首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from ~50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the ~82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations.  相似文献   

2.
马毛色遗传机理研究进展   总被引:2,自引:0,他引:2  
动物毛色是人类正向选择产生的表型之一,在遗传与进化过程中扮演着重要角色。其中马的毛色丰富多变,单从表型无法准确判别其属于哪种毛色,造成马品种登记时毛色性状记录不准确,因此研究马毛色形成机理在育种工作中具有重要意义。随着基因组学及测序技术的日益成熟,马毛色形成遗传机理的研究不断深入,并发现不同毛色性状与特定疾病之间的相关性。本文从遗传学的角度对马的毛色进行归类,对与其形成的相关基因、作用机理及应用等研究进展进行了综述,以期为马毛色形成机理的系统性研究和马匹选育提供借鉴和参考。  相似文献   

3.
Four loci seem responsible for the dilution of the basic coat colours in horse: Dun (D), Silver Dapple (Z), Champagne (CH) and Cream (C). Apart from the current phenotypes ascribed to these loci, pearl has been described as yet another diluted coat colour in this species. To date, this coat colour seems to segregate only in the Iberian breeds Purebred Spanish horse and Lusitano and has also been described in breeds of Iberian origin, such as Quarter Horses and Paint Horse, where it is referred to as the ‘Barlink Factor’. This phenotype segregates in an autosomal recessive manner and resembles some of the coat colours produced by the champagne CHCH and cream CCr alleles, sometimes being difficult to distinguish among them. The interaction between compound heterozygous for the pearl Cprl and cream CCr alleles makes SLC45A2 the most plausible candidate gene for the pearl phenotype in horses. Our results provide documented evidence for the missense variation in exon 4 [SLC45A2:c.985G>A; SLC45A2:p.(Ala329Thr)] as the causative mutation for the pearl coat colour. In addition, it is most likely involved as well in the cremello, perlino and smoky cream like phenotypes associated with the compound CCr and Cprl heterozygous genotypes (known as cream pearl in the Purebred Spanish horse breed). The characterization of the pearl mutation allows breeders to identify carriers of the Cprl allele and to select this specific coat colour according to personal preferences, market demands or studbook requirements as well as to verify segregation within particular pedigrees.  相似文献   

4.
Six solid colors occur in Highland cattle: black, dun, silver dun and red, yellow, and white. These six coat colors are explained by a non‐epistatic interaction of the genotypes at the MC1R and PMEL genes. A three base pair deletion in the PMEL gene leading to the deletion of a leucine from the signal peptide is observed in dilute‐colored Highland cattle (c.50_52delTTC, p.Leu18del). The mutant PMEL allele acts in a semi‐dominant manner. Dun Galloway cattle also have one copy of the deletion allele, and silver dun Galloway cattle have two copies. The presence of two adjacent leucine residues at the site of this deletion is highly conserved in human, horse, mouse and chicken as well as in cattle with undiluted coat colors. Highland and Galloway cattle thus exhibit a similar dose‐dependent dilution effect based on the number of PMEL :c.50_51delTTC alleles, as Charolais cattle with PMEL :c.64G>A alleles. The PMEL :c.64G>A allele was not found in Highland or Galloway cattle.  相似文献   

