首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollution relative to phosphorus excretion in poultry manure as well as the soaring prices of phosphate, a non-renewable resource, remain of major importance. Thus, a good understanding of bird response regarding dietary phosphorus (P) is a prerequisite to optimise the utilisation of this essential element in broiler diets. A database built from 15 experiments with 203 treatments was used to predict the response of 21-day-old broilers to dietary non-phytate P (NPP), taking into account the main factors of variation, calcium (Ca) and microbial phytase derived from Aspergillus niger, in terms of average daily feed intake (ADFI), average daily gain (ADG), gain to feed (G:F) and tibia ash concentration. All criteria evolve linearly (P < 0.001) and quadratically (P < 0.001) with dietary NPP concentration. Dietary Ca affected the intercept and linear component for ADG (P < 0.01), G:F (P < 0.05) and tibia ash concentration (P < 0.001), whereas for ADFI, it affected only the intercept (P < 0.01). Microbial phytase addition impacted on the intercept, the linear and the quadratic coefficient for ADFI (P < 0.01), ADG (P < 0.001) and G:F (P < 0.05), and on the intercept and the linear component (P < 0.001) for tibia ash concentration. An evaluation of these models was then performed on a database built from 28 experiments and 255 treatments that were not used to perform the models. Results showed that ADFI, ADG and Tibia ash concentration were predicted fairly well (slope and intercept did not deviate from 0 to 1, respectively), whereas this was not the case for G:F. The increase in dietary Ca concentration aggravated P deficiency for all criteria while phytase addition had a positive effect. The more P deficiency was marked, the more the bird response to ADFI, ADG, G:F and tibia ash concentration was exacerbated. It must also be considered that even if the decrease in dietary Ca may improve P utilisation, it could in turn become limiting for bone mineralisation. In conclusion, this meta-analysis provides ways to reduce dietary P in broiler diets without impairing performance, taking into account dietary Ca and microbial phytase.  相似文献   

2.
Continued genetic improvement necessitates the verification of nutrient requirements for newly developed pig genotypes. Therefore, the objective of this research was to determine the standardized ileal digestible (SID) lysine (Lys) requirement of 7- to 15-kg weanling pigs (TN70 × TN Tempo; Topigs Norsvin) fed a corn-soybean meal-based diet. A total of 144 piglets with an initial BW of 6.51 ± 0.56 kg (mean ± SD) were assigned to one of six diets using a randomized complete block design based on BW to give eight replicate pens with three pigs per pen. The six diets contained 1.00, 1.16, 1.32, 1.48, 1.64, and 1.80% SID Lys, achieved by adding crystalline l-Lys·HCl at the expense of cornstarch. Other indispensable amino acids were provided to meet the requirements. Piglets had free access to diets and water for 21 days. Individual BW of pigs and feed disappearance were recorded weekly and blood samples were collected on day 1, 14, and 21. Average daily gain (ADG) and average daily feed intake were not affected by dietary SID Lys content during the first 7 days. However, the addition of dietary SID Lys quadratically increased (P < 0.05) gain:feed (G:F) during the first 7 days of the experiment. A quadratic increase (P < 0.05) was found in both ADG and G:F when SID Lys content increased in the diets from day 14 to 21. During the overall experimental period, increasing dietary Lys content quadratically increased (P < 0.05) ADG and G:F, whereas plasma urea nitrogen quadratically decreased (P < 0.05) as SID Lys content increased. The SID Lys requirements were estimated for linear and quadratic broken-line models. In conclusion, the SID Lys requirement for optimal growth performance of 7- to 15-kg weanling pigs fed corn-soybean meal-based diets based on linear and quadratic broken-line models were 1.27% (95% confidence interval (CI): [1.01, 1.53]) and 1.30% (95% CI: [0.94, 1.66]) for ADG and 1.27% (95% CI: [1.14, 1.40]) and 1.43% (95% CI: [1.11, 1.75]) for G:F, respectively, thus giving an overall average value of 1.32%.  相似文献   

