首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Muscle ATP, creatine phosphate and lactate, and blood pH and lactate were measured in 7 male sprinters before and after running 40, 60, 80 and 100 m at maximal speed. The sprinters were divided into two groups, group 1 being sprinters who achieved a higher maximal speed (10.07 +/- 0.13 m X s-1) than group 2 (9.75 +/- 0.10 m X s-1), and who also maintained the speed for a longer time. The breakdown of high-energy phosphate stores was significantly greater for group 1 than for group 2 for all distances other than 100 m; the breakdown of creatine phosphate for group 1 was almost the same for 40 m as for 100 m. Muscle and blood lactate began to accumulate during the 40 m exercise. The accumulation of blood lactate was linear (0.55 +/- 0.02 mmol X s-1 X l-1) for all distances, and there were no differences between the groups. With 100 m sprints the end-levels of blood and muscle lactate were not high enough and the change in blood pH was not great enough for one to accept that lactate accumulation is responsible for the decrease in running speed over this distance. We concluded that in short-term maximal exercise, performance depends on the capacity for using high-energy phosphates at the beginning of the exercise, and the decrease in running speed begins when the high-energy phosphate stores are depleted and most of the energy must then be produced by glycolysis.  相似文献   

2.
Serum enzyme activities, albumin, protein, urea, cholesterol, triglyceride, free fatty acid, glucose and lactate concentrations as well as hematocrit values were measured in standardbred and Finnish-bred horses at rest and after (i) a short controlled exercise and (ii) a trotting competition. There were no breed differences in the enzyme activities at rest and the 2 breeds responded in the same manner to the exercise. Only after the race proper significant increases in the enzyme activities were found. The activities rose more in the standardbred horses than in the Finnish-bred horses. Urea and cholesterol concentrations did not change after either exercise. Protein and albumin concentrations as well as hematocrit values increased significantly after the exercise. At rest hematocrit values were significantly higher in the standardbred horses and the difference persisted throughout the exercise. After the race proper also albumin and protein concentrations were higher in the standard-bred than in the Finnish-bred horses. Free fatty acid and triglyceride concentrations increased significantly during the exercise. Although glucose and lactate concentrations increased in both breeds, the behaviour of these parameters differed. Glucose concentrations remained increased for a longer period and the recovery from the increased lactate level was faster in the standardbred than in the Finnish-bred horses. The observed differences suggest that the standardbred horses have higher anaerobic capacity than the Finnish-bred horses.  相似文献   

3.
To elucidate further the special nature of anaerobic threshold in children, 11 boys, mean age 12.1 years (range 11.4-12.5 years), were investigated during treadmill running. Oxygen uptake, including maximal oxygen uptake (VO2max), ventilation and the "ventilatory anaerobic threshold" were determined during incremental exercise, with determination of maximal blood lactate following exercise. Within 2 weeks following this test four runs of 16-min duration were performed at a constant speed, starting with a speed corresponding to about 75% of VO2max and increasing it during the next run by 0.5 or 1.0 km.h-1 according to the blood lactate concentrations in the previous run, in order to determine maximal steady-state blood lactate concentration. Blood lactate was determined at the end of every 4-min period. "Anaerobic threshold" was calculated from the increase in concentration of blood lactate obtained at the end of the runs at constant speed. The mean maximal steady-state blood lactate concentration was 5.0 mmol.l-1 corresponding to 88% of the aerobic power, whereas the mean value of the conventional "anaerobic threshold" was only 2.6 mmol.l-1, which corresponded to 78% of the VO2max. The correlations between the parameters of "anaerobic threshold", "ventilatory anaerobic threshold" and maximal steady-state blood lactate were only poor. Our results demonstrated that, in the children tested, the point at which a steeper increase in lactate concentrations during progressive work occurred did not correspond to the true anaerobic threshold, i.e. the exercise intensity above which a continuous increase in lactate concentration occurs at a constant exercise intensity.  相似文献   

