首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Heat stress compromises production, fertility, and health of dairy cattle. One mitigation strategy is to select individuals that are genetically resistant to heat stress. Most of the negative effects of heat stress on animal performance are a consequence of either physiological adaptations to regulate body temperature or adverse consequences of failure to regulate body temperature. Thus, selection for regulation of body temperature during heat stress could increase thermotolerance. The objective was to perform a genome-wide association study (GWAS) for rectal temperature (RT) during heat stress in lactating Holstein cows and identify SNPs associated with genes that have large effects on RT. Records on afternoon RT where the temperature-humidity index was ≥78.2 were obtained from 4,447 cows sired by 220 bulls, resulting in 1,440 useable genotypes from the Illumina BovineSNP50 BeadChip with 39,759 SNP. For GWAS, 2, 3, 4, 5, and 10 adjacent SNP were averaged to identify consensus genomic regions associated with RT. The largest proportion of SNP variance (0.07 to 0.44%) was explained by markers flanking the region between 28,877,547 and 28,907,154 bp on Bos taurus autosome (BTA) 24. That region is flanked by U1 (28,822,883 to 28,823,043) and NCAD (28,992,666 to 29,241,119). In addition, the SNP at 58,500,249 bp on BTA 16 explained 0.08% and 0.11% of the SNP variance for 2- and 3-SNP analyses, respectively. That contig includes SNORA19, RFWD2 and SCARNA3. Other SNPs associated with RT were located on BTA 16 (close to CEP170 and PLD5), BTA 5 (near SLCO1C1 and PDE3A), BTA 4 (near KBTBD2 and LSM5), and BTA 26 (located in GOT1, a gene implicated in protection from cellular stress). In conclusion, there are QTL for RT in heat-stressed dairy cattle. These SNPs could prove useful in genetic selection and for identification of genes involved in physiological responses to heat stress.  相似文献   

2.
Detecting genes associated with milk fat composition could provide valuable insights into the complex genetic networks of genes underling variation in fatty acids synthesis and point towards opportunities for changing milk fat composition via selective breeding. In this study, we conducted a genome-wide association study (GWAS) for 22 milk fatty acids in 784 Chinese Holstein cows with the PLINK software. Genotypes were obtained with the Illumina BovineSNP50 Bead chip and a total of 40,604 informative, high-quality single nucleotide polymorphisms (SNPs) were used. Totally, 83 genome-wide significant SNPs and 314 suggestive significant SNPs associated with 18 milk fatty acid traits were detected. Chromosome regions that affect milk fatty acid traits were mainly observed on BTA1, 2, 5, 6, 7, 9, 13, 14, 18, 19, 20, 21, 23, 26 and 27. Of these, 146 SNPs were associated with more than one milk fatty acid trait; most of studied fatty acid traits were significant associated with multiple SNPs, especially C18:0 (105 SNPs), C18 index (93 SNPs), and C14 index (84 SNPs); Several SNPs are close to or within the DGAT1, SCD1 and FASN genes which are well-known to affect milk composition traits of dairy cattle. Combined with the previously reported QTL regions and the biological functions of the genes, 20 novel promising candidates for C10:0, C12:0, C14:0, C14:1, C14 index, C18:0, C18:1n9c, C18 index, SFA, UFA and SFA/UFA were found, which composed of HTR1B, CPM, PRKG1, MINPP1, LIPJ, LIPK, EHHADH, MOGAT1, ECHS1, STAT1, SORBS1, NFKB2, AGPAT3, CHUK, OSBPL8, PRLR, IGF1R, ACSL3, GHR and OXCT1. Our findings provide a groundwork for unraveling the key genes and causal mutations affecting milk fatty acid traits in dairy cattle.  相似文献   

3.
Genome-wide association studies for difficult-to-measure traits are generally limited by the sample size with accurate phenotypic data. The objective of this study was to utilise data on primiparous Holstein–Friesian cows from experimental farms in Ireland, the United Kingdom, the Netherlands and Sweden to identify genomic regions associated with the feed utilisation complex: fat and protein corrected milk yield (FPCM), dry matter intake (DMI), body condition score (BCS) and live-weight (LW). Phenotypic data and 37 590 single nucleotide polymorphisms (SNPs) were available on up to 1629 animals. Genetic parameters of the traits were estimated using a linear animal model with pedigree information, and univariate genome-wide association analyses were undertaken using Bayesian stochastic search variable selection performed using Gibbs sampling. The variation in the phenotypes explained by the SNPs on each chromosome was related to the size of the chromosome and was relatively consistent for each trait with the possible exceptions of BTA4 for BCS, BTA7, BTA13, BTA14, BTA18 for LW and BTA27 for DMI. For LW, BCS, DMI and FPCM, 266, 178, 206 and 254 SNPs had a Bayes factor >3, respectively. Olfactory genes and genes involved in the sensory smell process were overrepresented in a 500 kbp window around the significant SNPs. Potential candidate genes were involved with functions linked to insulin, epidermal growth factor and tryptophan.  相似文献   