3.
The recent increased prevalence of uterine prolapses in sows around parturition has led to inferences that the prolapses may be associated with hypocalcemia. However, limited data are available to support that hypocalcemia occurs in sows. Hypocalcemia in dairy cows is associated with feeding excess dietary Ca during late gestation. The excess Ca is assumed to suppress homeostatic mechanisms critical to maintain serum Ca concentrations as the Ca demand increases during the early stages of lactation. In this experiment, sows were fed diets with excess Ca during late gestation and early lactation to assess the potential development of hypocalcemia in the peripartum period. Twelve crossbred (Large White × Landrace) multiparous gestating sows were fed a control diet (CON), 0.65% Ca to 0.38% standardized total tract digestible P (STTD P) and 0.67% Ca to 0.38% STTD P in gestation and lactation diets, respectively) or a high Ca diet (HCa, 1.75% Ca to 0.46% STTD P and 1.75% Ca to 0.45% STTD P in gestation and lactation diets, respectively). The diets were fed from gestation day 86 þ ± 1 until the end of lactation (27 þ ± 2 days period). On day 112 of gestation, indwelling venous catheters were placed in each sow. Blood samples were collected at 15-min intervals within four designated times (0700, 1000, 1300 and 1700 h) on gestation day 113 and lactation days 1, 3 and 5. Venous blood pH, gases (pO2, pCO2 and HCO3), electrolytes (K+, Na+ and Cl), ionized Ca (iCa), metabolites (glucose and lactate), plasma total Ca (tCa), and P were analyzed. Overall, sows fed HCa diet had greater (P < 0.001) concentrations of blood iCa and plasma tCa than sows fed CON diets. No clinical signs of Ca metabolism disorders were observed. Unexpectedly, concentrations of plasma P in sows fed HCa diets were lower (P < 0.001) than in sows fed CON diets. Plasma P tended to decrease (P = 0.057) as day of lactation increased. Differences between dietary treatments for blood pH, gases, electrolytes and metabolites were not detected (P > 0.05). No evidence for hypocalcemia was detected in peripartum sows fed CON or HCa diets. These data imply that excess Ca in late gestation diets did not result in hypocalcemia during the peripartum period. Future experiments should focus on factors other than hypocalcemia to identify causes of uterine prolapses in sows.  相似文献   

4.
Excessive fecal excretion of phosphorus (P) has increasingly become an environmental issue due to oversupply of P in layer rations, and thus it is imperative to minimize safety margins for P to ensure the sustainability of the egg industry. In this study, a 12-week feeding trial (22 to 34 weeks of age) was conducted to evaluate the effects of phytase supplementation on production performance, plasma biochemistry, egg and bone quality and P excretion of laying hens fed various levels of non-phytate P (NPP). Forty-eight Lohmann white laying hens were randomly allocated to one of six corn–soybean meal–oat-based diets: diets containing 2.0, 2.5 or 3.0 g/kg NPP without phytase, and diets containing 1.0, 1.5 or 2.0 g/kg NPP with phytase (1 000 U/kg diet) where phytase inclusion was expected to provide 1.0 g/kg NPP to laying hens, thus making the phytase-unsupplemented treatment served as a control for the phytase-supplemented treatment accordingly. Productive performance was recorded during the experimental period. Blood and egg samples were collected, and digestibility studies were conducted at weeks 6 and 12 of the experiment. Bone mineralization was evaluated at the end of the experiment. Egg weight and egg production, feed consumption, BW and feed conversion ratio of laying hens fed lower NPP diets supplemented with phytase were comparable to those of hens fed high NPP phytase-unsupplemented controls. Eggshell thickness, specific gravity, Haugh units, tibia bone mineral density, tibia ash percent, plasma P and other biochemical parameters were not significantly different among dietary treatments. Total P intake, excretion and retention were affected by diet (P < 0.001), but its deposition in eggs was not significantly different. Contrast analysis further showed that total P excretion of phytase present vs phytase absent was averagely reduced by 40.4 mg/hen per day (P < 0.01). Moreover, total P excretion was linearly (P < 0.01) reduced with lowering dietary NPP, and this relationship was similar regardless of whether phytase was supplemented or not. The results from this study indicated that NPP levels in laying hen diets could be reduced to 1.0 g/kg (excluding the portion of NPP released by phytase) with the inclusion of phytase, without negative effects on production performance and health of the hens, thereby diminishing P excretion into environment.  相似文献   

5.
The expected increase in boar (pig entire male) production while societal concerns for castration increase requires good estimations of their nutrient requirements. In this work, a meta-analytical approach was used to overcome the inconsistent results between studies that compared lysine requirements of boars and gilts. For this meta-analysis, data from 14 different studies analysing the effect of increasing dietary lysine on growth performance of finishing pigs, 70–100 kg average body weight, were extracted from 11 publications. Those studies represented 128 different treatments (53 for boars and 75 for gilts). Diets were reformulated based on NRC (2012) ingredient values to calculate standardized ileal digestible lysine to net energy ratio (SID Lys:NE) and daily SID Lys intake using average daily feed intake (ADFI). As expected, no evidence for differences in ADFI (P = 0.303) was observed between boars and gilts. However, boars grew faster (P < 0.001) and had higher gain to feed (G:F; P < 0.001). The divergent effect of SID Lys:NE on average daily gain (ADG) and G:F was analysed in a quadratic polynomial model showing different parameters for each sex (P < 0.001). Although performance between sexes was similar at low SID Lys:NE, differences were greater at higher SID Lys:NE. Furthermore, broken-line linear, broken-line quadratic (BLQ) and quadratic polynomial (QP) models were fitted to each sex to determine SID Lys:NE and SID Lys daily intake requirements to maximize ADG and G:F. Overall, QP models showed the best fit, and reported that to reach maximum ADG 0.88 (95% CI:[0.82–0.94]) or 1.01 (95% CI:[0.91–1.11]) g SID Lys/MJ, NE was required for gilts and boars, respectively. However, boar ADG was best fitted by BLQ using SID Lys daily intake as independent variable, with the requirement for maximum ADG at 24.2 (95% CI:[21.3–27.2]) g SID Lys/day. The three models reported wide confidence intervals for the requirements at maximum performance, and consequently those were overlapped when comparing boars and gilts. Maximum boars’ productive performance when dietary lysine was not limiting was 116% of gilts, and at those levels the amount of SID Lys intake required per kg gain was similar between both sexes. Thus, because ADFI and Lys efficiency of gain was similar, the requirement differences were driven by the increased growth rate and gain to feed ratio between boars and gilts. In conclusion, the present study confirmed a greater productive response of boars compared to gilts when increasing dietary lysine.  相似文献   