4.
LINDHOLM, ARNE and KARIN PIEHL: Fibre composition, enzyme activity and concentrations of metabolites and electrolytes in muscles of standardbred horses. Acta vet. scand. 1974, 15, 287–309. — Measurements of metabolites, electrolytes, water, RNA and protein concentrations, the activity of certain muscle enzymes (SDH and PFK) and muscle fibre composition were made on biopsy specimens from the gluteus medius muscle of 68 standardbred horses, ½ to 8 years old. The muscle fibres were classified in 3 major categories, slow twitch (ST), fast twitch and high oxidative (FTH) and fast twitch (FT) fibres. The percentage of FTH fibres was higher after the age of 4 years, averaging 54 %. ST fibres comprised 24 % and this value remained unchanged. Glycogen concentration increased with age and averaged 95 and 126 mmol × kg−1 wet muscle in the youngest and oldest age groups, respectively. Lactate and pyruvate concentrations were markedly decreased, whereas ATP, CP, G-6-P and glucose were unaffected with age. Water content averaged 75 % in all age groups, whereas Na+ concentration increased, K+ concentration decreased and Mg2+ concentration remained unchanged with increasing age. SDH activity in ½- and 8-year old horses increased from 6.1 to 13.6 μmol × (g×min.)−1. PFK activity reached a peak at the age of 4 years after which it declined. With the data presented as a background, measurements on muscle biopsies may be a new aid in diagnosing diseases in horses and even in evaluating treatment. Of special interest might be investigations of muscle biopsy specimens as a base in the formation of more adequate training methods in race-horses. electrolytes; fibre types; glycogen storage; horse skeletal muscle; phosphofructokinase; succinate dehydrogenase.  相似文献   

5.
Two metabolic features of altitude-adapted humans are the maximal O2 consumption (VO2max) paradox (higher work rates following acclimatization without increases in VO2max) and the lactate paradox (progressive reductions in muscle and blood lactate with exercise at increasing altitude). To assess underlying mechanisms, we studied six Andean Quechua Indians in La Raya, Peru (4,200 m) and at low altitude (less than 700 m) immediately upon arrival in Canada. The experimental strategy compared whole-body performance tests and single (calf) muscle work capacities in the Andeans with those in groups of sedentary, power-trained, and endurance-trained lowlanders. We used 31P nuclear magnetic resonance spectroscopy to monitor noninvasively changes in concentrations of phosphocreatine [( PCr]), [Pi], [ATP], [PCr]/[PCr] + creatine ([Cr]), [Pi]/[PCr] + [Cr], and pH in the gastrocnemius muscle of subjects exercising to fatigue. Our results indicate that the Andeans 1) are phenotypically unique with respect to measures of anaerobic and aerobic work capacity, 2) despite significantly lower anaerobic capacities, are capable of calf muscle work rates equal to those of highly trained power- and endurance-trained athletes, and 3) compared with endurance-trained athletes with significantly higher VO2max values and power-trained athletes with similar VO2max values, display, respectively, similar and reduced perturbation of all parameters related to the phosphorylation potential and to measurements of [Pi], [PCr], [ATP], and muscle pH derivable from nuclear magnetic resonance. Because the lactate paradox may be explained on the basis of tighter ATP demand-supplying coupling, we postulate that a similar mechanism may explain 1) the high calf muscle work capacities in the Andeans relative to measures of whole-body work capacity, 2) the VO2max paradox, and 3) anecdotal reports of exceptional work capacities in indigenous altitude natives.  相似文献   

