首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Clinical trials demonstrate the effectiveness of cell-based therapeutic angiogenesis in patients with severe ischemic diseases; however, their success remains limited. Maintaining transplanted cells in place are expected to augment the cell-based therapeutic angiogenesis. We have reported that nano-hydroxyapatite (HAp) coating on medical devices shows marked cell adhesiveness. Using this nanotechnology, HAp-coated poly(l-lactic acid) (PLLA) microspheres, named nano-scaffold (NS), were generated as a non-biological, biodegradable and injectable cell scaffold. We investigate the effectiveness of NS on cell-based therapeutic angiogenesis.

Methods and Results

Bone marrow mononuclear cells (BMNC) and NS or control PLLA microspheres (LA) were intramuscularly co-implanted into mice ischemic hindlimbs. When BMNC derived from enhanced green fluorescent protein (EGFP)-transgenic mice were injected into ischemic muscle, the muscle GFP level in NS+BMNC group was approximate fivefold higher than that in BMNC or LA+BMNC groups seven days after operation. Kaplan-Meier analysis demonstrated that NS+BMNC markedly prevented hindlimb necrosis (P<0.05 vs. BMNC or LA+BMNC). NS+BMNC revealed much higher induction of angiogenesis in ischemic tissues and collateral blood flow confirmed by three-dimensional computed tomography angiography than those of BMNC or LA+BMNC groups. NS-enhanced therapeutic angiogenesis and arteriogenesis showed good correlations with increased intramuscular levels of vascular endothelial growth factor and fibroblast growth factor-2. NS co-implantation also prevented apoptotic cell death of transplanted cells, resulting in prolonged cell retention.

Conclusion

A novel and feasible injectable cell scaffold potentiates cell-based therapeutic angiogenesis, which could be extremely useful for the treatment of severe ischemic disorders.  相似文献   

2.
In adults, the growth of blood vessels, a process known as angiogenesis, is essential for organ growth and repair. In many disorders including cancer, angiogenesis becomes excessive. The cellular origin of new vascular endothelial cells (ECs) during blood vessel growth in angiogenic situations has remained unknown. Here, we provide evidence for adult vascular endothelial stem cells (VESCs) that reside in the blood vessel wall endothelium. VESCs constitute a small subpopulation within CD117+ (c-kit+) ECs capable of undergoing clonal expansion while other ECs have a very limited proliferative capacity. Isolated VESCs can produce tens of millions of endothelial daughter cells in vitro. A single transplanted c-kit-expressing VESC by the phenotype lin−CD31+CD105+Sca1+CD117+ can generate in vivo functional blood vessels that connect to host circulation. VESCs also have long-term self-renewal capacity, a defining functional property of adult stem cells. To provide functional verification on the role of c-kit in VESCs, we show that a genetic deficit in endothelial c-kit expression markedly decreases total colony-forming VESCs. In vivo, c-kit expression deficit resulted in impaired EC proliferation and angiogenesis and retardation of tumor growth. Isolated VESCs could be used in cell-based therapies for cardiovascular repair to restore tissue vascularization after ischemic events. VESCs also provide a novel cellular target to block pathological angiogenesis and cancer growth.  相似文献   

3.
Sumi M  Sata M  Toya N  Yanaga K  Ohki T  Nagai R 《Life sciences》2007,80(6):559-565
Therapeutic angiogenesis has emerged as a promising therapy to treat patients with ischemic diseases. Transplantation of bone marrow cells (BMCs) is reported to augment collateral development in ischemic organs either by differentiating into vascular cells or by secreting angiogenic cytokines. Recent evidence suggests that adipose tissues secrete a number of humoral factors and contain pluripotent stem cells. Here, we evaluated the therapeutic potential of adipose tissue-derived cells to promote angiogenesis in a mouse model of hind limb ischemia. Stromal vascular fraction cells (SVFs) were isolated from inguinal adipose tissue. Endothelial-like cells or smooth muscle-like cells could be obtained from the culture of SVFs in the presence of growth factors. Freshly isolated BMCs, SVFs, or mature adipocytes were transplanted into the ischemic hind limb of mice. SVFs significantly augmented collateral development as determined by the restoration of blood perfusion and capillary density of the ischemic muscle. Angiogenic effects of SVFs were as potent as those of BMCs. Mature adipocytes showed no proangiogenic effects. The ischemic muscle contained endothelial cells or smooth muscle cells that derived from the transplanted SVFs and BMCs. These results suggest that SVFs might be used to promote angiogenesis in ischemic tissues.  相似文献   