5.
The aim of this work was to gather information about the origin and genetic characterization of the Central European Hucul horse based on 71 horses using 17 microsatellites and the D‐loop region of mtDNA. Their genetic relationship to the Polish Konik (N = 7), German (N = 4) and Hungarian wild Przewalski horses (N = 4) and 200 horse sequences from GenBank was also analysed. Both microsatellite and mtDNA analysis showed a high genetic variation in the Hucul. A total of 130 alleles were detected, the mean number of observed alleles per microsatellite was 7.647, and the number of effective alleles was 4.401. The average observed and expected heterozygosity were 0.706 and 0.747, respectively. The high heterozygosity values and Wright's fixation index (FIS) (?0.128) indicated a low level of inbreeding, low or no selection pressure, and large number of alleles. mtDNA analysis revealed 18 haplotypes for the Hucul population with a total of 23 variable sites. Haplotype and nucleotide diversities were 0.935 ± 0.011 and 0.022 ± 0.012, respectively. Neutrality tests (Tajima's D and Fu's Fs) were non‐significant, and mismatch distribution was ragged, indicating that the Hucul population is in genetic equilibrium. The most frequent mtDNA D‐loop region belonged to haplogroup A (48%), which was also present in Przewalski Wild horse samples, while Polish Konik samples belonged to three haplotypes and C, F, and G haplogroups. Large and significant pairwise ΦST values along with a small number of common haplotypes indicated a low level of gene flow and lack of genetic structure among the three studied breeds (Hucul, Konik, and Przewalski Wild horse). The present work contributes to our knowledge of the genetic diversity of the Hucul horse and helps to define its genetic conservation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 54–65.  相似文献   

6.
Coat color genetics, when successfully adapted and applied to different mammalian species, provides a good demonstration of the powerful concept of comparative genetics. Using cross-species techniques, we have cloned, sequenced, and characterized equine melanocortin-1-receptor (MC1R) and agouti-signaling-protein (ASIP), and completed a partial sequence of tyrosinase-related protein 1 (TYRP1). The coding sequences and parts of the flanking regions of those genes were systematically analyzed in 40 horses and mutations typed in a total of 120 horses. Our panel represented 22 different horse breeds, including 11 different coat colors of Equus caballus. The comparison of a 1721-bp genomic fragment of MC1R among the 11 coat color phenotypes revealed no sequence difference apart from the known chestnut allele (C901T). In particular, no dominant black (E D) mutation was found. In a 4994-bp genomic fragment covering the three putative exons, two introns and parts of the 5′- and 3′-UTRs of ASIP, two intronic base substitutions (SNP-A845G and C2374A), a point mutation in the 3′-UTRs (A4734G), and an 11-bp deletion in exon 2 (ADEx2) were detected. The deletion was found to be homozygous and completely associated with horse recessive black coat color (A a /A a ) in 24 black horses out of 9 different breeds from our panel. The frameshift initiated by ADEx2 is believed to alter the regular coding sequence, acting as a loss-of-function ASIP mutation. In TYRP1 a base substitution was detected in exon 2 (C189T), causing a threonine to methionine change of yet unknown function, and an SNP (A1188G) was found in intron 2. Received: 22 November 2000 / Accepted: 07 February 2001  相似文献   

7.
The existence of the Hucul horse on Romanian territory has been documented from the very distant past; today Hucul is a unique breed that is part of the FAO Program for the Preservation of Animal Genetic Resources. We compared Hucul with several primitive European and Asiatic breeds in order to elucidate the origin of these horses. We analyzed a 683-bp mitochondrial DNA (mtDNA) D-loop fragment in a population of Hucul horses and compared the polymorphic sites with sequences from other primitive breeds, including Exmoor, Icelandic Pony, Sorraia, Przewalski Horse, Mongolian Wild Horse, Konik, and Shetland Pony, as well as with Arabian, Akhal Teke and Caspian Pony. The sequences were truncated to 247 bp to accommodate short sequence data for the other species. Eighty horses were analyzed; 35 polymorphic sites representing 33 haplotypes were observed. The mean percentage of polymorphic sites was 14.2% for this mtDNA fragment. A neighbor-joining phylogenetic tree was constructed based on Kimura two-parameter distances and the Network 3.111 software was used for phylogenetic analysis. The Hucul horse was classified separately from all other primitive breeds. It is possible that the Hucul horse is not part of the pony class, as it segregated apart from all primitive pony breeds. We found multiple origins in the maternal lineage of domestic horse breeds and demonstrated the uniqueness of the Hucul breed; its origins remain unclear.  相似文献   

