even moderate accuracy of selection. GxE interaction on uniformity is present for both environments and sib-testing in PE is recommended when the aim is to improve uniformity across environments. Positive and negative rg between BW and its uniformity estimated with original and log-transformed BW data, respectively, indicate that increased BW is genetically associated with increased variance in BW but with a decrease in the coefficient of variation. Thus, the scale effect substantially influences the genetic parameters of uniformity, especially the sign and magnitude of its rg.  相似文献   

20.
《Genomics》2021,113(5):3395-3404
Domestication processes and artificial selection are likely to leave signatures that can be detected at a molecular level in farmed rainbow trout (Oncorhynchus mykiss). These signatures of selection are genomic regions that contain functional genetic variants conferring a higher fitness to their bearers. We genotyped 749 rainbow trout from a commercial population using a rainbow trout Axiom 57 K SNP array panel and identified putative genomic regions under selection using the pcadapt, Composite Likelihood Ratio (CLR) and Integrated Haplotype Score (iHS) methods. After applying quality-control pipelines and statistical analyses, we detected 12, 96 and 16 SNPs putatively under selection, associated with 96, 781 and 115 candidate genes, respectively. Several of these candidate genes were associated with growth, early development, reproduction, behavior and immune system traits. In addition, some of the SNPs were found in interesting regions located in autosomal inversions on Omy05 and Omy20. These findings could represent a genome-wide map of selection signatures in farmed rainbow trout and could be important in explaining domestication and selection for genetic traits of commercial interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号