6.
Although East African black athletes dominate endurance running events, it is unknown whether black and white endurance runners with similar racing ability, matched for training, may differ in their skeletal muscle biochemical phenotype. Thirteen Xhosa (XR) and 13 Caucasian (CR) endurance runners were recruited and matched for 10-km performance, average preferred racing distance (PRD(A)), and training volume. Submaximal and maximal exercise tests were done, and vastus lateralis muscle biopsies were taken. XR were significantly lighter and shorter than CR athletes but had similar maximum oxygen consumption corrected for body weight and peak treadmill speed (PTS). XR had lower plasma lactate concentrations at 80% PTS (P < 0.05) compared with CR. Also, XR had more type IIA (42.4 +/- 9.2 vs. 31.3 +/- 11.5%, P < 0.05) and less type I fibers (47.8 +/- 10.9 vs. 63.1 +/- 13.2%, P < 0.05), although oxidative enzyme activities did not differ. Furthermore, XR compared with CR had higher lactate dehydrogenase (LDH) activity in homogenate muscle samples (383 +/- 99 vs. 229 +/- 85 mumol.min(-1).g dry weight(-1), P < 0.05) and in both type IIa (P < 0.05) and type I (P = 0.05) single-fiber pools. A marked difference (P < 0.05) in the composition of LDH isoform content was found between the two groups with XR having higher levels of LDH(5-4) isoforms (skeletal muscle isozymes; LDH-M) than CR, which was not accounted for by fiber-type differences alone. These results confirm differences in muscle phenotype and physiological characteristics, particularly associated with high-intensity running.  相似文献   

7.
Morning versus evening power output and repeated-sprint ability   总被引:1,自引:0,他引:1  
We investigated the effect of time-of-day on both maximal sprint power and repeated-sprint ability (RSA). Nine volunteers (22+/-4 yrs) performed a RSA test both in the morning (07:00 to 09:00 h) and evening (17:00 to 19:00 h) on different days in a random order. The RSA cycle test consisted of five, 6 sec maximal sprints interspersed by 24 sec of passive recovery. Both blood lactate concentration and heart rate were higher in the evening than morning RSA (lactate values post exercise: 13+/-3 versus 11+/-3 mmol/L(-1), p<0.05). The peak power developed during the first sprint was higher in the evening than morning (958+/-112 vs. 915+/-133 W, p<0.05), but this difference was not apparent in subsequent sprints, leading to a higher power decrement across the 5x6 sec test in the evening (11+/-2 vs. 7+/-3%, p<0.05). Both the total work during the RSA cycle test and the power developed during bouts 2 to 5 failed to be influenced by time-of-day. This suggests that the beneficial effect of time-of-day may be limited to a single expression of muscular power and fails to advantage performance during repeated sprints.  相似文献   

8.
Control of a Quadruped Robot with Bionic Springy Legs in Trotting Gait   总被引:1,自引:0,他引:1  
Legged robots have better performance on discontinuous terrain than that of wheeled robots. However, the dynamic trotting and balance control of a quadruped robot is still a challenging problem, especially when the robot has multi-joint legs. This paper presents a three-dimensional model of a quadruped robot which has 6 Degrees of Freedom (DOF) on torso and 5 DOF on each leg. On the basis of the Spring-Loaded Inverted Pendulum (SLIP) model, body control algorithm is discussed in the first place to figure out how legs work in 3D trotting. Then, motivated by the principle of joint function separation and introducing certain biological characteristics, two joint coordination approaches are developed to produce the trot and provide balance. The robot reaches the highest speed of 2.0 m.s-1, and keeps balance under 250 Kg.m.s-1 lateral disturbance in the simulations. The effectiveness of these approaches is also verified on a prototype robot which runs to 0.83 m.s-1 on the treadmill, The simulations and experiments show that legged robots have good biological properties, such as the ground reaction force, and spring-like leg behavior.  相似文献   

9.

Purpose

The purpose of this study was to quantify the effects of moderate-high altitude on power output, cadence, speed and heart rate during a multi-day cycling tour.

Methods

Power output, heart rate, speed and cadence were collected from elite male road cyclists during maximal efforts of 5, 15, 30, 60, 240 and 600 s. The efforts were completed in a laboratory power-profile assessment, and spontaneously during a cycling race simulation near sea-level and an international cycling race at moderate-high altitude. Matched data from the laboratory power-profile and the highest maximal mean power output (MMP) and corresponding speed and heart rate recorded during the cycling race simulation and cycling race at moderate-high altitude were compared using paired t-tests. Additionally, all MMP and corresponding speeds and heart rates were binned per 1000m (<1000m, 1000–2000, 2000–3000 and >3000m) according to the average altitude of each ride. Mixed linear modelling was used to compare cycling performance data from each altitude bin.