4.
We hypothesized that pretreatment of an infarcted heart by mechanical transmyocardial revascularization (TMR) before transplantation of bone marrow cells (BMCs) or BMC-expressing angiogenic growth factors would increase transplanted BMC survival and enhance myocardial repair. Female Lewis rats underwent coronary ligation 3 wk before creation of 10 needle TMR channels (3 groups) or no TMR (3 groups), followed by transplantation of 3 x 10(6) male donor BMCs, BMC transfected with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), and insulin-like growth factor-1 (IGF-1) (BMC + VBI), or medium alone. At 1, 3, and 7 days, we evaluated transplanted cell survival, vascular densities, and left ventricular (LV) function (N = 4 per group x 6 groups x 3 time points). At 3 days, vascular densities in the scar were increased by TMR + BMC + VBI and by BMC + VBI (P < 0.05), and at 7 days, vascular densities were greatest in rats receiving TMR + BMC + VBI (P < 0.05). Transplanted cell survival at 3 and 7 days was increased by TMR and by BMC + VBI. Combined therapy with TMR + BMC + VBI resulted in the greatest cell survival at 3 days (P < 0.05) versus BMC. After 7 days, LV ejection fraction (LVEF) was lowest in rats receiving neither BMC nor TMR and greatest in rats receiving TMR + BMC + VBI (P = 0.004). We concluded that mechanical pretreatment of infarcted myocardium by TMR enhances the effect of subsequent cell-based gene therapy on transplanted cell survival, angiogenesis, and LV function. Scar pretreatment with TMR combined with cell-based multigene therapy may maximize myocardial repair.  相似文献   

5.
Several studies of stem cell-based gene therapy have indicated that long-lasting regeneration following vessel ischemia may be stimulated through VEGFA gene therapy and/or MSC transplantation for reduction of ischemic injury in limb ischemia and heart failure. The therapeutic potential of MSC transplantation can be further improved by genetically modifying MSCs with genes which enhance angiogenesis following ischemic injury. In the present study, we aimed to develop an approach in MSC-based therapy for repair and mitigation of ischemic injury and regeneration of damaged tissues in ischemic disease. HSP70 promoter-driven VEGFA expression was induced by resveratrol (RSV) in MSCs, and in combination with known RSV biological functions, the protective effects of our approach were investigated by using ex vivo aortic ring coculture system and a 3D scaffolds in vivo model. Results of this investigation demonstrated that HSP promoter-driven VEGFA expression in MSC increased approximately 2-fold over the background VEGFA levels upon HSP70 promoter induction by RSV. Exposure of HUVEC cells to medium containing MSC in which VEGFA had been induced by cis-RSV enhanced tube formation in the treated HUVEC cells. RSV-treated MSC cells differentiated into endothelial-like phenotypes, exhibiting markedly elevated expression of endothelial cell markers. These MSCs also induced aortic ring sprouting, characteristic of neovascular formation from pre-existing vessels, and additionally promoted neovascularization at the MSC transplantation site in a mouse model. These observations support a hypothesis that VEGFA expression induced by cis-RSV acting on the HSP70 promoter in transplanted MSC augments the angiogenic effects of stem cell gene therapy. The use of an inducible system also vastly reduces possible clinical risks associated with constitutive VEGFA expression.  相似文献   

6.
7.
Controlled vascular growth is critical for successful tissue regeneration and wound healing, as well as for treating ischemic diseases such as stroke, heart attack or peripheral arterial diseases. Direct delivery of angiogenic growth factors has the potential to stimulate new blood vessel growth, but is often associated with limitations such as lack of targeting and short half-life in vivo. Gene therapy offers an alternative approach by delivering genes encoding angiogenic factors, but often requires using virus, and is limited by safety concerns. Here we describe a recently developed strategy for stimulating vascular growth by programming stem cells to overexpress angiogenic factors in situ using biodegradable polymeric nanoparticles. Specifically our strategy utilized stem cells as delivery vehicles by taking advantage of their ability to migrate toward ischemic tissues in vivo. Using the optimized polymeric vectors, adipose-derived stem cells were modified to overexpress an angiogenic gene encoding vascular endothelial growth factor (VEGF). We described the processes for polymer synthesis, nanoparticle formation, transfecting stem cells in vitro, as well as methods for validating the efficacy of VEGF-expressing stem cells for promoting angiogenesis in a murine hindlimb ischemia model.  相似文献   