6.
The digestive system of the weaned piglets can be affected by the type of ingredients present in the diet, and a high fibre content in diets can limit the use of other nutrients and energy. The study was conducted to determine the effects of multicarbohydrase (MC) and phytase (Phy) supplementation on the nutritive value of wheat bran (WB) in weaned piglets. Multicarbohydrase preparation had 700 U α-galactosidase, 2200 U galactomannanase, 3000 U xylanase and 22 000 U β-glucanase per kilogram of diet, and Phy had 500 phytase units – FTU/kg of diet. Twenty-five weaned piglets (6.1 ± 0.63 kg) at 21 days old were fed five diets in a completely randomised experimental design with a 2 × 2 + 1 (0 and 200 mg/kg MC; 0 and 50 mg/kg Phy; and basal diet – BD) factorial arrangement used to determine treatment effects. An additional group of piglets was fed a corn-basal diet during apparent digestibility of nutrients, and fed a 5% casein-corn starch basal diet during apparent and standardised ileal digestibility (SID) of amino acid evaluations. Piglets were individually caged until 38 days old, when Ileal digesta was collected at slaughter. Test diets were made by mixing the basal diets and WB 7 : 3 (w/w), with or without MC, Phy or the combination. There was an interaction trend (P = 0.07) between MC and Phy in the balance of ash, digestible energy (DE) and metabolisable energy (ME). Effects of MC (P < 0.01) on DM, N retention, DE and ME, as well as an effect of Phy (P < 0.05) on ash, DE and ME and a trend in protein digestibility (P = 0.07) also was observed. The enzyme combination showed effect (P < 0.05) on SID of Lys, Pro and Ser; as a trend (P < 0.07) on His, Thr and Val. Isolated, MC also suggested improving (P < 0.07) on SID of His, Lys, Ala (P < 0.05), while Phy improved (P < 0.06) SID of Leu, Lys, Met (P < 0.01), Thr, Val, Ala (P < 0.01), Pro and Ser (P < 0.05). The MC carbohydrate complex was characterised as a viable alternative to increase the apparent nutrients digestibility and SID of amino acids when WB was used in the diet of young pigs and, when combined with Phy, suggested an additive effect on the apparent use of energy.  相似文献   

7.
A 2 × 3 factorial design was utilized to ascertain the effects of three dietary crude protein (CP) concentrations on performance, carcass characteristics, and serum urea nitrogen (SUN) concentration in steers and heifers. Animals were blocked by gender (n = 9) and body weight (BW; n = 3/gender), randomly assigned to a diet containing 110, 125 or 140 g/kg dietary CP (n = 6), subjected to a growing period of 56, 84 or 112 d, depending on start BW, and a finishing period of 84 d. Animals were weighed and bled at 28 d intervals and daily dry matter intake (DMI), average daily gain (ADG), and gain to feed (G:F) were calculated and SUN was analyzed as a repeated measure throughout the study. Following slaughter, carcass data was collected for hot carcass weight (HCW), dressing percent (DP), kidney, pelvic and heart fat (KPH), 12th rib backfat (BF), loin muscle (LM) area, marbling score (MS), and yield grade (YG). Growing steers and heifers were programmed to gain 1.02 and 0.91 kg/d, respectively. Therefore, heifers consumed less than steers and steers gained more than heifers (P<0.01) with no differences in feed efficiency. Dietary CP treatment did not effect DMI, but did result in a quadratic (P=0.04) increase in ADG; thereby quadratically (P=0.06) and linearly (P=0.08) increasing final BW, and G:F, respectively. Finishing heifers consumed and gained less than steers (P<0.01), had lighter HCW (P<0.01) and greater DP (P=0.01) and LM area (P=0.01) than steers. DMI (P=0.02), ADG (P=0.05), HCW (P=0.08), and DP (P=0.06) reacted quadratically with increasing dietary CP. HCW (P=0.02) increased linearly with increasing dietary CP. G:F, KPH, BF, LM area, MS and YG was not affected by dietary CP concentration and G:F, KPH, BF, MS, and YG did not differ between genders. However, there was a gender × dietary CP interaction (P=0.01) for G:F. Steers were the most efficient at 125 g/kg dietary CP, while heifers were most efficient at 140 g/kg dietary CP. Gender had no effect on SUN concentrations, but SUN increased linearly (P<0.01) with increasing dietary CP concentrations. In conclusion, quadratic responses in DMI and ADG indicate that a 125 g/kg dietary CP concentration is optimal for either steers or heifers during the finishing period.  相似文献   