Results

Power output was similar between the laboratory power-profile and the race simulation, however MMPs for 5–600 s and 15, 60, 240 and 600 s were lower (p ≤ 0.005) during the race at altitude compared with the laboratory power-profile and race simulation, respectively. Furthermore, peak power output and all MMPs were lower (≥ 11.7%, p ≤ 0.001) while racing >3000 m compared with rides completed near sea-level. However, speed associated with MMP 60 and 240 s was greater (p < 0.001) during racing at moderate-high altitude compared with the race simulation near sea-level.

Conclusion

A reduction in oxygen availability as altitude increases leads to attenuation of cycling power output during competition. Decrement in cycling power output at altitude does not seem to affect speed which tended to be greater at higher altitudes.  相似文献   

10.
Ambient temperature can affect physical performance, and an ambient temperature range of −4 °C to 11 °C is optimal for endurance performance in male athletes. The few similar studies of female athletes appear to have found differences in response to cold between the genders. This study investigated whether ambient temperature affects female endurance performance. Nine athletes performed six tests while running on a treadmill in a climatic chamber at different ambient temperatures: 20, 10, 1, −4, −9 and −14 °C and a wind speed of 5 m s−1. The exercise protocol consisted of a 10-min warm-up, followed by four 5-min intervals at increasing intensities at 76%, 81%, 85%, and 89% of maximal oxygen consumption. This was followed by an incremental test to exhaustion. Although peak heart rate, body mass loss, and blood lactate concentration after the incremental test to exhaustion increased as the ambient temperature rose, no changes in time to exhaustion, running economy, running speed at lactate threshold or maximal oxygen consumption were found between the different ambient temperature conditions. Endurance performance during one hour of incremental exercise was not affected by ambient temperature in female endurance athletes.  相似文献   

11.
Anaerobic energy capacity was evaluated by maximal oxygen deficit (MOD) as well as by blood gas and muscle biopsy variables during short exhausting running in six recreational (RR) and eight competitive sprint and middle distance runners (SMDR). On 3 days runs to exhaustion were executed. Two runs were performed at a treadmill gradient of 15% at speeds which resulted in exhaustion after approximately 1 (R15%, 1min) and 2–3 min (R15%, 2–3min), respectively. On the 3rd day, the subjects ran with the treadmill at a gradient of 1% at a speed which caused exhaustion after 2–3 min (R1%, 2–3min). The runner performance was assessed from 400 m [RR, median 64.8 (range 62.2–69.6) s; SMDR, median 49.4 (range 48.5–52.0) s] and 800 m [RR, median 158.8 (range 153.3–170.2) s; SMDR, median 115.2 (range 113.3–123.3) s] track times. Muscle biopsies from gastrocnemius muscle were obtained before and immediately after R15%, 2–3min, from which muscle lactate and creatine phosphate (CP) concentrations, fibre type distribution, capillaries per fibre, total lactate dehydrogenase (LDH) activity and the LDH isoenzyme pattern were determined. The MOD increased with the treadmill gradient and duration. During both treadmill and track runs, SMDR performance was superior to that of RR, but no significant differences were observed with respect to MOD, muscle fibre type distribution, total LDH activity, its iso-enzyme pattern, changes in muscle lactate or CP concentrations. However, after treadmill runs, peak venous lactate concentration and partial pressures of carbon dioxide were higher, and pH lower in SMDR. Also the number of capillaries per muscle fibre and the maximal oxygen uptake were larger in SMDR. These findings would suggest that the superior performance of SMDR depended more on their aerobic than on their anaerobic capacity.  相似文献   

