首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interactions between manganese (Mn) deficiency and streptozotocin (STZ)-diabetes with respect to tissue antioxidant status were investigated in male, Sprague-Dawley rats. All rats were fed either a Mn-deficient (1 ppm) or a Mn-sufficient (45 ppm) diet for 8 wk. Diabetes was then induced by tail-vein injection of STZ (60 mg/kg body weight), after which the rats were kept for an additional 4 or 8 wk. The control groups comprised rats not injected with STZ and fed either Mn-deficient or Mn-sufficient diets for a total of 12 wk. The Mn-deficient diet decreased the activities of manganese superoxide dismutase (MnSOD) in kidney and heart, and of copperzinc superoxide dismutase (CuZnSOD) in kidney, in the non-diabetic animals. In the diabetic rats, the Mn-deficient diet induced more pronounced decreases in activities of these same enzymes, and also increased liver MnSOD activity. Plasma and hepatic vitamin E levels increased progressively with the duration of diabetes, independent of dietary Mn intake. Lipid peroxidation, as measured by H2O2-induced production of thiobarbituric acid reactive substances in erythrocytes, also increased, concomitant with decreased liver and kidney glutathione (GSH) levels. These findings demonstrate for the first time an interactive effective between Mn deficiency and STZ-diabetes, resulting in amplification of tissue antioxidant changes seen with either Mn deficiency or STZ-diabetes alone. This effect of Mn deprivation in experimental diabetes suggests a physiological role for Mn as an antioxidant nutrient.  相似文献   

2.
In this study, we present in vitro cytotoxicity of iron oxide (Fe3O4) and manganese oxide (MnO) using live/dead cell assay, lactate dehydrogenase assay, and reactive oxygen species detection with variation of the concentration of nanoparticles (5–500 μg/ml), incubation time (18–96 h), and different human cell lines (lung adenocarcinoma, breast cancer cells, and glioblastoma cells). The surface of nanoparticles is modified with polyethyleneglycol-derivatized phospholipid to enhance the biocompatibility, water-solubility, and stability under an aqueous media. While the cytotoxic effect was negligible for 18 h incubation even at highest concentration of 500 μg/ml, MnO nanoparticle represented higher level of toxicity than those of Fe3O4 and the commercial medical contrast reagent, Feridex after 2 and 4 day incubation time. However, the cytotoxicity of Fe3O4 is equivalent or better than Feridex based on the live/dead cell viability assay. The engineered MnO and Fe3O4 exhibited excellent stability compared with Feridex for a prolonged incubation time.  相似文献   

3.
The effects of ozone treatment on the injury associated to hepatic ischemia-reperfusion (I/R) was evaluated. Ozone treatment (1 mg/kg daily during 10 days by rectal insufflation) is shown to be protective as it attenuated the increases in transaminases (AST, ALT) and lactate levels observed after I/R. I/R leads to a decrease in endogenous antioxidant (SOD and glutathione) and an increase in reactive oxygen species (H2O2) with respect to the control group. However, ozone treatment results in a preservation (glutathione) or increase (SOD) in antioxidant defense and maintains H2O2 at levels comparable to those in the control group. The present study reports a protective effect of ozone treatment on the injury associated to hepatic I/R. The effectiveness of ozone could be related to its action on endogenous antioxidants and prooxidants balance in favour of antioxidants, thus attenuating oxidative stress.  相似文献   

4.
Tilapia mossambica fingerlings, 5 weeks of age, were reared in simulated fresh water medium which was either free of manganese or supplied with manganese at a concentration of 2.5 µg/l. They were fed synthetic diets which were either deficient (2.8 mg Mn/kg dry diet) or supplied with manganese (35.5 mg Mn/kg dry diet). The feeding tests were carried for 10 weeks. Best growth was obtained when the element was supplied in both food and water. When manganese was absent or was supplied only in water or food, the following symptoms were noted: (1) Poor growth, (2) reduced food consumption, (3) loss of equilibrium, and (4) increased mortality. From the results, the daily requirement for manganese by Tilapia for growth and development was calculated to be 1.7 mg/kg live fish.This paper is based on a part of a thesis submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate College of University of Washington, Seattle, Washington.  相似文献   