4.
Genome-wide association studies for difficult-to-measure traits are generally limited by the sample population size with accurate phenotypic data. The objective of this study was to utilise data on primiparous Holstein–Friesian cows from experimental farms in Ireland, the United Kingdom, the Netherlands and Sweden to identify genomic regions associated with traditional measures of fertility, as well as a fertility phenotype derived from milk progesterone profiles. Traditional fertility measures investigated were days to first heat, days to first service, pregnancy rate to first service, number of services and calving interval (CI); post-partum interval to the commencement of luteal activity (CLA) was derived using routine milk progesterone assays. Phenotypic and genotypic data on 37 590 single nucleotide polymorphisms (SNPs) were available for up to 1570 primiparous cows. Genetic parameters were estimated using linear animal models, and univariate and bivariate genome-wide association analyses were undertaken using Bayesian stochastic search variable selection performed using Gibbs sampling. Heritability estimates of the traditional fertility traits varied from 0.03 to 0.16; the heritability for CLA was 0.13. The posterior quantitative trait locus (QTL) probabilities, across the genome, for the traditional fertility measures were all <0.021. Posterior QTL probabilities of 0.060 and 0.045 were observed for CLA on SNPs each on chromosome 2 and chromosome 21, respectively, in the univariate analyses; these probabilities increased when CLA was included in the bivariate analyses with the traditional fertility traits. For example, in the bivariate analysis with CI, the posterior QTL probability of the two aforementioned SNPs were 0.662 and 0.123. Candidate genes in the vicinity of these SNPs are discussed. The results from this study suggest that the power of genome-wide association studies in cattle may be increased by sharing of data and also possibly by using physiological measures of the trait under investigation.  相似文献   

5.
6.

Background

The milk fat profile of the Danish Holstein (DH) and Danish Jersey (DJ) show clear differences. Identification of the genomic regions, genes and biological pathways underlying the milk fat biosynthesis will improve the understanding of the biology underlying bovine milk fat production and may provide new possibilities to change the milk fat composition by selective breeding. In this study a genome wide association scan (GWAS) in the DH and DJ was performed for a detailed milk fatty acid (FA) profile using the HD bovine SNP array and subsequently a biological pathway analysis based on the SNP data was performed.

Results

The GWAS identified in total 1,233 SNPs (FDR < 0.10) spread over 18 chromosomes for nine different FA traits for the DH breed and 1,122 SNPs (FDR < 0.10) spread over 26 chromosomes for 13 different FA traits were detected for the DJ breed. Of these significant SNPs, 108 SNP markers were significant in both DH and DJ (C14-index, BTA26; C16, BTA14; fat percentage (FP), BTA14). This was supported by an enrichment test. The QTL on BTA14 and BTA26 represented the known candidate genes DGAT and SCD. In addition we suggest ACSS3 to be a good candidate gene for the QTL on BTA5 for C10:0 and C15:0. In addition, genetic correlations between the FA traits within breed showed large similarity across breeds. Furthermore, the biological pathway analysis revealed that fat digestion and absorption (KEGG04975) plays a role for the traits FP, C14:1, C16 index and C16:1.

Conclusion

There was a clear similarity between the underlying genetics of FA in the milk between DH and DJ. This was supported by the fact that there was substantial overlap between SNPs for FP, C14 index, C14:1, C16 index and C16:1. In addition genetic correlations between FA showed a similar pattern across DH and DJ. Furthermore the biological pathway analysis suggested that fat digestion and absorption KEGG04975 is important for the traits FP, C14:1, C16 index and C16:1.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1112) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Milk production is an economically important sector of global agriculture. Much attention has been paid to the identification of quantitative trait loci (QTL) associated with milk, fat, and protein yield and the genetic and molecular mechanisms underlying them. Copy number variation (CNV) is an emerging class of variants which may be associated with complex traits.