12.
为探索适合格木(Erythrophleum fordii)人工林在幼龄阶段的种植密度,在不同林分密度(2 m×1 m、2 m×2 m、2 m×3 m、3 m×3 m)的6 a生格木人工林下设置标准样地,采用土壤质量评价和灰色关联度等方法,探究不同密度下格木幼林的土壤理化与林下植被特征。结果表明,密度2 m×3 m下的林木胸径、树高最优,较最低水平高16.7%、27.9%;土壤总孔隙度最大,全N、硝态N、铵态N含量最高,灌木草本多样性最高。相关性分析表明土壤化学性质对灌木草本的多样性影响最大。不同林分密度下格木幼林土壤理化性质及林下植物多样性有显著差异,因此,选择合适的林分密度对人工林土壤肥力的可持续利用及林分的经营培育至关重要。  相似文献   

13.
The purpose of this study was to elucidate the difference in peak blood ammonia concentration between sprinters and long-distance runners in submaximal, maximal and supramaximal exercise. Five sprinters and six long-distance runners performed cycle ergometer exercise at 50% maximal, 75% maximal, maximal and supramaximal heart rates. Blood ammonia and lactate were measured at 2.5, 5, 7.5, 10 and 12.5 min after each exercise. Peak blood ammonia concentration at an exercise intensity producing 50% maximal heart rate was found to be significantly higher compared to the basal level in sprinters (P less than 0.01) and in long-distance runners (P less than 0.01). The peak blood ammonia concentration of sprinters was greater in supra-maximal exercise than in maximal exercise (P less than 0.05), while there was no significant difference in long-distance runners. The peak blood ammonia content after supramaximal exercise was higher in sprinters compared with long-distance runners (P less than 0.01). There was a significant relationship between peak blood ammonia and lactate after exercise in sprinters and in long-distance runners. These results suggest that peak blood ammonia concentration after supramaximal exercise may be increased by the recruitment of fast-twitch muscle fibres and/or by anaerobic training, and that the processes of blood ammonia and lactate production during exercise may be strongly linked in sprinters and long-distance runners.  相似文献   

14.
Five Standardbred trotters were trained on a treadmill 3 times/wk for 12 wk by intervals of draft-loaded exercise. The draft load was 34 kp and the velocity approximately 7 m/s. Muscle biopsies were taken from the gluteus medius and longissimus muscles before training and after 2, 4, 8, and 12 wk of training and from the brachiocephalicus muscle before and after training. Both the percentage and the area of type IIa fibers increased and the percentage of type IIb fibers decreased in the gluteus medius muscle during the first 2 wk of training, and then no further significant difference was noted. The percentage of type I fibers increased in the brachiocephalicus muscle, and the area of type IIb fibers increased in the longissimus muscle. The citrate synthase activity increased in the gluteus muscle only, and the increase was seen during the first 2 wk. No significant differences were seen in 3-hydroxy-acyl-CoA dehydrogenase and lactate dehydrogenase activities in the muscles during the entire training period. Less glycogen was utilized in the gluteus muscle and less blood lactate accumulated when the horses performed an unloaded submaximal exercise test after compared with before training. It can be concluded that rapid changes are induced in the gluteus medius muscle when horses are trained pulling a light-draft resistance at a submaximal trotting speed.  相似文献   

15.
When unacclimatized lowlanders exercise at high altitude, blood lactate concentration rises higher than at sea level, but lactate accumulation is attenuated after acclimatization. These responses could result from the effects of acute and chronic hypoxia on beta-adrenergic stimulation. In this investigation, the effects of beta-adrenergic blockade on blood lactate and other metabolites were studied in lowland residents during 30 min of steady-state exercise at sea level and on days 3, 8, and 20 of residence at 4300 m. Starting 3 days before ascent and through day 15 at high altitude, six men received propranolol (80 mg three times daily) and six received placebo. Plasma lactate accumulation was reduced in propranolol- but not placebo-treated subjects during exercise on day 3 at high altitude compared to sea-level exercise of the same percentage maximal oxygen uptake (VO2max). Plasma lactate accumulation exercise on day 20 at high altitude was reduced in both placebo- and propranolol-treated subjects compared to exercise of the same percentage VO2max performed at sea level. The blunted lactate accumulation during exercise on day 20 at high altitude was associated with reduced muscle glycogen utilization. Thus, increased plasma lactate accumulation in unacclimatized lowlanders exercising at high altitude appears to be due to increased beta-adrenergic stimulation. However, acclimatization-induced changes in muscle glycogen utilization and plasma lactate accumulation are not adaptations to chronically increased beta-adrenergic activity.  相似文献   

