首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Type II diabetes mellitus (T2DM) is characterized by the presence of amyloid deposits of the human islet amyloid polypeptide (hIAPP) in pancreatic β-cells. A wealth of data supports the hypothesis that hIAPP's toxicity is related to an abnormal interaction of amyloids with islet cell membranes. Thus, many studies aimed at finding effective therapies for T2DM focus on the design of molecules that are able to inhibit hIAPP's amyloid growth and the related membrane damage as well. Based on this view and inspired by its known anti-amyloid properties, we have functionalized resveratrol with a phosphoryl moiety (4′-O-PR) that improves its solubility and pharmacological properties. A second resveratrol derivative has also been obtained by conjugating resveratrol with a dimyristoylphosphatidyl moiety (4′-DMPR). The use of both compounds resulted in abolishing both amyloid growth and amyloid mediated POPC/POPS membrane damage in tube tests. We propose that a mixture of a water-soluble anti-aggregating compound and its lipid-anchored derivative may be employed as a general strategy to prevent and/or to halt amyloid–related membrane damage.  相似文献   

2.
The aggregation of the 37‐amino acid polypeptide human islet amyloid polypeptide (hIAPP), as either insoluble amyloid or as small oligomers, appears to play a direct role in the death of human pancreatic β‐islet cells in type 2 diabetes. hIAPP is considered to be one of the most amyloidogenic proteins known. The quick aggregation of hIAPP leads to the formation of toxic species, such as oligomers and fibers, that damage mammalian cells (both human and rat pancreatic cells). Whether this toxicity is necessary for the progression of type 2 diabetes or merely a side effect of the disease remains unclear. If hIAPP aggregation into toxic amyloid is on‐path for developing type 2 diabetes in humans, islet amyloid polypeptide (IAPP) aggregation would likely need to play a similar role within other organisms known to develop the disease. In this work, we compared the aggregation potential and cellular toxicity of full‐length IAPP from several diabetic and nondiabetic organisms whose aggregation propensities had not yet been determined for full‐length IAPP.  相似文献   

3.
The deposition of insoluble amyloid fibrils resulting from the aggregation of the human islet amyloid polypeptide (hIAPP) within the islet of Langerhans is a pathological feature of type 2 diabetes mellitus (T2DM). Increasing evidence indicates that biological membranes play a key role in amyloid aggregation, modulating among others the kinetics of amyloid formation, and being the target of toxic species generated during amyloid formation. In T2DM patients, elevated levels of cholesterol, an important determinant of the physical state of biological membranes, are observed in β-cells and are thought to directly impair β-cell function and insulin secretion. However, it is not known whether cholesterol enhances membrane-interaction or membrane-insertion of hIAPP. In this study, we investigated the effect of cholesterol incorporated in zwitterionic and anionic membranes. Our circular dichroism and liquid state NMR data reveal that 10–30% of cholesterol slightly affects the aggregational and conformational behaviour of hIAPP. Additional fluorescence results indicate that 10 and 20% of cholesterol slightly slow down the kinetics of oligomer and fibril formation while anionic lipids accelerate this kinetics. This behavior might be caused by differences in membrane insertion and therefore in membrane binding of hIAPP. The membrane binding affinity was evaluated using 1H NMR experiments and our results show that the affinity of hIAPP for membranes containing cholesterol is significantly smaller than that for membranes containing anionic lipids. Furthermore, we found that hIAPP-induced membrane damage is synchronized to fibril formation in the absence and in the presence of cholesterol.  相似文献   

4.
The abnormal aggregation of human islet amyloid polypeptide (hIAPP) is a crucial pathogenic factor associated with type 2 diabetes (T2D). The development of effective inhibitors to prevent hIAPP aggregation is a common therapeutic strategy against T2D. Lithospermic acid (LA) is a natural compound with diversified biological activities. In this study, electrospray ionization coupled with ion mobility–mass spectrometry, thioflavin T fluorescence assay, Congo red binding assay, Nile red fluorescence assay, circular dichroism spectroscopy, transmission electron microscopy, cell toxicity, lactate dehydrogenase assay (LDH) assay and molecular docking were combined to explore the influence of LA on hIAPP aggregation. Results showed that LA had favorable binding affinity to hIAPP and formed hIAPP–LA complexes, which could alter the relative abundance of the compact and extended conformers and promoted the transition of extended structures to compact conformers. LA also displayed strong inhibitory actions on fibrillation and potential protective effects against hIAPP-induced cell toxicity. Therefore, the obtained results were useful to understand the possible inhibitory mechanism of LA on hIAPP aggregation and provided valuable reference for the screening of potent amyloid inhibitors.  相似文献   