8.
9.
Effect of graded levels of high-glucosinolate mustard (Brassica juncea) meal as substitute of soya-bean meal (SBM) in broiler rabbit diets was studied. Forty weaning rabbits of Soviet Chinchilla and White Giant breed were randomly allocated to one of four experimental diets containing mustard meal (MM) 0, 80, 160 and 245 g/kg. The experiment lasted for 8 weeks. MM had 54.8 mg total glucosinolates (TGLSs) per g dry matter (DM). Diets had TGLS 3.8, 8.4 and 11.98 mg/g DM in 80, 160 and 245 g MM diets, respectively. MM-incorporated diets had higher digestible and linearly (P < 0.01) higher metabolisable energy (ME) content. However, the effect on total tract apparent digestibility of DM, and crude protein was quadratic. Average daily gain (ADG) reduced (P < 0.05) linearly with increasing MM levels in diet, still 80 and 160 g MM diets had similar ADG compared to that of SBM diet. Caecum weight reduced linearly (P < 0.05) with increasing MM levels in diet. The pH of caecal content ranged between 5.85 and 6.19, total N between 1.19 and 1.48 (g per 100 g) and total volatile fatty acids between 4.7 and 5.8 mmol per 100 g, and they were not statistically different. NH3-N ranged between 31.2 and 39.0 mg per 100 ml, and reduced linearly (P < 0.05) while trichloroacetic acid-precipitable nitrogen increased linearly (P < 0.01, ranged between 114 and 247 mg per 100 ml) with increasing MM levels in diet. Blood haemoglobin, packed cell volume and lymphocytes were higher (quadratic effects, P < 0.05) on 245 MM diet, whereas white blood cell count reduced linearly (P < 0.01). Serum aspartate aminotransferase increased linearly (P < 0.01) while alanine aminotransferase and alkaline phosphatase activity, protein, erythrocytes sedimentation rate and red blood cell counts were not affected by MM. Serum Cu, Na and K content increased linearly (P < 0.05) with increasing MM levels. Liver Cu concentration showed quadratic (P < 0.05) increase. Rabbits tolerated 8.4 mg TGLS per g diet (160 g MM per kg) during active growth without any apparent effect on health and growth. It is concluded that MM can replace up to 66% SBM protein in rabbit feeding, whereas complete replacement of SBM with MM reduced feed intake and ADG by 23% and 13%, respectively. Further studies are required to confirm these inclusion levels and glucosinolate tolerance of rabbits.  相似文献   

10.
A feeding trial was conducted to study the effect of partial replacement of dietary monocalcium phosphate (MCP) with phytase on growth performance, feed utilization and phosphorus discharge in black sea bream, Acanthopagrus schlegelii. In the feeding trial, the control diet (designated as P1.5) was prepared with 1.5% MCP but without phytase, and the three other diets (designated as PP1.0, PP0.5 and PP0, respectively) were supplemented with 1.0%, 0.5% and 0% MCP, respectively, along with 200 mg (400 U) phytase/kg diet in each. Each diet was tested in triplicate tanks and fish were fed twice daily to satiation. After an 8‐week feeding trial in indoor flow‐through cylindrical fibreglass tanks (25 fish per tank, initial body weight: 11.5 ± 0.12 g), fish fed with PP1.0 and PP0.5 had no significant change in weight gain (WG), specific growth rate (SGR), protein efficiency rate (PER) or feed conversion ratio (FCR) compared to the control (p > .05), whereas fish fed with PP0 showed a significantly lower growth performance in the above parameters (p < .05). The addition of phytase did not affect the body composition or muscle composition. The apparent digestibility coefficients (ADCs) of crude protein and phosphorus increased when fish were fed diets in which MCP was replaced by phytase. Phosphorus discharge was also significantly reduced in fish fed diets in which MCP was replaced by phytase (10.2 ± 0.50 to 8.01 ± 0.47 g/kg weight gain). The present study suggests that dietary MCP can be reduced when phytase is added to the black sea bream diet, with a maximum MCP reduction level of up to 1% when phytase is supplemented at 200 mg (400 U)/kg diet. Thus, phytase in the diet of black sea bream is economically and ecologically beneficial.  相似文献   