8.
Background aimsTo successfully treat myocardial infarction (MI), blood must be resupplied to the ischemic myocardium by inducing angiogenesis. Many studies report enhanced angiogenesis using stem cells; however, the therapeutic efficacy of cell transplant remains low because transplanted cells may not survive, be retained at the site of transplant, or develop into vascular tissue. In this study, we assessed the therapeutic potential of three-dimensional cell masses (3DCM) composed of human adipose-derived stem cells (hASC) in a rat MI model.MethodsFor formation of 3DCM, hASC were cultured on a substrate with immobilized fibroblast growth factor 2. The morphology and phenotypes of 3DCM were analyzed 1 day after culture. The cells (hASC and 3DCM, 5 × 105 cells) were injected into ischemic regions after ligation of the left coronary artery (n = 6 in each group). Cell retention ratio, therapeutic efficacy and vascularization were evaluated 4 weeks after transplant.ResultsA spheroid-type 3DCM, which included vascular cells (CD34+/CD31+/KDR+/α-SMA+) with high production of human vascular endothelial growth factor, was obtained. Infarct size and cardiomyocyte apoptosis were reduced in the 3DCM-injected group compared with the hASC-injected group. The retention ratio of hASC was 14-fold higher in the 3DCM-injected group. Many transplanted cells differentiated into endothelial and smooth muscle cells and formed vascular networks incorporated into host vessels.ConclusionsTransplant of 3DCM may be useful for angiogenic cell therapy to treat MI.  相似文献   

9.
10.
Ex vivo expansion of stem cells might be a feasible method of resolving the problem of limited cell supply in cell-based therapy. The implantation of expanded CD34(+) endothelial progenitor cells has the capacity to induce angiogenesis. In this study, we tried to induce angiogenesis by implanting expanded CD117(+) stem cells derived from mouse bone marrow. After 2 wk of culture with the addition of several growth factors, the CD117(+) stem cells expanded approximately 20-fold and had an endothelial phenotype with high expression of CD34 and vascular endothelial-cadherin. However, >70% of these ex vivo expanded cells had a senescent phenotype by beta-galactosidase staining, and their survival and incorporation were poor after implantation into the ischemic limbs of mice. Compared with the PBS injection only, the microvessel density and the percentage of limb blood flow were significantly higher after the implantation of 2 x 10(5) freshly collected CD117(+) cells (P < 0.01) but not after the implantation of 2 x 10(5) expanded CD117(+) cells (P > 0.05). These data indicate that ex vivo expansion of CD117(+) stem cells has low potency for inducing therapeutic angiogenesis, which might be related to the cellular senescence during ex vivo expansion.  相似文献   

11.
Vasculogenesis and angiogenesis are the major forms of blood vessel formation. Angiogenesis is the process where new vessels grow from pre-existing blood vessels, and is very important in the functional recovery of pathological conditions, such as wound healing and ischemic heart diseases. The development of better animal model and imaging technologies in past decades has greatly enriched our understanding on vasculogenesis and angiogenesis processes. Hypoxia turned out to be an important driving force for angiogenesis in various ischemic conditions. It stimulates expression of many growth factors like vascular endothelial growth factor, platelet-derived growth factor, insulin-like growth factor, and fibroblast growth factor, which play critical role in induction of angiogenesis. Other cellular components like monocytes, T cells, neutrophils, and platelets also play significant role in induction and regulation of angiogenesis. Various stem/progenitor cells also being recruited to the ischemic sites play crucial role in the angiogenesis process. Pre-clinical studies showed that stem/progenitor cells with/without combination of growth factors induce neovascularization in the ischemic tissues in various animal models. In this review, we will discuss about the fundamental factors that regulate the angiogenesis process and the use of stem cells as therapeutic regime for the treatment of ischemic diseases.  相似文献   

12.
Favorable effect of VEGF gene transfer on ischemic peripheral neuropathy   总被引:32,自引:0,他引:32  
Ischemic peripheral neuropathy is a frequent, irreversible complication of lower extremity vascular insufficiency. We investigated whether ischemic peripheral neuropathy could be prevented and/or reversed by gene transfer of an endothelial cell mitogen designed to promote therapeutic angiogenesis. Intramuscular gene transfer of naked DNA encoding vascular endothelial growth factor (VEGF) simultaneously with induction of hindlimb ischemia in rabbits abrogated the substantial decrease in motor and sensory nerve parameters, and nerve function recovered promptly. When gene transfer was administered 10 days after induction of ischemia, nerve function was restored earlier and/or recovered faster than in untreated rabbits. These findings are due in part to enhanced hindlimb perfusion. In addition, however, the demonstration of functional VEGF receptor expression by Schwann cells indicates a direct effect of VEGF on neural integrity as well. These findings thus constitute a new paradigm for the treatment of ischemic peripheral neuropathy.  相似文献   