5.
Pancreatic amyloid is found in more than 95 % of type II diabetes patients. Pancreatic amyloid is formed by the aggregation of islet amyloid polypeptide (hIAPP or amylin), which is a 37-residue peptide. Because pancreatic amyloid is cytotoxic, it is believed that its formation is directly associated with the development of the disease. We recently showed that hIAPP amyloid formation follows the nucleation-dependent polymerization mechanism and proceeds via a conformational transition of soluble hIAPP into aggregated beta-sheets. Here, we report that the penta- and hexapeptide sequences, hIAPP(23-27) (FGAIL) and hIAPP(22-27) (NFGAIL) of hIAPP are sufficient for the formation of beta-sheet-containing amyloid fibrils. Although these two peptides differ by only one amino acid residue, they aggregate into completely different fibrillar assemblies. hIAPP(23-27) (FGAIL) fibrils self-assemble laterally into unusually broad ribbons, whereas hIAPP(22-27) (NFGAIL) fibrils coil around each other in a typical amyloid fibril morphology. hIAPP(20-27) (SNNFGAIL) also aggregates into beta-sheet-containing fibrils, whereas no amyloidogenicity is found for hIAPP(24-27) (GAIL), indicating that hIAPP(23-27) (FGAIL) is the shortest fibrillogenic sequence of hIAPP. Insoluble amyloid formation by the partial hIAPP sequences followed kinetics that were consistent with a nucleation-dependent polymerization mechanism. hIAPP(22-27) (NFGAIL), hIAPP(20-27) (SNNFGAIL), and also the known fibrillogenic sequence, hIAPP(20-29) (SNNFGAILSS) exhibited significantly lower kinetic and thermodynamic solubilities than the pentapeptide hIAPP(23-27) (FGAIL). Fibrils formed by all short peptide sequences and also by hIAPP(20-29) were cytotoxic towards the pancreatic cell line RIN5fm, whereas no cytotoxicity was observed for the soluble form of the peptides, a notion that is consistent with hIAPP cytotoxicity. Our results suggest that a penta- and hexapeptide sequence of an appropriate amino acid composition can be sufficient for beta-sheet and amyloid fibril formation and cytotoxicity and may assist in the rational design of inhibitors of pancreatic amyloid formation or other amyloidosis-related diseases.  相似文献   

6.
Type 2 Diabetes is a major public health threat, and its prevalence is increasing worldwide. The abnormal accumulation of islet amyloid polypeptide (IAPP) in pancreatic β-cells is associated with the onset of the disease. Therefore, the design of small molecules able to inhibit IAPP aggregation represents a promising strategy in the development of new therapies. Here we employ in vitro, biophysical, and computational methods to inspect the ability of Silybin A and Silybin B, two natural diastereoisomers extracted from milk thistle, to interfere with the toxic self-assembly of human IAPP (hIAPP). We show that Silybin B inhibits amyloid aggregation and protects INS-1 cells from hIAPP toxicity more than Silybin A. Molecular dynamics simulations revealed that the higher efficiency of Silybin B is ascribable to its interactions with precise hIAPP regions that are notoriously involved in hIAPP self-assembly i.e., the S20-S29 amyloidogenic core, H18, the N-terminal domain, and N35. These results highlight the importance of stereospecific ligand-peptide interactions in regulating amyloid aggregation and provide a blueprint for future studies aimed at designing Silybin derivatives with enhanced drug-like properties.  相似文献   

7.
Human islet amyloid polypeptide (hIAPP) is a cytotoxic protein that aggregates into oligomers and fibrils that kill pancreatic β-cells. Here we analyze hIAPP aggregation in vitro, measured via thioflavin-T fluorescence. We use mass-action kinetics and scaling analysis to reconstruct the aggregation pathway, and find that the initiation step requires four hIAPP monomers. After this step, monomers join the nucleus in pairs, until the first stable nucleus (of size approximately 20 monomers) is formed. This nucleus then elongates by successive addition of single monomers. We find that the best-fit of our data is achieved when we include a secondary fibril-dependent nucleation pathway in the reaction scheme. We predict how interventions that change rates of fibril elongation or nucleation rates affect the accumulation of potentially cytotoxic oligomer species. Our results demonstrate the power of scaling analysis in reverse engineering biochemical aggregation pathways.  相似文献   