11.
Optimizing phosphorus (P) utilization in pigs requires improving our capacity to predict the amount of P absorbed and retained, with the main modulating factors taken into account, as well as precisely determining the P requirements of the animals. Given the large amount of published data on P utilization in pigs, a meta-analysis was performed to quantify the impact of the different dietary P forms, calcium (Ca) and exogenous phytases on the digestive and metabolic utilization criteria for dietary P in growing pigs. Accordingly, the amount of phytate P (PP) leading to digestible P (g/kg) was estimated to be 21%, compared with 73% for non-phytate P (NPP) from plant ingredients and 80% for NPP from mineral and animal ingredients (P < 0.001). The increase in total digestible dietary P following the addition of microbial phytase (PhytM) from Aspergillus niger (P < 0.001) was curvilinear and about two times higher than the increase following the addition of plant phytase, which leads to a linear response (P < 0.001). The response of digestible P to PhytM also depends on the amount of substrate, PP (PhytM2 × PP, P < 0.001). The digestibility of dietary P decreased with dietary Ca concentration (P < 0.01) independently of phytase but increased with body weight (BW, P < 0.05). Although total digestible dietary P increased linearly with total NPP concentration (P < 0.001), retained P (g/kg), average daily gain (ADG, g/day) and average daily feed intake (ADFI, g/day) increased curvilinearly (P < 0.001). Interestingly, whereas dietary Ca negatively affected P digestibility, the effect of dietary Ca on retained P, ADG and ADFI depended on total dietary NPP (NPP × Ca, P < 0.01, P < 0.05 and P < 0.01, respectively). Increasing dietary Ca reduced retained P, ADG and ADFI at low NPP levels, but at higher NPP concentrations it had no effect on ADG and ADFI despite a positive effect on retained P. Although the curvilinear effect of PhytM on digestible P increased with PP (P < 0.001), this effect was lessened by total NPP for ADG and ADFI (PhytM × NPP and PhytM2 × NPP, P < 0.05) and depended on both total NPP and Ca for retained P (PhytM2 × NPP × Ca, P < 0.01). This meta-analysis improves our understanding of P utilization, with major modulating factors taken into account. The information generated will be useful for the development of robust models to formulate environmentally friendly diets for growing pigs.  相似文献   

12.
Two experiments, a performance experiment and a mineral balance study, were conducted on grower-finisher pigs (42 to 101 kg live weight) to investigate the effects of Peniophora lycii phytase enzyme and 25-hydroxyvitamin D3 (25-OHD3) on growth performance, carcass characteristics, nutrient retention and excretion, and bone and blood parameters. The two experiments were designed as a 2 × 2 factorial (two levels of phytase and two levels of 25-OHD3). The four diets were T1, low-phosphorous diet; T2, T1 + phytase; T3, T1 + 25-OHD3 and T4, T1 + phytase + 25-OHD3 diet. In all, 25 μg of 25-OHD3 was used to replace 1000 IU of vitamin D3 in diets T3 and T4. Diets were pelleted (70°C) and formulated to contain similar concentrations of energy (13.8 MJ DE/kg), lysine (9.5 g/kg) and digestible phosphorus (P; 1.8 g/kg). Neither the inclusion of phytase nor 25-OHD3 in the diet had any effect on pig performance. There was an interaction between phytase and 25-OHD3 on calcium (Ca) and P retention (P < 0.01) and on the apparent digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.001). Pigs offered phytase diets only, had a higher retention of Ca and P and digestibility of ash (P < 0.01), P (P < 0.001) and Ca (P < 0.01) compared with pigs offered unsupplemented diets. However, when the combination of phytase and 25-OHD3 were offered, no effects were detected compared with 25-OHD3 diets only. Pigs fed phytase diets had higher bone ash (P < 0.01), bone P (P < 0.01) and bone Ca (P < 0.05) concentrations compared with pigs offered non-phytase diets. In conclusion, pigs offered phytase diets had a significantly increased bone ash, Ca and P than pigs offered unsupplemented phytase diets. However, there was no advantage to offering a combination of phytase and 25-OHD3 on either bone strength or mineral status compared to offering these feed additives separately.  相似文献   

13.
The energy content of finishing diets offered to feedlot cattle may vary across countries. We assumed that the lower is the energy content of the finishing diet, the shorter can be the adaptation period to high-concentrate diets without negatively impacting rumen health while still improving feedlot performance. This study was designed to determine the effects of adaptation periods of 6, 9, 14 and 21 days on feedlot performance, feeding behaviour, blood gas profile, carcass characteristics and rumen morphometrics of Nellore cattle. The experiment was designed as a completely randomised block, replicated 6 times, in which 96 20-month-old yearling Nellore bulls (391.1 ± 30.9 kg) were fed in 24 pens (4 animals/pen) according to the adaptation period adopted: 6, 9, 14 or 21 days. The adaptation diets contained 70%, 75% and 80.5% concentrate, and the finishing diet contained 86% concentrate. After adaptation, one animal per pen was slaughtered (n = 24) for rumen morphometric evaluations and the remaining 72 animals were harvested after 88 days on feed. Orthogonal contrasts were used to assess linear, quadratic and cubic relationships between days of adaptation and the dependent variable. Overall, as days of adaptation increased, final BW (P = 0.06), average daily gain (ADG) (P = 0.07), hot carcass weight (P = 0.04) and gain to feed ratio (G : F) (P = 0.07) were affected quadratically, in which yearling bulls adapted by 14 days presented greater final BW, ADG, hot carcass weight and improved G : F. No significant (P > 0.10) days of adaptation effect was observed for any of feeding behaviour variables. As days of adaptation increased, the absorptive surface area of the rumen was affected cubically, where yearling bulls adapted by 14 days presented greater absorptive surface area (P = 0.03). Thus, Nellore yearling bulls should be adapted by 14 days because it led to improved feedlot performance and greater development of rumen epithelium without increasing rumenitis scores.  相似文献   