Results

In this study, we performed a genome-wide association between CNVs and milk production traits in 26,362 Holstein bulls and cows. A total of 99 candidate CNVs were identified using Illumina BovineSNP50 array data, and association tests for each production trait were performed using a linear regression analysis with PCA correlation. A total of 34 CNVs on 22 chromosomes were significantly associated with at least one milk production trait after false discovery rate (FDR) correction. Some of those CNVs were located within or near known QTL for milk production traits. We further investigated the relationship between associated CNVs with neighboring SNPs. For all 82 combinations of traits and CNVs (less than 400 kb in length), we found 17 cases where CNVs directly overlapped with tag SNPs and 40 cases where CNVs were adjacent to tag SNPs. In 5 cases, CNVs located were in strong linkage disequilibrium with tag SNPs, either within or adjacent to the same haplotype block. There were an additional 20 cases where CNVs did not have a significant association with SNPs, suggesting that the effects of those CNVs were probably not captured by tag SNPs.

Conclusion

We conclude that combining CNV with SNP analyses reveals more genetic variations underlying milk production traits than those revealed by SNPs alone.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-683) contains supplementary material, which is available to authorized users.  相似文献   

8.
9.
Interval mapping was carried out to identify quantitative trait loci (QTL) for milk production traits in five granddaughter design families of the German Holstein population. Fourteen randomly generated markers spanning the whole of BTA6 and six targeted microsatellite markers from BTA6q21-31 were included in the analysis. In one family a QTL with effects on milk fat yield and milk protein yield was mapped to the interval TGLA37-FBN13 (3 CM proximal to FBN13, lodscore 3.22) in the middle part of the chromosome. Although there are several reports about QTL with effects on milk production traits on BTA6 in the literature, a QTL with effects on milk fat and milk protein yield has not been previously described.  相似文献   

10.
We herein report results from a daughter design genome-scan study aiming to identify quantitative trait loci (QTL) associated with birth weight, direct gestation length and passive immune transfer in a backcross (Holstein × Jersey) × Holstein population. Two-hundred and seventy-six calves, offspring of seven crossbred sires, were genotyped for 161 microsatellite markers distributed along the 29 bovine autosomes. The genome scan was performed through interval mapping using an animal model in order to identify QTL accounting for phenotypic differences between individual animals. Based on significant chi-squared values, we identified putative QTL on BTA7 and BTA14 for gestation length, on BTA2, BTA6 and BTA14 for birth weight and on BTA20 for passive immune transfer. In total, these QTL accounted for 12%, 18% and 1% of the phenotypic variance in gestation length, birth weight and passive immune transfer respectively. We also report results from a supplementary and independent influential grand-daughter Holstein family. In this family, findings on BTA7 and BTA14 for direct gestation length were in agreement with results in the crossbred population. Two other regions on BTA6 and BTA21 putatively underlying QTL for direct gestation length variability were discovered with this analysis.  相似文献   

11.
The objective of this study was to investigate the association of single nucleotide polymorphisms (SNPs) with birth weight, weight gain from birth to weaning and from weaning to yearling, yearling height and cow weight in Nelore cattle. Data from 5064 animals participating in the DeltaGen and PAINT breeding programs were used. The animals were genotyped with a panel of 777 962 SNPs (Illumina BovineHD BeadChip) and 412 993 SNPs remained after quality control analysis of the genomic data. A genome-wide association study was performed using a single-step methodology. The analyses were processed with the BLUPF90 family of programs. When applied to a genome-wide association studies, the single-step GBLUP methodology is an iterative process that estimates weights for the SNPs. The weights of SNPs were included in all analyses by iteratively applying the single-step GBLUP methodology and repeated twice so that the effect of the SNP and the effect of the animal were recalculated in order to increase the weight of SNPs with large effects and to reduce the weight of those with small effects. The genome-wide association results are reported based on the proportion of variance explained by windows of 50 adjacent SNPs. Considering the two iterations, only windows with an additive genetic variance >1.5% were presented in the results. Associations were observed with birth weight on BTA 14, with weight gain from birth to weaning on BTA 5 and 29, with weight gain from weaning to yearling on BTA 11, and with yearling height on BTA 8, showing the genes TMEM68 (transmembrane protein 8B) associated with birth weight and yearling height, XKR4 (XK, Kell blood group complex subunit-related family, member 4) associated with birth weight, NPR2 (natriuretic peptide receptor B) associated with yearling height, and REG3G (regenerating islet-derived 3-gamma) associated with weight gain from weaning to yearling. These genes play an important role in feed intake, weight gain and the regulation of skeletal growth.  相似文献   

12.