8.
Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased β-cell apoptosis and reduced β-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves hIAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting β-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1–15, 1–25, 16–37, 16–25, and 26–37. The fragments 1–15, 1–25, and 26–37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with β cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16–37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16–37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16–37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and β-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit β-cell loss in type 2 diabetes.  相似文献   

9.
Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra.  相似文献   

10.
Deposition of islet amyloid polypeptide (IAPP) as islet amyloid in type 2 diabetes contributes to loss of β-cell function and mass, yet the mechanism for its occurrence is unclear. Neprilysin is a metallopeptidase known to degrade amyloid in Alzheimer disease. We previously demonstrated neprilysin to be present in pancreatic islets and now sought to determine whether it plays a role in degrading islet amyloid. We used an in vitro model where cultured human IAPP (hIAPP) transgenic mouse islets develop amyloid and thereby have increased β-cell apoptosis. Islet neprilysin activity was inhibited or up-regulated using a specific inhibitor or adenovirus encoding neprilysin, respectively. Following neprilysin inhibition, islet amyloid deposition and β-cell apoptosis increased by 54 and 75%, respectively, whereas when neprilysin was up-regulated islet amyloid deposition and β-cell apoptosis both decreased by 79%. To determine if neprilysin modulated amyloid deposition by cleaving hIAPP, analysis of hIAPP incubated with neprilysin was performed by mass spectrometry, which failed to demonstrate neprilysin-induced cleavage. Rather, neprilysin may act by reducing hIAPP fibrillogenesis, which we showed to be the case by fluorescence-based thioflavin T binding studies and electron microscopy. In summary, neprilysin decreases islet amyloid deposition by inhibiting hIAPP fibril formation, rather than degrading hIAPP. These findings suggest that targeting the role of neprilysin in IAPP fibril assembly, in addition to IAPP cleavage by other peptidases, may provide a novel approach to reduce and/or prevent islet amyloid deposition in type 2 diabetes.  相似文献   

11.
A hallmark of type 2 diabetes mellitus (T2DM) is the presence of extracellular amyloid deposits in the islets of Langerhans. These deposits are formed by the human islet amyloid polypeptide, hIAPP (or amylin), which is a hormone costored and cosecreted with insulin. Under normal conditions, the hormone remains in solution but, in the pancreas of T2DM individuals, it undergoes misfolding giving rise to oligomers and cross-β amyloid fibrils. Accumulating evidence suggests that the amyloid deposits that accompany type 2 diabetes mellitus are not just a trivial epiphenomenon derived from the disease progression. Rather, hIAPP aggregation induces processes that impair the functionality and viability of β-cells and may lead to apoptosis. The present review article aims to summarize a few aspects of the current knowledge of this amyloidogenic polypeptide. In the first place, the physicochemical properties which condition its propensity to misfold and form aggregates. Secondly, how these properties confer hIAPP the capacity to interfere with some signaling of the pancreatic β-cell, interact with membranes, form channels or affect natural ion channels, including calcium channels. Finally, how misfolded hIAPP cytotoxicity results in apoptosis. A number of pathophysiological changes of the T2DM islet can be related to the amyloidogenic properties of hIAPP. However, in a certain way, the in vivo aggregation of the polypeptide also reflects a failure of chaperones and, in general, of cellular proteostasis, supporting the view that T2DM may also be considered as a conformational disorder.  相似文献   

12.
Human islet amyloid polypeptide (hIAPP, also known as amylin) is a 37 amino acid pancreatic polypeptide hormone that plays a role in regulating glucose levels, but forms pancreatic amyloid in type-2 diabetes. The process of amyloid formation by hIAPP contributes to β-cell death in the disease. Multiple mechanisms of hIAPP induced toxicity of β-cells have been proposed including disruption of cellular membranes. However, the nature of hIAPP membrane interactions and the effect of ions and other molecules on hIAPP membrane interactions are not fully understood. Many studies have used model membranes with a high content of anionic lipids, often POPS, however the concentration of anionic lipids in the β-cell plasma membrane is low. Here we study the concentration dependent effect of Ca2+ (0 to 50 mM) on hIAPP membrane interactions using large unilamellar vesicles (LUVs) with anionic lipid content ranging from 0 to 50 mol%. We find that Ca2+ does not effectively inhibit hIAPP amyloid formation and hIAPP induced membrane leakage from binary LUVs with a low percentage of POPS, but has a greater effect on LUVs with a high percentage of POPS. Mg2+ had very similar effects, and the effects of Ca2+ and Mg2+ can be largely rationalized by the neutralization of POPS charge. The implications for hIAPP-membrane interactions are discussed.  相似文献   