14.
Environmental regulations as well as economic incentives have resulted in greater use of synthetic amino acids in swine diets. Tryptophan is typically the second limiting amino acid in corn-soybean meal-based diets. However, using corn-based co-products emphasizes the need to evaluate the pig’s response to increasing Trp concentrations. Therefore, the objective of these studies was to evaluate the dose–response to increasing standardized ileal digestible (SID) Trp : Lys on growth performance of growing-finishing gilts housed under large-scale commercial conditions. Dietary treatments consisted of SID Trp : Lys of 14.5%, 16.5%, 18.0%, 19.5%, 21.0%, 22.5% and 24.5%. The study was conducted in four experiments of 21 days of duration each, and used corn-soybean meal-based diets with 30% distillers dried grains with solubles. A total of 1166, 1099, 1132 and 975 gilts (PIC 337×1050, initially 29.9±2.0 kg, 55.5±4.8 kg, 71.2±3.4 kg and 106.2±3.1 kg BW, mean±SD) were used. Within each experiment, pens of gilts were blocked by BW and assigned to one of the seven dietary treatments and six pens per treatment with 20 to 28 gilts/pen. First, generalized linear mixed models were fit to data from each experiment to characterize performance. Next, data were modeled across experiments and fit competing dose–response linear and non-linear models and estimate SID Trp : Lys break points or maximums for performance. Competing models included broken-line linear (BLL), broken-line quadratic and quadratic polynomial (QP). For average daily gain (ADG), increasing the SID Trp : Lys increased growth rate in a quadratic manner (P<0.02) in all experiments except for Exp 2, for which the increase was linear (P<0.001). Increasing SID Trp : Lys increased (P<0.05) feed efficiency (G : F) quadratically in Exp 1, 3 and 4. For, ADG the QP was the best fitting dose–response model and the estimated maximum mean ADG was obtained at a 23.5% (95% confidence interval (CI): [22.7, 24.3%]) SID Trp : Lys. For maximum G : F, the BLL dose–response models had the best fit and estimated the SID Trp : Lys minimum to maximize G : F at 16.9 (95% CI: [16.0, 17.8%]). Thus, the estimated SID Trp : Lys for 30 to 125 kg gilts ranged from a minimum of 16.9% for maximum G : F to 23.5% for maximum ADG.  相似文献   

15.
An experiment was conducted using a total of 840, 1-day-old, Arbor Acres commercial male broilers to compare copper (Cu) sulfate and tribasic Cu chloride (TBCC, Cu2(OH)3Cl) as sources of supplemental Cu for broilers fed in floor pens. Chicks were randomly allotted to one of seven treatments for six replicate pens of 20 birds each, and were fed a basal corn–soybean meal diet (10.20 mg/kg Cu) supplemented with 0, 100, 150, or 200 mg/kg Cu from either Cu sulfate or TBCC for 21 days. Chicks fed 200 mg/kg Cu as TBCC had a higher (P?<?0.05) average daily gain (ADG) than those consuming other diets. Liver Cu contents of broilers fed diets supplemented with TBCC were numerically lower (P?>?0.05) than those of broilers fed diets supplemented with Cu sulfate. The vitamin E contents and the phytase activities in the feed fortified with TBCC were higher (P?<?0.01) and numerically higher (P?>?0.05) compared with those in the feeds fortified with Cu sulfate stored at room temperature, respectively. The vitamin E contents in liver and plasma of broilers fed diets supplemented with TBCC were higher (P?<?0.05) than those of birds fed diets supplemented with Cu sulfate. This result indicates that TBCC is more effective than Cu sulfate in improving the growth of broilers fed in floor pens, and it is chemically less active than Cu sulfate in promoting the undesirable oxidation of vitamin E in feeds.  相似文献   