5.
Commercial horseradish peroxidase, when supplemented with dichlorophenol and either manganese or hydrogen peroxide, will rapidly oxidize glutathione. This peroxidase-catalyzed oxidation of glutathione is completely inhibited by the presence of auxin protectors. Three auxin protectors and three o-dihydroxyphenols were tested; all inhibited the oxidation. Glutathione oxidation by horseradish peroxidase in the presence of dichlorophenol and Mn is also completely inhibited by catalase, implying that the presence of Mn allows the horseradish peroxidase to reduce oxygen to H2O2, then to use the H2O2 as an electron acceptor in the oxidation of glutathione. Catalase, added 2 minutes after the glutathione oxidation had begun, completely inhibited further oxidation but did not restore any gluthathione oxidation intermediates. In contrast, the addition of auxin protectors, or o-dihydroxyphenols, not only inhibited further oxidation of gluthathione by horseradish peroxidase (+ dichlorophenol + Mn), but also caused a reappearance of glutathione as if these antioxidants reduced a glutathione oxidation intermediate. However, when gluthathione was oxidized by horseradish peroxidase in the presence of dichlorophenol and H2O2 (rather than Mn), then the inhibition of further oxidation by auxin protectors or o-dihydroxyphenols was preceded by a brief period of greatly accelerated oxidation. The data provide further evidence that auxin protectors are cellular redox regulators. It is proposed that the monophenol-diphenol-peroxidase system is intimately associated with the metabolic switches that determine whether a cell divides or differentiates.  相似文献   

6.
Malondialdehyde (MDA), glutathione (GSH) content, total antioxidant capacity (T-AOC) levels, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione transferase (GST) activities were studied in serum, liver, and kidney of growing pigs after graded doses of cadmium administration in diets. One hundred ninety-two barrows (Duroc x Landrace x Yorkshire), with similar initial body weight 27.67±1.33 kg, were randomly allotted into 4 different treatments with 3 replications (16 pigs per replication). The treatments received the same basal diet added with 0, 0.5, 5.0, and 10.0 mg/kg cadmium (as CdCl2), respectively. The results showed pigs treated with 10 mg/kg cadmium significantly decreased average daily gain (ADG) (p<0.05) and increased feed/gain ratio (F/G) (p<0.05) compared to the control. In this treatment, the contents of MDA increased significantly (p<0.05), GSH concentrations, T-AOC levels, and the activities of SOD, GSH-PX, and GST decreased significantly (p<0.05). The results indicate 10 mg/kg cadmium could decrease pig antioxidant capacity after extended exposure and cadmium-induced increase lipid peroxidation might not be only the result of the possibility of lower level of GSH but could also be as a result of direct action of cadmium on peroxidation reaction.  相似文献   

7.
Manganese -induced aggregation of the amyloid-β peptide (Aβ) is a hallmark molecular feature of Alzheimer's disease (AD). The current study was designed to investigate the effects of chronic administration of naringin against β-A1–42 and manganese induced experimental model. Wistar rats received intracerebroventricular (ICV) β-A1–42 once, intranasal manganese, naringin and nitric oxide modulators for 21 days and behavioral alterations were assessed. Mitochondrial enzymes, oxidative parameters, TNF-α, β-A1–42 acetylcholinesterase (AChE) levels and manganese concentration were measured. ICV β-A1–42 and intranasal manganese treated rats showed a memory deficit and significantly increased in β-A1–42 level and manganese concentration, mitochondrial oxidative damage, AChE level and inflammatory mediator in the hippocampus and cortex. Chronic administration of naringin (40 and 80 mg/kg) significantly improved memory performance and attenuated the oxidative damage and mitochondrial dysfunction in Aβ with Mn treated rats. In addition, naringin also attenuates the pro-inflammatory cytokines like TNF-α, AChE, Amyloid deposition and Mn concentration. Further, pretreatment of N(G)-Nitro-L-arginine methyl ester (L-NAME) with (5 mg/kg) with lower dose of naringin significantly potentiated its protective effect. These results demonstrate that naringin offers protection against ICV β-A1–42 and intranasal manganese induced memory dysfunction possibly due to its antioxidant, anti-inflammatory, anti-amyloidogenesis therefore, could have a therapeutic potential in Alzheimer's disease.  相似文献   