13.
Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra.  相似文献   

14.
Human islet amyloid polypeptide (hIAPP) is a highly amyloidogenic protein co-secreted with insulin in response to glucose levels. The formation of hIAPP amyloid plaques near islet cells has been linked to the death of insulin-secreting β-cells in humans and the progression of type II diabetes. Since both healthy individuals and those with type II diabetes produce and secrete hIAPP, it is reasonable to look for factors involved in storing hIAPP and preventing amyloidosis. We have previously shown that zinc inhibits the formation of insoluble amyloid plaques of hIAPP; however, there remains significant ambiguity in the underlying mechanisms. In this study, we show that zinc binds unaggregated hIAPP at micromolar concentrations similar to those found in the extracellular environment. By contrast, the fibrillar amyloid form of hIAPP has low affinity for zinc. The binding stoichiometry obtained from isothermal titration calorimetry experiments indicates that zinc favors the formation of hIAPP hexamers. High-resolution NMR structures of hIAPP bound to zinc reveal changes in the electron environment along residues that would be located along one face of the amphipathic hIAPP α-helix proposed as an intermediate for amyloid formation. Results from electrospray ionization mass spectroscopy investigations showed that a single zinc atom is predominantly bound to hIAPP and revealed that zinc inhibits the formation of the dimer. At higher concentrations of zinc, a second zinc atom binds to hIAPP, suggesting the presence of a low-affinity secondary binding site. Combined, these results suggest that zinc promotes the formation of oligomers while creating an energetic barrier for the formation of amyloid fibers.  相似文献   

15.
We engineered and employed a chaperone‐like amyloid‐binding protein Nucleobindin 1 (NUCB1) to stabilize human islet amyloid polypeptide (hIAPP) protofibrils for use as immunogen in mice. We obtained multiple monoclonal antibody (mAb) clones that were reactive against hIAPP protofibrils. A secondary screen was carried out to identify clones that cross‐reacted with amyloid beta‐peptide (Aβ42) protofibrils, but not with Aβ40 monomers. These mAbs were further characterized in several in vitro assays, in immunohistological studies of a mouse model of Alzheimer's disease (AD) and in AD patient brain tissue. We show that mAbs obtained by immunizing mice with the NUCB1‐hIAPP complex cross‐react with Aβ42, specifically targeting protofibrils and inhibiting their further aggregation. In line with conformation‐specific binding, the mAbs appear to react with an intracellular antigen in diseased tissue, but not with amyloid plaques. We hypothesize that the mAbs we describe here recognize a secondary or quaternary structural epitope that is common to multiple amyloid protofibrils. In summary, we report a method to create mAbs that are conformation‐sensitive and sequence‐independent and can target more than one type of protofibril species.  相似文献   

16.
Human islet amyloid polypeptide is a hormone coexpressed with insulin by pancreatic beta-cells. For reasons not clearly understood, hIAPP aggregates in type II diabetics to form oligomers that interfere with beta-cell function, eventually leading to the loss of insulin production. The cellular membrane catalyzes the formation of amyloid deposits and is a target of amyloid toxicity through disruption of the membrane's structural integrity. Therefore, there is considerable current interest in solving the 3D structure of this peptide in a membrane environment. NMR experiments could not be directly utilized in lipid bilayers due to the rapid aggregation of the peptide. To overcome this difficulty, we have solved the structure of the naturally occurring peptide in detergent micelles at a neutral pH. The structure has an overall kinked helix motif, with residues 7-17 and 21-28 in a helical conformation, and with a 3(10) helix from Gly 33-Asn 35. In addition, the angle between the N- and C-terminal helices is constrained to 85°. The greater helical content of human IAPP in the amidated versus free acid form is likely to play a role in its aggregation and membrane disruptive activity.  相似文献   

17.
The biological cell is known to exhibit a highly crowded milieu, which significantly influences protein aggregation and association processes. As several cell degenerative diseases are related to the self-association and fibrillation of amyloidogenic peptides, understanding of the impact of macromolecular crowding on these processes is of high biomedical importance. It is further of particular relevance as most in vitro studies on amyloid aggregation have been performed in diluted solution which does not reflect the complexity of their cellular surrounding. The study presented here focuses on the self-association of the type-2 diabetes mellitus related human islet amyloid polypeptide (hIAPP) in various crowded environments including network-forming macromolecular crowding reagents and protein crowders. It was possible to identify two competing processes: a crowder concentration and type dependent stabilization of globular off-pathway species and a – consequently - retarded or even inhibited hIAPP fibrillation reaction. The cause of these crowding effects was revealed to be mainly excluded volume in the polymeric crowders, whereas non-specific interactions seem to be most dominant in protein crowded environments. Specific hIAPP cytotoxicity assays on pancreatic β-cells reveal non-toxicity for the stabilized globular species, in contrast to the high cytotoxicity imposed by the normal fibrillation pathway. From these findings it can be concluded that cellular crowding is able to effectively stabilize the monomeric conformation of hIAPP, hence enabling the conduction of its normal physiological function and prevent this highly amyloidogenic peptide from cytotoxic aggregation and fibrillation.  相似文献   