Background

Paratuberculosis is a contagious, chronic and enteric disease in ruminants, which is caused by Mycobacterium avium subspecies paratuberculosis (MAP) infection, resulting in enormous economic losses worldwide. There is currently no effective cure for MAP infection or a vaccine, it is thus important to explore the genetic variants that contribute to host susceptibility to infection by MAP, which may provide a better understanding of the mechanisms of paratuberculosis and benefit animal genetic improvement. Herein we performed a genome-wide association study (GWAS) to identify genomic regions and candidate genes associated with susceptibility to MAP infection in dairy cattle.

Results

Using Illumina Bovine 50?K (54,609 SNPs) and GeneSeek HD (138,893 SNPs) chips, two analytical approaches were performed, GRAMMAR-GC and ROADTRIPS in 937 Chinese Holstein cows, among which individuals genotyped by the 50?K chip were imputed to HD SNPs with Beagle software. Consequently, 15 and 11 significant SNPs (P?<?5?×?10??5) were identified with GRAMMAR-GC and ROADTDRIPS, respectively. A total of 10 functional genes were in proximity to (i.e., within 1?Mb) these SNPs, including IL4, IL5, IL13, IRF1, MyD88, PACSIN1, DEF6, TDP2, ZAP70 and CSF2. Functional enrichment analysis showed that these genes were involved in immune related pathways, such as interleukin, T cell receptor signaling pathways and inflammatory bowel disease (IBD), implying their potential associations with susceptibility to MAP infection. In addition, by examining the publicly available cattle QTLdb, a previous QTL for MAP was found to be overlapped with one of regions detected currently at 32.5?Mb on BTA23, where the TDP2 gene was anchored.

Conclusions

In conclusion, we identified 26 SNPs located on 15 chromosomes in the Chinese Holstein population using two GWAS strategies with high density SNPs. Integrated analysis of GWAS, biological functions and the reported QTL information helps to detect positional candidate genes and the identification of regions associated with susceptibility to MAP traits in dairy cattle.
  相似文献   

13.

Background

Female fertility is important for the maintenance of the production in a dairy cattle herd. Two QTL regions on BTA04 and on BTA13 previously detected in Nordic Holstein (NH) and validated in the Danish Jersey (DJ) and Nordic Red (NR) were investigated further in the present study to further refine the QTL locations. Refined QTL regions were imputed to the full sequence data. The genes in the regions were then studied to ascertain their possible effect on fertility traits.

Results

BTA04 was screened for number of inseminations (AIS), 56-day non-return rate (NRR), days from first to last insemination (IFL), and the interval from calving to first insemination (ICF) in the range of 38,257,758 to 40,890,784 bp, whereas BTA13 was screened for ICF only in the range from 21,236,959 to 46,150,079 with the HD bovine SNP array for NH, DJ and NR. No markers in the DJ and NR breeds reached significance. By analyzing imputed sequence data the QTL position on BTA04 was narrowed down to two regions in the NH. In these two regions a total of 9 genes were identified. BTA13 was analyzed using sequence data for the NH breed. The highest –log10(P-value) was 19.41 at 33,903,159 bp. Two regions were identified: Region 1: 33,900,143-33,908,994 bp and Region 2: 34,051,815-34,056,728 bp. SNPs within and between these two regions were annotated as intergenic.

Conclusion

Screening BTA04 and BTA13 for female fertility traits in NH, NR and DJ suggested that the QTL for female fertility were specific for NH. A missense mutation in CD36 showed the strongest association with fertility traits on BTA04. The annotated SNPs on BTA13 were all intergenic variants. It is possible that BTA13 at this stage is poorly annotated such that the associated polymorphisms are located in as-yet undiscovered genes. Fertility traits are complex traits as many different biological and physiological factors determine whether a cow is fertile. Therefore it is not expected that there is a simple explanation with an obvious candidate gene but it is more likely a network of genes and intragenic variants that explain the variation of these traits.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-790) contains supplementary material, which is available to authorized users.  相似文献   