8.
The effect of manganese exposure (Mn2+ 4 mg Mn/kg intraperitoneally) on certain bioantioxidants in brain, liver, kidney and testes in growing rats maintained on 21% and 8% casein diet were investigated. Manganese administration for 30 days caused significant reduction in the level of GSH (reduced glutathione) in liver and testes and GR (glutathione reductase) and G-6-PDH (glucose-6-phosphate dehydrogenase) in brain, liver and testes. The magnitude of alteration was greater in 8% casein diet fed animals compared to rats maintained on 21% casein diet. These results indicate that protein deficient animals are more susceptible to the manganese induced biochemical changes in various tissues. The mechanism of such changes is discussed.  相似文献   

9.
Excess chromium (Cr) exposure is associated with various pathological conditions including hematological dysfunction. The generation of oxidative stress is one of the plausible mechanisms behind Cr-induced cellular deteriorations. The efficacy of selenium (Se) to combat Cr-induced oxidative damage in the erythrocytes of adult rats was investigated in the current study. Female Wistar rats were randomly divided into four groups of six each: group I served as controls which received standard diet, group II received in drinking water K2Cr2O7 alone (700 ppm), group III received both K2Cr2O7 and Se (0.5 Na2SeO3 mg/kg of diet), and group IV received Se (0.5 mg/kg of diet) for 3 weeks. Rats exposed to K2Cr2O7 showed an increase of malondialdehyde and protein carbonyl levels and a decrease of sulfhydryl content, glutathione, non-protein thiol, and vitamin C levels. A decrease of enzyme activities like catalase, glutathione peroxidase, and superoxide dismutase activities was also noted. Co-administration of Se with K2Cr2O7 restored the parameters cited above to near-normal values. Therefore, our investigation revealed that Se was a useful element preventing K2Cr2O7-induced erythrocyte damages.  相似文献   

10.
Rats injected with interleukin-1 (10 g) and tumor necrosis factor (10 g) and then exposed continuously to hyperoxia (> 99% O2, 1 atm) survived longer, had increased lung reduced/oxidized glutathione ratios, smaller pleural effusions, less pulmonary hypertension and improv+++ed arterial blood gases. The percentage of animals surviving for 72 hours in hyperoxia increased from 8% to 94%. Although relatively small increases in glutathione redox cycle enzymes occurred four and sixteen hours following cytokine injection, dramatic increases in all major antioxidant enzymes including superoxide dismutase, glucose-6-phosphate dehydrogenase, glutathione reductase, glutathione peroxidase, and catalase had occurred following 72 hours of exposure to hyperoxia. The protective effect of IL-1 + TNF against lethal pulmonary O2 toxicity could be partially inhibited by pre-injection of lysine acetylsalicylate or, less effectively, of ibuprofen.Recent studies have suggested that both IL-1 and TNF can induce manganese (mitochondrial) superoxide dismutase mRNA and protein synthesis in a variety of cell types. Preliminary studies suggest that IL-1 alone, in ample dosage, can provide protection against lethal pulmonary O2 toxicity. Future studies should be directed toward identification of acute phase changes in lung antioxidant enzymes, surfactant proteins and/or lipid components, enzymes needed for synthesis of surfactant phospholipids, and/or other protective proteins. Additional work also needs to be done in identifying the lung cell types in which early enzyme induction occurs. These studies should provide a better understanding of mechanisms whereby protection against pulmonary O2 toxicity can occur. An understanding of the molecular mechanisms inducing protective proteins should lead to more precise pharmacologic control of these processes.  相似文献   

11.
Oxygen, although essential for the survival of aerobic organisms leads to generation of toxic species. The effect of oxygen on enzymatic and non-enzymatic antioxidants was determined to evaluate response to oxidative stress in soybean axes. Soybean seeds were incubated over nutrient solution-saturated filter paper. Different oxygen concentrations in the incubation atmosphere were maintained by gassing either N2 (40% O2), air (20% O2), a commercial mix 40% O2 + 60% N2 (40% O2) or O2 (100% O2) in closed plastic chambers. Oxidative stress was assessed by the oxidation of 2′,7′-dichlorofluorescein diacetate. The activities of antioxidant enzymes were determined spectrophotometrically. α-Tocopherol and ubiquinol-10 contents were measured by HPLC. The weight of axes was 13 ± 1 and 27 ± 3 mg/axis in the absence and presence of 20% oxygen, respectively. 2′,7′-Dichlorofluorescein diacetate oxidation was increased from 14 ± 2 to 66 ± 5 AU/min/mg FW by supplementation of 20% oxygen. Total glutathione content was 22 ± 6 and 33 ± 6 nmol/axis in axes grown in absence of oxygen and air, respectively. Ubiquinol-10 content was not affected by oxygen. α-Tocopherol content decreased from 384 ± 94 to 14 ± 3 pmol/axis in the absence or presence of 100% oxygen, respectively. The activities of antioxidant enzymes increased in axes exposed to oxygen. Our data suggest that exposure of soybean axes to oxygen leads to oxidative stress but damage by oxygen intermediates was limited by increases in the activity of both, antioxidant substances (i.e. glutathione) and antioxidant enzymes.  相似文献   