16.
LINDHOLM, A., H.-E. JOHANSSON & P. KJÆRSGAARD: Acute rhabdomyolysis (“tying-up”) in standardbred horses. A morphological and biochemical study. Acta vet. scand. 1974, 15, 325–339. — Morphological, biochemical and histochemical changes were studied in muscle needle biopsy specimens (gluteus medius) from 59 standardbred trotters with acute clinical symptoms of the “tying-up” disease. All horses had increased levels of serum enzymes SGOT and SCPK. The biopsy specimens were taken at various intervals after onset of clinical symptoms (1–4 hrs., 18–24 hrs. and 2–20 days). Ry light microscopy it was shown that the muscular alterations had a focal distribution and were of the hyalin degeneration type with insignificant inflammatory reaction and slight calcification. The ultrastructural changes apparently commenced with myofibrillar waving, mitochondrial and sarcotubular alterations and terminated with myofibrillar degeneration and necrosis with invasion of inflammatory cells. The inflammatory cells were ultrastructurally similar to monocytes and macrophages. The degenerative changes mainly comprised fast twitch (FT and FTH) fibres as histochemically evidenced by myofibrillar ATPase and alkaline phosphatase staining. Riopsies from diseased muscle 1–4 hrs. after the onset of “tyingup” contained a low muscle concentration of glycogen, ATP and CP and a high concentration of lactate and glucose. Hence it is suggested that the described muscular alterations may be caused by a deranged carbohydrate metabolism caused by a local hypoxia. It was found that the “tying-up” disease resembled idiopathic rhabdomyolysis in man and was thus designated “equine rhabdomyolysis”. histochemistry; horse; rhabdomyolysis; skeletal muscle; “tying-up”; ultrastructure.  相似文献   

17.
We investigated the effect of time‐of‐day on both maximal sprint power and repeated‐sprint ability (RSA). Nine volunteers (22±4 yrs) performed a RSA test both in the morning (07:00 to 09:00 h) and evening (17:00 to 19:00 h) on different days in a random order. The RSA cycle test consisted of five, 6 sec maximal sprints interspersed by 24 sec of passive recovery. Both blood lactate concentration and heart rate were higher in the evening than morning RSA (lactate values post exercise: 13±3 versus 11±3 mmol/L?1, p<0.05). The peak power developed during the first sprint was higher in the evening than morning (958±112 vs. 915±133 W, p<0.05), but this difference was not apparent in subsequent sprints, leading to a higher power decrement across the 5×6 sec test in the evening (11±2 vs. 7±3%, p<0.05). Both the total work during the RSA cycle test and the power developed during bouts 2 to 5 failed to be influenced by time‐of‐day. This suggests that the beneficial effect of time‐of‐day may be limited to a single expression of muscular power and fails to advantage performance during repeated sprints.  相似文献   

18.
We evaluated the effect of different types of sprint interval sessions on the balance between anabolic and catabolic hormones and circulating inflammatory cytokines. Twelve healthy elite junior handball players (17-25 years) participated in the study. Exercise consisted of increasing distance (100 m, 200 m, 300 m, 400 m) and decreasing distance (400 m, 300 m, 200 m, 100 m) sprint interval runs on a treadmill (at random order), at a constant work rate of 80% of the personal maximal speed (calculated from the maximal speed of a 100 m run). The total rest period between the runs in the different interval sessions were similar. Blood samples were collected before, after each run, and after 1-hour recovery. Both types of sprint interval trainings led to a significant (p < 0.05) increase in lactate and the anabolic factors growth hormone, insulin-like growth factor-I (IGF-I), IGF binding protein-3 (IGFBP-3), and testosterone levels. Both types of sprint interval sessions led to a significant (p < 0.05) increase in the circulating pro- and anti-inflammatory mediators IL-1, IL-6, and IL1ra. IL-6 remained elevated in both sessions after 1-hour recovery. Area under the curve was significantly greater (p < 0.05) for lactate and growth hormone (GH) in the decreasing distance session. In contrast, rate of perceived exertion was higher in the increasing distance session, but this difference was not statistically significant (p = 0.07). Changes in anabolic-catabolic hormones and inflammatory mediators can be used to gauge the training intensity of anaerobic-type exercise. Changes in the GH-IGF-I axis and testosterone level suggest exercise-related anabolic adaptations. Increases in inflammatory mediators may indicate their important role in muscle tissue repair after anaerobic exercise. The decreasing distance interval was associated with a greater metabolic (lactate) and anabolic (GH) response but not with a higher rate of perceived exertion. Coaches and athletes should be aware of these differences, and as a result, of a need for specific recovery adaptations after different interval training protocols.  相似文献   