16.
Phytic acid forms insoluble complexes with nutritionally essential minerals, including zinc (Zn). Animal studies show that addition of microbial phytase (P) to low-Zn diets improves Zn status and bone strength. The present study determined the effects of phytase supplementation on bone mineral density (BMD), body composition and voluntary running activity of male rats fed a high phytic acid, low-Zn diet. In a factorial design, rats were assigned to ZnLO (5 mg/kg diet), ZnLO+P (ZnLO diet with 1500 U phytase/kg) or ZnAD (30 mg/kg diet) groups and were divided into voluntary exercise (EX) or sedentary (SED) groups, for 9 weeks. SED rats were significantly heavier from the second week, and no catch-up growth occurred in EX rats. Feed intakes were not different between groups throughout the study. ZnLO animals had decreased food efficiency ratios compared to both phytase-supplemented (ZnLO+P) and Zn-adequate (ZnAD) animals (P<.01 compared to ZnLO). The ZnLO+P and ZnAD rats ran 56–75 km more total distance than ZnLO rats (P<.05), with the ZnLO+P rats running more kilometers per week than the ZnLO rats by Week 6. In vivo DEXA analyses indicate that rats fed phytase-supplemented diets had higher lean body mass (LBM) than those fed ZnLO diets; and that rats fed the Zn-adequate diets had the highest LBM. Body fat (%) was significantly lower in EX rats and was both Zn- and phytase insensitive. Rats fed phytase-supplemented diets had higher bone mineral content (BMC), bone area (BA) and BMD than rats fed ZnLO diets; and in rats fed ZnAD diets these indices were the highest. The dietary effects on BMC, BA and BMD were independent of activity level.We conclude that consuming supplemental dietary phytase or dietary Zn additively enhances Zn status to increase BMD, LBM and voluntary physical activity in rats fed a low-Zn diet. While the findings confirm that bone health is vulnerable to disruption by moderate Zn deficiency in rats, this new data suggests that if dietary Zn is limiting, supplemental phytase may have beneficial effects on LBM and performance activity.  相似文献   

17.
The objective was to determine the effect of long-term dietary supplementation of two types of fish oil on lipid composition and steroidogenesis in adult pig testis. Twenty-four Duroc boars, aged 204.5 ± 9.4 d (body weight 128.1 ± 16.7 kg) received daily 2.5 kg of an iso-caloric basal diet supplemented with: 1) 62 g of hydrogenated animal fat (AF); 2) 60 g of menhaden oil (MO) containing 16% of eicosapentaenoic acid (EPA) and 18% of docosahexaenoic acid (DHA); or 3) 60 g of tuna oil (TO) containing 7% of EPA and 33% of DHA. After these diets were consumed for 7 mo, testicular hormones, phospholipid content, and fatty acid composition of individual phospholipids in testis were determined. Body and reproductive organ weights were not significantly affected by dietary treatments. Testicular tissue from boars fed a TO diet, followed by those receiving MO and AF diets, had the lowest level of phosphatidylethanolamine (TO < MO < AF; P < 0.01) but the highest sphingomyelin (TO > MO > AF; P < 0.01). For each phospholipid, boars fed either the MO or TO diet had increased total omega-3 fatty acids, particularly DHA (P < 0.01), by reciprocal replacement of total omega-6 fatty acids (20:4n-6, 22:5n-6). The MO diet increased EPA more than the other diets. Testicular concentrations of testosterone and estradiol were lower in boars fed a TO diet than a MO diet (P < 0.02). In conclusion, long-term dietary supplementation of fish oil, regardless of the EPA/DHA ratio, modified the fatty acid compositions in testis and affected steroid production of healthy adult boars, which may represent a promising models for future studies on fertility.  相似文献   

18.
The co-products from the industry are used to reduce costs in pig diets. However, the co-products used in pig diets are limited because of a high fibre content which is not digested by endogenous enzymes and is resistant to degradation in the small and large intestines. The aim of this study was to investigate digestibility of nutrients and energy, and energy utilisation in pigs fed diets with various soluble and insoluble dietary fibre (DF) from co-products. The experiment was performed as a 4 × 4 Latin square design (four diets and four periods) using four growing pigs (66.2 ± 7.8 kg) surgically fitted with a T-cannula in the end of the small intestine. The pigs were fed four experimental diets: low-fibre control (LF), high-fibre control (HF), high-soluble fibre (HFS) and high-insoluble fibre (HFI) diets. The apparent ileal digestibility (AID) and apparent total tract digestibility (ATTD) of ash, organic matter, CP, fat, carbohydrates, starch and non-starch polysaccharides (NSP) divided into cellulose and soluble and insoluble non-cellulosic polysaccharide residues were measured using chromic oxide as marker. The recovery of total solid materials, organic matter and total carbohydrates in ileal digesta in pigs fed the HF and HFS diets was higher than in pigs fed LF and HFI, whereas recovery of organic matter and total carbohydrates in faecal materials in the HFS diet was lowest (P < 0.05). AID of organic matter, total carbohydrates and starch was lowest for HFS diet (P < 0.05). ATTD of organic matter and CP was higher for LF diet compared with other diets (P < 0.05), whereas total NSP, cellulose and non-cellulosic polysaccharides residues were highest for HFS diet (P < 0.05). Lactic acid in ileal digesta was influenced by dietary composition (P < 0.05) whereas neither type nor level of DF affected short chain fatty acids. The digestible energy, metabolisable energy, net energy and retained energy intake were similar among diets without influence of DF inclusion (P > 0.05). The metabolisable energy:digestible energy ratio was lower when feeding the HFS diet because of a higher fermentative methane loss. Faecal nitrogen and carbon were positively correlated with DM intake and insoluble DF in the diets (P < 0.05), but nitrogen and carbon (% of intake) were similar among diets. The present findings suggest that high-DF co-products can be used as ingredients of pig diets when features of DF are considered.  相似文献   