8.
9.
The syndrome Multiple Congenital Ocular Anomalies (MCOA) is the collective name ascribed to heritable congenital eye defects in horses. Individuals homozygous for the disease allele (MCOA phenotype) have a wide range of eye anomalies, while heterozygous horses (Cyst phenotype) predominantly have cysts that originate from the temporal ciliary body, iris, and/or peripheral retina. MCOA syndrome is highly prevalent in the Rocky Mountain Horse but the disease is not limited to this breed. Affected horses most often have a Silver coat color; however, a pleiotropic link between these phenotypes is yet to be proven. Locating and possibly isolating these traits would provide invaluable knowledge to scientists and breeders. This would favor maintenance of a desirable coat color while addressing the health concerns of the affected breeds, and would also provide insight into the genetic basis of the disease. Identical-by-descent mapping was used to narrow the previous 4.6-Mb region to a 264-kb interval for the MCOA locus. One haplotype common to four breeds showed complete association to the disease (Cyst phenotype, n?=?246; MCOA phenotype, n?=?83). Candidate genes from the interval, SMARCC2 and IKZF4, were screened for polymorphisms and genotyped, and segregation analysis allowed the MCOA syndrome region to be shortened to 208?kb. This interval also harbors PMEL17, the gene causative for Silver coat color. However, by shortening the MCOA locus by a factor of 20, 176 other genes have been unlinked from the disease and only 15 genes remain.  相似文献   

10.
The American Paint Horse Association (APHA) records pedigree and performance information for their breed, a stock-type horse valued as a working farm or ranch horse and as a pleasure horse. As the name implies, the breed is also valued for its attractive white-spotting patterns on the coat. The APHA utilizes visual inspections of photographs to determine if coat spotting exceeds threshold anatomical landmarks considered characteristic of desirable patterns. Horses with sufficient white patterning enter the ‘Regular’ registry, rather than the ‘Solid Paint-Bred’ division, providing a threshold modeled phenotype. Genetic studies previously defined sequence variants corresponding to 35 alleles for white spotting in the horse. Here, we calculate the allele frequencies for nine common white-spotting alleles in the American Paint Horse using a sample of 1054 registered animals. The APHA spotting phenotype is altered by additive interactions among spotting loci, and epistatically by the MC1R and ASIP genes controlling pigment production. The W20 allele within the KIT gene, independent of other known spotting alleles, was strongly associated with the APHA-defined white-spotting phenotype (P = 1.86 × 10−18), refuting reports that W20 acts only as a modifier of other underlying white-spotting patterns. The parentage of an individual horse, either American Paint or American Quarter Horse, did not alter the likelihood of its entering the APHA Regular Registry. An empirical definition of the action of these genetic loci on the APHA-defined white-spotting phenotype will allow more accurate application of genome-assisted selection for improving color production and the marketability of APHA horses.  相似文献   

11.
Variations in the SLC45A2 gene are responsible for the dilution phenotypes cream and pearl in domestic horses. Cream dilution is inherited in an incomplete dominant manner, diluting only red in the heterozygous state but both red and black pigments when two alleles are present. The pearl dilution is recessive and dilutes only the red and black pigment in the homozygous state or when paired with a cream allele. Horses that inherit one copy of pearl (Cprl) and one copy of the dominant cream allele (CCr) display a dilution phenotype similar to that of homozygous cream, suggesting that pearl is the result of a different variation in the same gene responsible for cream. We sequenced SLC45A2 in two ‘false double dilute’ horses that appeared phenotypically homozygous cream but tested as possessing only a single CCr allele. We also sequenced one known pearl carrier to screen for putative causal variants. The missense variant ECA21:SLC45A2:c.985G>A; p.Ala329Thr (Cprl) was present in one false double dilute and the pearl carrier and was also genotyped in an additional 126 horses for statistical evaluation. The genotype matched the expected phenotype in all horses (P‐value = 6.5 × 10?41) and is identical to a pearl variant found previously. The second false double dilute horse and one non‐dilute offspring genotyped as heterozygous for a novel missense variant ECA21:SLC45A2:c.568G>A (p.Gly190Arg), the proposed Csun variant (for the name of the horse). This variant produces a recessive dilution similar to pearl and indicates that multiple alleles of SLC45A2 result in dilution phenotypes in the domestic horse.  相似文献   