14.
Meat quality traits are the most economically important traits affecting the beef industry in Korea. We performed a whole genome quantitative trait locus (QTL) mapping study of carcass data in Hanwoo Korean cattle. Two hundred sixty-six Hanwoo steers from 65 sires were genotyped using a 10K Affymetrix SNP chip. The average SNP interval across the bovine genome was 1.5Mb. Associations between each individual SNP and four carcass traits [carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling (MAR)] were assessed using a linear mixed model of each trait. Combined linkage and linkage disequilibrium analysis (LDLA) detected six potential QTL on BTA04, 06, 13, 16, 17, and 23 at the chromosome-wise level (P<0.05). Two MAR QTL were detected at 52.2 cM of BTA06 and 46.04 cM of BTA17. We identified three genes (ARAP2, LOC539460, and LOC511424) in the QTL region of BTA06 and seven genes (RPS14, SCARB1, LOC782103, BRI3BP, AACS, DHX37, and UBC) in the QTL region of BTA17. One significant QTL for CWT was detected at 100 cM on BTA04 and the corresponding QTL region spanned 1.7 cM from 99.7 to 101.4 cM. For EMA QTL, one significant QTL was detected at 3.9 cM of BTA23 and the most likely QTL interval was 1.4 cM, placing 15 candidate genes in the marker bracket. Finally, two QTL for BFT were identified at 68 cM on BTA13 and 24 cM on BTA16. The LPIN3 gene, which is functionally associated with lipodystrophy in humans, is located in the BFT QTL on BTA13. Thus, two potential candidate genes, acetoacetyl-CoA synthetase (AACS) and lipin (LPIN), were detected in QTL regions on BTA17 for MAR and BTA13 for BFT, respectively. In conclusion, LDLA analysis can be used to detect chromosome regions harboring QTL and candidate genes with a low density SNP panel, yielding relatively narrow confidence intervals regarding location.  相似文献   

15.
Supernumerary teats represent a common abnormality of the bovine udder. A genome‐wide association study was performed based on the proportion of the occurrence of supernumerary teats in the daughters of 1097 Holstein bulls. The heritability of caudal supernumerary teats without mammary gland in this study was 0.604. The largest proportion of the heritability was attributable to BTA 20. The strongest evidence for association was with five SNPs on chromosome 20, referred to as a QTL. The mode of inheritance at this QTL was dominant. These findings reveal that the occurrence of caudal supernumerary teats without mammary gland in Holstein cattle is influenced by a QTL on chromosome 20 and a polygenic part. The data support the high potential of the SNPs in the QTL region as markers for breeding against caudal supernumerary teats.  相似文献   

16.
Anatomically separate fat depots differ in size, function, and contribution to pathological states, such as the metabolic syndrome. We isolated preadipocytes from different human fat depots to determine whether the basis for this variation is partly attributable to differences in inherent properties of fat cell progenitors. We found that genome-wide expression profiles of primary preadipocytes cultured in parallel from abdominal subcutaneous, mesenteric, and omental fat depots were distinct. Interestingly, visceral fat was not homogeneous. Preadipocytes from one of the two main visceral depots, mesenteric fat, had an expression profile closer to that of subcutaneous than omental preadipocytes, the other main visceral depot. Expression of genes that regulate early development, including homeotic genes, differed extensively among undifferentiated preadipocytes isolated from different fat depots. These profiles were confirmed by real-time PCR analysis of preadipocytes from additional lean and obese male and female subjects. We made preadipocyte strains from single abdominal subcutaneous and omental preadipocytes by expressing telomerase. Depot-specific developmental gene expression profiles persisted for 40 population doublings in these strains. Thus, human fat cell progenitors from different regions are effectively distinct, consistent with different fat depots being separate mini-organs.  相似文献   

17.
The metabolic status of cows is important to health and fertility, especially in early lactation, and energy balance (EB) and fat/protein ratio (FPR) are considered as appropriate indicators for metabolic disorders. The aim of this study was to detect SNPs (single nucleotide polymorphisms) associated with EB and FPR in German Holstein bull dams belonging to the research herd Karkendamm. Bull dams were genotyped using the Illumina Bovine SNP 50K Bead chip® comprising 54 001 SNPs. A total of 43 593 SNPs and 586 (EB) and 668 (FPR) bull dams passed the quality control criteria. Phenotypes were deregressed breeding values estimated via random regression animal models for lactation days 11, 20, 30, and 42 for EB and FPR. Whole‐genome association analyses were carried out fitting principal components as covariates to adjust for genetic substructure. Permutation tests were applied to estimate genome‐wise significance. Across all observed lactation days, 19 SNPs located in four different intervals on chromosomes 1, 14, 16, and 27 were detected. For EB, seven markers across four chromosomes were identified. There was no overlap between markers associated with FPR and EB. SNPs associated with FPR were mostly located in QTL regions for milk production traits, especially in the region of DGAT1, whereas SNPs associated with EB mainly showed positional relationships to previously described QTL regions affecting functional traits, especially fertility.  相似文献   