19.
短轮伐期毛白杨不同密度林分土壤有机碳和全氮动态   总被引:1,自引:0,他引:1  
赵雪梅  孙向阳  康向阳  王海燕 《生态学报》2012,32(15):4714-4721
采用裂区试验设计,于2005—2008年连续4年测定了不同造林密度(2 m×2 m、2 m×3 m、2 m×3.5 m、2 m×4 m、2 m×5 m、3 m×3 m、3 m×4 m)下2年生三倍体毛白杨(B304)和对照二倍体(1319)人工林土壤有机碳和全氮含量,以明确不同密度林分土壤有机碳和全氮动态变化规律及其相关性。结果表明:(1)受造林密度、生长时间及其交互作用的显著影响,4年生长期内林地土壤有机碳含量呈先降后升的变化特点。其中,2008年B304在2 m×3 m造林密度下土壤有机碳含量显著高于其它年份,说明此造林密度有利于发挥三倍体毛白杨林土壤固碳的生态功能。(2)4年生长期内,土壤全N含量受生长时间及其与造林密度的交互作用的显著影响。在3 m×3 m造林密度下,二倍体毛白杨林地土壤全N含量逐年降低,而三倍体毛白杨2007年的土壤全N含量显著增加,该造林密度利于三倍体毛白杨林地土壤N的积累。(3)土壤有机碳/全氮比值变化与有机碳含量变化规律一致,且均在2006年达到最低值。(4)在2008年,三倍体毛白杨在2 m×3 m和2 m×3.5 m造林密度下土壤有机碳与全N含量呈现显著正相关关系,而2 m×5 m造林密度下的二倍体毛白杨林地呈显著性负相关关系,体现了毛白杨林地土壤有机碳与全N含量复杂的相关性。  相似文献   

20.
Two studies were undertaken to characterize the effects of carbohydrate ingestion on fuel/hormone response to exercise and muscle glycogen utilization during prolonged competitive exercise. In study 1, eighteen subjects were divided into three groups, matched for maximum oxygen consumption (VO2max) and blood lactate turnpoint. All subjects underwent a 3-day carbohydrate (CHO) depletion phase, followed by 3 days of CHO loading (500-600 g.day-1). During the race, the groups drank either 2% glucose (G), 8% glucose polymer (GP), or 8% fructose (F). Muscle biopsies were performed before and after the race and venous blood was sampled before and at regular intervals during the race. In study 2, eighteen subjects divided into 2 matched groups ingested either a 4% G or 10% GP solution during a 56 km race. Despite significantly greater CHO ingestion by GP and F in study 1 and by GP in study 2, blood glucose, free fatty acids and insulin concentrations, muscle glycogen utilization and running performance were not different between groups. These studies show (i) that hypoglycaemia is uncommon in athletes competing in races of up to 56 km provided they CHO-load before and ingest a minimum of 10 g CHO.h-1 during competition; (ii) that neither the amount (10 g vs 40 g.h-1) nor the type of carbohydrate (G vs GP vs F) has any effect on the extent of muscle glycogen depletion or running performance in matched subjects racing over distances up to 56 km.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号