12.
Present study showed the responses of pea seedlings to exogenous indole acetic acid (IAA; 10 and 100 μM) application under manganese (Mn; 50, 100 and 250 μM) toxicity. Manganese and 100 μM IAA alone as well as in combination decreased growth of pea seedlings compared to control. Moreover, some parameters of oxidative stress—hydrogen peroxide (H2O2) and malondialdehyde (MDA) were also increased by single and combined treatments of Mn and 100 μM IAA compared to control. In contrast, addition of 10 μM IAA together with Mn, alleviated Mn toxicity symptoms and promoted growth led to the decrease in H2O2 and MDA levels compared to Mn treatments alone. Under single and combined treatments of Mn and 100 μM IAA, catalase activity decreased while superoxide dismutase and ascorbate peroxidase activities increased and glutathione reductase and dehydroascorbate reductase exhibited differential responses. However, addition of 10 μM IAA together with Mn, increased activities of studied enzymatic antioxidants. Root and shoot reduced ascorbate (AA) and reduced glutathione (GSH) and, their reduced/oxidized ratios decreased while dehydroascorbate (DHA) and oxidized glutathione (GSSG) contents increased compared to control following single and combined treatments of Mn and 100 μM IAA. However, supply of 10 μM IAA together with Mn, increased AA and GSH, and their reduced/oxidized ratios in root and shoot compared to Mn treatments alone. This study thus suggests that 10 μM of IAA was able to increase Mn tolerance in pea seedlings under Mn toxicity while opposite was noticed for 100 μM IAA.  相似文献   

13.
Manganese exists in different oxidation states under different environmental conditions with respect to redox potential. Various forms of manganese oxides, namely, Manganosite (MnO), Bixbyite (Mn2O3), Hausmannite (Mn3O4) and Pyrolusite (MnO2) were synthesized and their possible role in chemical evolution studied. Adsorption studies of ribose nucleotides (5′-AMP, 5′-GMP, 5′-CMP and 5′-UMP) on these manganese oxides at neutral pH, revealed a higher binding affinity to manganosite (MnO) compared to the other manganese oxides. That manganese oxides having a lower Mn-O ratio show higher binding affinity for the ribonucleotides indirectly implies that such oxides may have provided a surface onto which biomonomers could have been concentrated through selective adsorption. Purine nucleotides were adsorbed to a greater extent compared to the pyrimidine nucleotides. Adsorption data followed Langmuir adsorption isotherms, and X m and K L values were calculated. The nature of the interaction and mechanism was elucidated by infrared spectral studies conducted on the metal-oxide and ribonucleotide-metal-oxide adducts.  相似文献   

14.
Utilization of highly enriched preparations of steroidogenic Leydig cells have proven invaluable for studying the direct effects of various hormones and agents on Leydig cell functionin vitro. However, recent work indicates that isolated Leydig cells are often subjected to oxygen (O2) toxicity when cultured at ambient (19%) oxygen concentrations. Because intracellular antioxidants play an important role in protecting cells against oxygen toxicity, we have investigated the intracellular antioxidant defense system of isolated Leydig cells. The cellular levels of several antioxidants including catalase, glucose-6-phosphate dehydrogenase (G-6-PDH), superoxide dismutase (SOD) of the Cu/Zn & Mn variety, glutathione peroxidase, glutathione reductase and total glutathione were quantitated using enriched populations of Leydig cells isolated from adult male guinea pig testes. Compared to whole testicular homogenates, Leydig cells contained significantly (P<0.01) less G-6-PDH, total SOD, glutathione reductase and total glutathione, but significantly (P<0.001) more glutathione peroxidase. Compared to hepatic values previously reported in the guinea pig, Leydig cells contain nearly 400 times less catalase, about 14 times less glutathione peroxidase and almost 11 times less glutathione reductase. Since G-6-PDH and glutathione reductase are both necessary to regenerate reduced gluthathione (GSH) which couples with glutathione peroxidase to breakdown hydrogen peroxide (H2O2) under normal conditions, it is plausible that the oxygen toxicity observed in isolated Leydig cells is due to the intracellular accumulation of H2O2. Using the dichlorofluorescin diacetate (DCF-DA) assay, we found that Leydig cells incubated in the presence of 19% O2 produced significantly (P<0.001) higher levels of H2O2 with time in culture compared to Leydig cells maintained at 3% O2. These results support the hypothesis that the increased susceptibility of isolated Leydig cells to oxygen toxicity may be due, in part, to decreased amounts of certain antioxidant defenses and an increased production of the reactive oxygen species H2O2.  相似文献   