18.
A previous analysis of an F2/Backcross Charolais × Holstein cross population identified the presence of a highly significant QTL on chromosome 6 (BTA6) affecting the proportion of bone in the carcass. Two closely linked QTL affected birth weight (BW) and body length at birth (BBL). In this report, the marker density around the QTL on BTA6 was increased, adding four additional microsatellite markers across the chromosome and 46 SNPs within the target QTL confidence interval. Of the SNPs, 26 were in positional candidate genes and the remaining 20 provided an even distribution of markers in the target QTL region. As a bone‐related trait, the sum of the bone weight for all the left fore‐ and hindquarter joints of the carcass was analysed. We also studied the BW and BBL. Analyses of the data substantially reduced the QTL confidence interval. No strong evidence was found that the QTL for the three traits studied are different, and we conclude that the results are consistent with a single pleiotropic QTL influencing the three traits, with the largest effects on the proportion of bone in the carcass. The analyses also suggest that none of the SNPs tested is the sole causative variant of the QTL effects. Specifically, the SNP in the NCAPG gene previously reported as a causal mutation for foetal growth and carcass traits in other cattle populations was excluded as the causal mutation for the QTL reported here. Polymorphisms located in other previously identified candidate genes including SPP1, ABCG2, IBSP, MEPE and PPARGC1A were also excluded. The results suggest that SNP51_BTA‐119876 is the polymorphism in strongest linkage disequilibrium with the causal mutation(s). Further research is required to identify the causal variant(s) associated with this bone‐related QTL.  相似文献   

19.
The aim of this study was to identify the presence of SNPs in the chemokine genes CCL2 and IL8 and the chemokine receptor genes IL8RA and CCR2, and assess their potential contribution to variation in estimated breeding values (EBVs) for somatic cell score (SCS) and four other traits in Canadian Holstein bulls. Pools of DNA for bulls with high (H) and low (L) EBVs for SCS were used for identification of 11 SNPs. Two unreported SNPs were found in the CCL2 gene and one SNP was found in the CCR2 gene. Previously reported SNPs (three in the IL8 gene and five in the IL8RA chemokine receptor) were also identified. Two SNPs in CCL2, three in IL8, one in IL8RA and one in CCR2 were genotyped in Canadian Holstein bulls (n = 338) using tetra primer ARMS-PCR. We investigated associations of these seven polymorphisms with three production traits (milk yield, fat yield and protein yield) and one conformation trait related to mastitis (udder depth). The allele substitution effect for the CCL2 rs41255713:T>C SNP was significant at an experimental-wise level for milk yield (247.5 +/- 79.9 kg) and protein yield (7.4 +/- 2.3 kg) EBVs (P T SNP on SCS was significant at the comparison-wise level (-0.04 +/- 0.02, P = 0.05), which might indicate a possible association in support of other published studies. Lastly, we assigned CCR2 to BTA22q24, where a previously QTL for SCS was identified.  相似文献   

20.
Improving meat quality is the best way to enhance profitability and strengthen competitiveness in beef industry. Identification of genetic variants that control beef quality traits can help breeders design optimal breeding programs to achieve this goal. We carried out a genome-wide association study for meat quality traits in 1141 Simmental cattle using the Illumina Bovine HD 770K SNP array to identify the candidate genes and genomic regions associated with meat quality traits for beef cattle, including fat color, meat color, marbling score, longissimus muscle area, and shear force. In our study, we identified twenty significant single-nucleotide polymorphisms (SNPs) (p < 1.47 × 10?6) associated with these five meat quality traits. Notably, we observed several SNPs were in or near eleven genes which have been reported previously, including TMEM236, SORL1, TRDN, S100A10, AP2S1, KCTD16, LOC506594, DHX15, LAMA4, PREX1, and BRINP3. We identified a haplotype block on BTA13 containing five significant SNPs associated with fat color trait. We also found one of 19 SNPs was associated with multiple traits (shear force and longissimus muscle area) on BTA7. Our results offer valuable insights to further explore the potential mechanism of meat quality traits in Simmental beef cattle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号