12.
The mouse pink eyed dilution locus, p, located on chromosome 7, mediates coat and eye color. The human correlate of this gene may underlie some forms of tyrosinase-positive oculocutaneous albinism. Mutations at the p locus result in a reduction in pigmentation of the eyes and coat. Although most mutant p alleles (including all spontaneous mutations) affect only pigmentation, several mutant alleles (all radiation induced) are also associated with a variety of other phenotypes. We have focused our attention on the pun mutant allele, a spontaneous mutation, exhibiting one of the highest reversion frequencies reported for a mammalian mutation. Using a new technique, genome scanning, we have cloned fragments of genomic DNA from the p locus that are associated with a DNA duplication in pun DNA. These fragments can now be used to locate the p gene-encoding sequences and aid in the molecular characterization of complex mutant p alleles.  相似文献   

13.
The morphological patterns of hair pigmentation (the size and shape of pigment granules and their distribution among layers) have been studied in four compound coat color forms of the American mink: moil-sapphire also known as violet (genotype m/m a/a p/p); moil-silver or sage (genotype m/m p/p); the color form determined by genotype m/+ a/a; and platinum leopard (S k /+ a/+ p/p). The hair pigmentation pattern specific for each coat color form and its difference from the standard coat color of the American mink (genotype +/+) has been determined. The possible mechanisms of the phenotypic expression of the nonallelic genes contributing to the described compound color forms are discussed.  相似文献   

14.
Overlapping runs of homozygosity (ROH islands) shared by the majority of a population are hypothesized to be the result of selection around a target locus. In this study we investigated the impact of selection for coat color within the Noriker horse on autozygosity and ROH patterns. We analyzed overlapping homozygous regions (ROH islands) for gene content in fragments shared by more than 50% of horses. Long‐term assortative mating of chestnut horses and the small effective population size of leopard spotted and tobiano horses resulted in higher mean genome‐wide ROH coverage (SROH) within the range of 237.4–284.2 Mb, whereas for bay, black and roan horses, where rotation mating is commonly applied, lower autozygosity (SROH from 176.4–180.0 Mb) was determined. We identified seven common ROH islands considering all Noriker horses from our dataset. Specific islands were documented for chestnut, leopard spotted, roan and bay horses. The ROH islands contained, among others, genes associated with body size (ZFAT, LASP1 and LCORL/NCAPG), coat color (MC1R in chestnut and the factor PATN1 in leopard spotted horses) and morphogenesis (HOXB cluster in all color strains except leopard spotted horses). This study demonstrates that within a closed population sharing the same founders and ancestors, selection on a single phenotypic trait, in this case coat color, can result in genetic fragmentation affecting levels of autozygosity and distribution of ROH islands and enclosed gene content.  相似文献   

15.
In the course of a reverse genetic screen in the Belgian Blue cattle breed, we uncovered a 10‐bp deletion (c.87_96del) in the first coding exon of the melanophilin gene (MLPH), which introduces a premature stop codon (p.Glu32Aspfs*1) in the same exon, truncating 94% of the protein. Recessive damaging mutations in the MLPH gene are well known to cause skin, hair, coat or plumage color dilution phenotypes in numerous species, including human, mice, dog, cat, mink, rabbit, chicken and quail. Large‐scale array genotyping undertaken to identify p.Glu32Aspfs*1 homozygous mutant animals revealed a mutation frequency of 5% in the breed and allowed for the identification of 10 homozygous mutants. As expression of a colored coat requires at least one wild‐type allele at the co‐dominant Roan locus encoded by the KIT ligand gene (KITLG), homozygous mutants for p.Ala227Asp corresponding with the missense mutation were excluded. The six remaining colored calves displayed a distinctive dilution phenotype as anticipated. This new coat color was named ‘cool gray’. It is the first damaging mutation in the MLPH gene described in cattle and extends the already long list of species with diluted color due to recessive mutations in MLPH and broadens the color palette of gray in this breed.  相似文献   