19.
This study investigated the ability of replacement gilts to adapt their calcium and phosphorus utilization and their kinetics in bone mineralization to compensate for modified intake of these nutrients by applying a novel Ca and P depletion and repletion strategy. A total of 24 gilts were fed according to a two-phase feeding program. In the first phase, gilts (60–95 kg BW) were fed ad libitum a depletion diet providing either 60% (D60; 1.2 g digestible P/kg) or 100% (D100; 2.1 g digestible P/kg) of the estimated P requirement. In the second phase, gilts (95–140 kg BW) were fed restrictively (aim: 700–750 g/d BW gain) a repletion diet. Half of the gilts from each depletion diet were randomly assigned to either a control diet or a high-P diet (R100 and R160; with 2.1 and 3.5 g digestible P/kg, respectively) according to a 2 × 2 factorial design, resulting in four treatments: D60-R100, D60-R160, D100-R100 and D100-R160. Dual-energy X-ray absorptiometry was used to measure whole-body bone mineral content (BMC), bone mineral density (BMD) and lean and fat tissue mass on each gilt at 2-week intervals. The depletion and repletion diets, fed for 5 and 8 weeks, respectively, did not influence growth performance. The D60 gilts had a reduced BMC and BMD from the second week onwards and ended (95 kg BW) with 9% lower values than D100 gilts (P < 0.001). During repletion, D60 gilts completely recovered the deficit in bone mineralization from the second and fourth week onwards, when fed R160 (D60-R160 vs D100-R160) or R100 (D60-R100 vs D100-R100) diets, respectively (treatment × time interaction, P < 0.001); thus, the depletion diets did not affect these values at 140 kg BW. These results illustrate the rapid homeostatic counter-regulation capacity of dietary Ca and P, and they show the high potential to limit dietary digestible P concentration by completely excluding the use of mineral phosphates during the depletion phase, representative of the fattening period, without causing any detrimental effects to gilts at mating. The gilts were able to recover their BMC deficit between their selection at 95 kg BW and first mating at 140 kg BW by increasing their dietary Ca and P efficiency. Finally, excess dietary digestible P, requiring increased amounts of mineral phosphates, further increased the gilts’ BMC.  相似文献   

20.
A 4-week study conducted on 20 weaned piglets (average initial weight 15 kg) evaluated the effects of dietary oregano (Origanum vulgare) used in the presence/absence of phytase on the Cu and Zn balance, while reducing/eliminating their inclusion in the diet as inorganic salts. Oregano was harvested from the wild flora. The Cu and Zn concentrations that were taken into consideration (9.85 ppm and 53.31 pmm, respectively) were the consensus values obtained in an interlaboratory study. The piglets were assigned to 4 groups (C, E1, E2, E3), housed in individual metabolic cages and fed on corn–soybean meal-based diets. The diet of the control group (C) with addition of 1% inorganic mineral premix (MP), contained: 40.92 ppm Cu, 144.96 ppm Zn. The experimental diets differed from the C diet as follows: E1 – 3% oregano, 0% phytase (5000 PU/g), 0% MP; E2 – 3% oregano, 0.01% phytase, 0% MP; E3 – 3% oregano, 0% phytase, 0.5% MP, E4 – 3% oregano, 0.01% phytase, 0,5% premix. For groups E1, E2, E3 and E4, 0.5% Zn of the MP were included in the diet, because the dietary oregano amount did not meet the requirements (NRC) for piglets. The mineral balance was determined during 3 periods of 5 days each. The levels of Cu and Zn were measured by FAAS in the samples (weekly samples/piglet) of ingesta, faeces and urine. It was noticed that although the dietary Cu ingested by the groups without MP was 75% (10.08 ppm) lower than C, the absorption coefficients were only 47% (28.83) lower than for group C (54.22%), while in the groups with 0.5% MP, the absorption was just 10% (48.86%) lower than for group C. For Zn, where the amount ingested by the experimental groups was 33% (97.62 ppm) lower than for group C, the absorption coefficients were just 20% (46.3%) lower than for group C (57.64%). No significant differences were noticed for Cu and Zn in terms of apparent absorption, between the groups with/without phytase. The deposits of Cu and Zn in the main organs and serum (from slaughtered piglets) were also evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号