18.
Native human islet amyloid polypeptide (hIAPP) has been identified as the major component of amyloid plaques found in the pancreatic islets of Langerhans of persons affected by type 2 diabetes mellitus. Early studies of hIAPP determined that a segment of the molecule, amino acids 20-29, is responsible for its aggregation into amyloid fibrils. The present study demonstrates that the aggregation of hIAPP 20-29-Trp is a nucleation-dependent process, displaying a distinct lag time before the onset of rapid aggregation. Moreover, the lag time can be eliminated by seeding the sample of unaggregated peptide with preformed fibrils. In contrast to the expectation from the conventional model of nucleation-dependent aggregation, however, the lag time of hIAPP aggregation does not depend on peptide concentration. To explain this observation, a modified version of the standard model of nucleation-dependent aggregation is presented in which the monomeric peptide concentration is buffered by an off-aggregation-pathway formation of peptide micelles.  相似文献   

19.
Amyloid deposition of human islet amyloid polypeptide (hIAPP) in the islets of Langerhans is closely associated with the pathogenesis of type II diabetes mellitus. Despite substantial evidence linking amyloidogenic hIAPP to loss of β-cell mass and decreased pancreatic function, the molecular mechanism of hIAPP cytotoxicity is poorly understood. We here investigated the binding of hIAPP and nonamyloidogenic rat IAPP to substrate-supported planar bilayers and examined the membrane-mediated amyloid aggregation. The membrane binding of IAPP in soluble and fibrillar states was characterized using quartz crystal microbalance with dissipation monitoring, revealing significant differences in the binding abilities among different species and conformational states of IAPP. Patterned model membranes composed of polymerized and fluid lipid bilayer domains were used to microscopically observe the amyloid aggregation of hIAPP in its membrane-bound state. The results have important implications for lipid-mediated aggregation following the penetration of hIAPP into fluid membranes. Using the fluorescence recovery after photobleaching method, we show that the processes of membrane binding and subsequent amyloid aggregation are accompanied by substantial changes in membrane fluidity and morphology. Additionally, we show that the fibrillar hIAPP has a potential ability to perturb the membrane structure in experiments of the fibril-mediated aggregation of lipid vesicles. The results obtained in this study using model membranes reveal that membrane-bound hIAPP species display a pronounced membrane perturbation ability and suggest the potential involvement of the oligomeic forms of hAPP in membrane dysfunction.  相似文献   

20.
Interactions of human islet amyloid polypeptide (hIAPP or amylin) with the cell membrane are correlated with the dysfunction and death of pancreatic islet β-cells in type II diabetes. Formation of receptor-independent channels by hIAPP in the membrane is regarded as one of the membrane-damaging mechanisms that induce ion homeostasis and toxicity in islet β-cells. Here, we investigate the dynamic structure, ion conductivity, and membrane interactions of hIAPP channels in the DOPC bilayer using molecular modeling and molecular dynamics simulations. We use the NMR-derived β-strand-turn-β-strand motif as a building block to computationally construct a series of annular-like hIAPP structures with different sizes and topologies. In the simulated lipid environments, the channels lose their initial continuous β-sheet network and break into oligomeric subunits, which are still loosely associated to form heterogeneous channel conformations. The channels' shapes, morphologies and dimensions are compatible with the doughnut-like images obtained by atomic force microscopy, and with those of modeled channels for Aβ, the β(2)-microglobulin-derived K3 peptides, and the β-hairpin-based channels of antimicrobial peptide PG-1. Further, all channels induce directional permeability of multiple ions across the bilayers from the lower to the upper leaflet. This similarity suggests that loosely-associated β-structure motifs can be a general feature of toxic, unregulated channels. In the absence of experimental high-resolution atomic structures of hIAPP channels in the membrane, this study represents a first attempt to delineate some of the main structural features of the hIAPP channels, for a better understanding of the origin of amyloid toxicity and the development of pharmaceutical agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号