16.
The melanocyte-stimulating hormone receptor gene (MC1R) is the major candidate gene for the chestnut coat color in horses since it is assumed to be controlled by an allele at the extension locus. MC1R sequences were PCR amplified from chestnut (e/e) and non-chestnut (E/−) horses. A single-strand conformation polymorphism was found that showed a complete association to the chestnut coat color among 144 horses representing 12 breeds. Sequence analysis revealed a single missense mutation (83Ser → Phe) in the MC1R allele associated with the chestnut color. The substitution occurs in the second transmembrane region, which apparently plays a key role in the molecule since substitutions associated with coat color variants in mice and cattle as well as red hair and fair skin in humans are found in this part of the molecule. We propose that the now reported mutation is likely to be the causative mutation for the chestnut coat color. The polymorphism can be detected with a simple PCR-RFLP test, since the mutation creates a TaqI restriction site in the chestnut allele. Received: 20 May 1996 / Accepted: 31 July 1996  相似文献   

17.
18.
Lavender Foal Syndrome (LFS) is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A) and myosin Va (MYO5A). Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP) chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR–based Restriction Fragment Length Polymorphism (PCR–RFLP) assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals.  相似文献   

19.
Various approaches can be applied to uncover the genetic basis of natural phenotypic variation, each with their specific strengths and limitations. Here, we use a replicated genome-wide association approach (Pool-GWAS) to fine-scale map genomic regions contributing to natural variation in female abdominal pigmentation in Drosophila melanogaster, a trait that is highly variable in natural populations and highly heritable in the laboratory. We examined abdominal pigmentation phenotypes in approximately 8000 female European D. melanogaster, isolating 1000 individuals with extreme phenotypes. We then used whole-genome Illumina sequencing to identify single nucleotide polymorphisms (SNPs) segregating in our sample, and tested these for associations with pigmentation by contrasting allele frequencies between replicate pools of light and dark individuals. We identify two small regions near the pigmentation genes tan and bric-à-brac 1, both corresponding to known cis-regulatory regions, which contain SNPs showing significant associations with pigmentation variation. While the Pool-GWAS approach suffers some limitations, its cost advantage facilitates replication and it can be applied to any non-model system with an available reference genome.  相似文献   

20.
Horse owners may lack knowledge about natural thermoregulation mechanisms in horses. Horses are managed intensively; usually stabled at night and turned out during the day. Some are clipped and many wear a blanket, practices which reduce the horse's ability to regulate heat dissipation. The aim of this study was to investigate the relationship between hair coat characteristics, body condition and infrared surface temperatures from different body parts of horses. Under standard conditions, the body surface temperature of 21 adult horses were investigated using infrared thermography. From several readings on the same body part, a mean temperature was calculated for each body part per horse. Detailed information on horse breed, age, management and body condition was collected. Hair coat samples were also taken for analyses. A mixed statistical model was applied. Warmblood horse types (WB) had lower hair coat sample weights and shorter hair length than coldblood horse types (CB). The highest radiant surface temperatures were found at the chest 22.5 ± 0.9 °C and shoulders 20.4 ± 1.1 °C and WB horses had significantly higher surface temperatures than CB horses on the rump (P < 0.05). Horses with a higher hair coat sample weight had a lower surface temperature (P < 0.001) and hind hooves with iron shoes had a significant lower surface temperature than unshod hind hooves (P = 0.03). In conclusion, individual assessment of radiant surface temperature using infrared thermography might be a promising tool to gather data on heat loss from the horses' body. Such data may be important for management advice, as the results showed individual differences in hair coat characteristics and body condition in horses of similar breeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号