15.
An H2O2-resistant variant (OC14) of the HA1 Chinese hamster fibroblast cell line, which demonstrates cross resistance to 95% O2 and a 2-fold increase in total glutathione content, was utilized to investigate mechanisms responsible for cellular resistance to H2O2- and O2-toxicity. OC14 and HA1 cells were pretreated with buthionine sulfoximine (BSO) to deplete total cellular glutathione. Following BSO pretreatment, cells were either placed in 250 μM BSO to maintain the glutathione depleted condition and challenged with 95% O2, or challenged with hydroged peroxide in the absence of BSO. Total glutathione and the activities of CuZn superoxide dismutase, Mn superoxide dismutase, catalase, glutathione peroxidase, and glutathione transferase were evaluated immediately following the BSO pretreatment as well as following 39 to 42 hr of exposure to 250 μM BSO. BSO treatment did not cause significant decreases in any cellular antioxidant tested, except total glutathione depletion resulted in significant (P < 0.05) sensitization to O2-toxicity and H2O2-toxicity in both cell lines at every time point tested. However, glutathione depletion did not completely abolish the resistance to either O2- or H2O2-toxicity demonstrated by OC14 cells, relative to HA1 cells. Also, glutathione depletion did not effect the ability of OC14 cells to metabolize extracellular H2O2. These data indicate that glutathione dependent processes significantly contribute to cellular resistance to acute H2O2- and O2-toxicity, but are not the only determinants of resistance in cell lines. The contribition of aldehydes formed by lipid peroxidation in mechanisms involved with the sensitization to O2-toxicity in glutathione depleted cells was tested by measuring the lipid peroxidation byproduct, 4-hydroxy-2-nonenal (4HNE), bound in Schiff-base linkages or in its free form in cell homogenates at 49 hr of 95% O2-exposure. No significant increase in 4HNE was detected in glutathione depleted cells relative to glutathione competent cells, indicating that glutathione depletion does not sensitize these cells to O2-toxicity by altering the intracellular accumulation of free or Schiff-base bound 4HNE. © 1995 Wiley-Liss Inc.  相似文献   

16.
An experiment was conducted to investigate the bioavailability of organic manganese proteinate (Mn) relative to inorganic Mn sulfate for broilers fed a conventional corn–soybean meal basal diet. A total of 448-day-old Arbor Acres commercial male chicks were fed the Mn-unsupplemented basal diet (control) or basal diet supplemented with 60, 120, or 180 mg Mn/kg from each Mn source. At 21 days of age, heart tissue was excised for testing DM, Mn concentration, manganese superoxide dismutase (MnSOD) activity, and MnSOD mRNA level. The Mn concentration, MnSOD activity, and MnSOD mRNA level in heart tissue increased (P < 0.01) linearly as dietary manganese concentration increased. Based on slope ratios from multiple linear regressions of the above three indices on added Mn level, there was no significant difference (P > 0.21) in bioavailability between Mn proteinate and Mn sulfate for broilers in this experiment.  相似文献   

17.
The effects of chromium (chromium picolinate, CrPic) and zinc (ZnSO4H2O) supplementation on serum concentrations of malondialdehyde (MDA) (an indicator of lipid peroxidation) and serum status of some antioxidant vitamins and minerals of laying hens (Hy-Line) reared at a low ambient temperature (6.8°C) were evaluated. One hundred twenty laying hens (Hy-Line; 32 wk old) were divided into 4 groups, 30 hens per group. The hens were fed either a basal diet or the basal diet supplemented with either 0.4 mg Cr/kg of diet, 30 mg Zn/kg of diet, or 0.4 mg Cr plus 30 mg Zn/kg of diet. Digestibility of nutrients (dry matter [DM], organic matter [OM], crude protein [CP], and ether extract [EE]) increased by supplementation of chromium and zinc (p<0.05). Supplemental chromium and zinc increased serum vitamins C and E but decreased MDA concentrations (p<0.05). Additionally, supplemental chromium and zinc caused an increase in the serum concentrations of Fe, Zn, Mn, and Cr (p < 0.05). The present study showed that low ambient temperature causes detrimental effects on the digestibility of nutrients and antioxidant status and that such detrimental effects caused by low ambient temperature can be alleviated by chromium and zinc supplementation, particularly when Cr and Zn were simultaneously included into the diet. Data obtained in the present study suggest that such supplementation can be considered as a protective management practice in a diet of laying hens for alleviating negative effects of cold stress.  相似文献   

18.
Ferric nitrilotriacetate (Fe-NTA) is a well-established renal carcinogen. Here, we have shown that Pluchea lanceolata (PL) belonging to the family Asteraceae. PL attenuates Fe-NTA induced renal oxidative stress, hyperproliferative response and renal carcinogenesis in rats. It promoted DEN (N-diethyl nitrosamine) initiated renal carcinogenesis by increasing the percentage incidence of tumors and induces early tumor markers viz. ornithine decarboxylase (ODC) and renal DNA synthesis. Fe-NTA (9 mg Fe/kg body weight, intraperitoneally) also enhances renal lipid peroxidation (LPO), xanthine oxidase (XO) and hydrogen peroxide (H2O2) generation with reduction in renal glutathione content (GSH), antioxidant enzymes, viz., glutathione peroxidase (GPx), glutathione reductase (GR), catalase (CAT), glucose-6-phosphate dehydrogenase and phase-II metabolizing enzymes such as glutathione-S-transferase and quinone reductase (QR). It also enhances blood urea nitrogen (BUN) and serum creatinine. Oral treatment of rats with PL extract (100 and 200 mg/kg body weight) resulted in significant decrease in lipid peroxidation (LPO), xanthine oxidase (XO), H2O2 generation, blood urea nitrogen (BUN), serum creatinine, renal ODC activity, DNA synthesis (p < 0.001) and incidence of tumors. Renal glutathione content (p < 0.01), its metabolizing enzymes (p < 0.001) and antioxidant enzymes were also recovered to significant level (p < 0.001). Thus, present study supports PL as a potent chemopreventive agent and suppresses Fe-NTA-induced renal carcinogenesis and oxidative damage response in Wistar rat.  相似文献   

19.
The mononuclear complexes (Bu4N)[Mn(Cl4Cat)2(H2O)(EtOH)] and (Bu4N)2[Mn(Cl4Cat)3] (H2Cat=1,2-dihydroxybenzene) have been synthesised and characterised by X-ray diffraction. This work provides a direct, independent, synthesis of these complexes and an interesting example of how solvent effects can promote the formation of either a manganese(III) or manganese(IV) complex of the same ligand. The characterisation of (Bu4N)[Mn(Cl4Cat)2(H2O)(EtOH)] supports previous work that manganese(III) is extremely reluctant to form tris (catecholato) complexes due to the short `bite distance' of catecholate oxygen atoms (2.79 Å) which are unable to span the elongated coordination axes of the Jahn-Teller distorted Mn(III) ion and explains the 2:1 and 3:1 tetrachlorocatechol:manganese ratios in the Mn(III) and Mn(IV) complexes, respectively. Hydrogen peroxide production using dioxygen and hydroxylamine as substrates in acetonitrile/water mixtures, under ambient conditions, can be demonstrated with both complexes, suggesting that neither labile coordination sites nor the oxidation state of the manganese are important to the catalytic system. Turn over frequencies (TOF, moles of H2O2 per moles of manganese per hour) of ∼10 000 h−1 are obtained and this compares very favourably with the commercial production of hydrogen peroxide by the autoxidation of 2-ethylanthrahydroquinone (AO process).  相似文献   

20.
Summary Vertisols from field plots fertilized continuously with P, K, FYM alone and in combination at the rate of 60 kg P2O5, 30 kg K2O and 1.5 ton FYM per ha were tested for different forms of Fe and Mn as a consequence of continuous cropping with sorghum and wheat. The transformations that occurred in different forms of plant-available iron were greater than those of Mn. Exchangeable and easily reducible Fe contents were markedly influenced by treatments. In manganese, transformations of easily reducible to exchangeable forms were conspicuous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号