13.
The regulation of vascular endothelial growth factor (VEGF), a potent stimulator of angiogenesis, is controlled primarily through the interactions of control elements located within the 5'- and 3'-untranslated regions, many of which are yet to be described. In this study we examined the 5'-untranslated region of human VEGF for control elements with the aim of regulating expression both in vitro and in vivo using oligonucleotide gene therapy. A potential control element was located, two sense oligonucleotides (S(1) and S(2)) were designed based on its sequence, and a third oligonucleotide (S(3)) was designed as a control and mapped to the 16 base pairs immediately upstream. Retinal cells cultured in the presence of S(1) and S(2) resulted in a 2-fold increase of VEGF protein and a 1.5-fold increase in mRNA 24 h post-transfection whereas S(3) had no significant effect (p > 0.05) compared with controls. Subsequent reporter gene studies confirmed the necessity of this element for up-regulation by S(1). Further in vivo studies showed that S(1) and S(2) mediated an increase in VEGF protein in a rodent ocular model that resulted in angiogenesis. In addition to providing insight into the regulation of the vascular endothelial growth factor, the use of these oligonucleotides to stimulate vascular growth may prove useful for the treatment of ischemic tissues such as those found in the heart following infarct.  相似文献   

14.
Therapeutic angiogenesis with vascular endothelial growth factors (VEGFs) is a promising approach for the treatment of ischemic myocardium and peripheral skeletal muscles. Preclinical studies in large animals have clearly demonstrated safety and efficacy of VEGF gene therapy in clinically relevant disease models. However, first clinical trials with intravascular delivery of VEGF vector constructs have only resulted in limited benefits to the patients. Second generation VEGF-based gene therapy trials are based on direct intramyocardial and intraskeletal muscle injections in order to achieve better transfection efficiency and more targeted effects. Phase I/II studies are currently ongoing to test safety, feasibility and efficacy of these improved approaches in patients with severe cardiovascular diseases.  相似文献   

15.
外周动脉疾病(PAD)与心血管疾病(CV)的发病率和死亡率有着密切的联系。ACCF/AHA指南建议无症状和症状性PAD患者戒烟并应用抗血小板/抗凝药物。对于存在严重肢体缺血(CLI)的PAD患者应考虑接受腔内与开放保肢手术治疗。即便存在CLI的PAD患者接受如上治疗,有时仍无法为患肢提供足够的血流灌注以消除症状。为建立有效血供,许多研究已经深入细胞治疗层面。内皮干细胞、单核细胞和骨髓间充质干细胞在临床应用中得到了很好的研究。血管内皮生长因子、成纤维细胞生长因子和肝细胞生长因子(HGF)也被应用于PAD患者,以诱导血管生成。其中,HGF最有优势,因为它可诱导血管生成却不伴有反应性血管炎及血管通透性增高。同时,血管腔内治疗器械及技术,如药物涂层球囊等也获得较快发展。本文将PAD治疗进展综述如下。  相似文献   

16.
Angiogenesis plays an important role in various pathological conditions as well as some physiological processes. Although a number of soluble angiogenic factors have been reported, extracellular matrix also has crucial effect on angiogenesis through interaction with endothelial cells. Since recent reports showed osteopontin had some angiogenic activity, the effect of the SVVYGLR peptide, novel binding motif in osteopontin molecule, on angiogenesis was examined in this study. Synthetic peptide SVVYGLR did not have proliferative effect on endothelial cells but adhesion and migration activity to endothelial cells. Furthermore, SVVYGLR had as potent activity for tube formation in three-dimensional collagen gel as vascular endothelial growth factor which is known to be the strongest angiogenic factor. Electron microscopical analysis showed a number of microvilli on the endothelial luminar surface and tight junction formation in the luminar intercellular border between endothelial cells, indicating SVVYGLR induced cell porarity and differentiation of endothelial cells. This small peptide might be expected to stimulate angiogenesis to improve some ischemic conditions in the future because of some advantages due to smaller molecular weight.  相似文献   

17.
The practice of plastic surgery has always remained at the frontier of medical science. Over the past few decades, this frontier has been marked by significant developments in the field of gene therapy. Gene therapy serves to replace, supplement, or manipulate a patient's genetic makeup to restore function that has been lost or to correct function that is aberrant. Recent technology may allow surgeons to augment the processes of wound healing and angiogenesis by transfecting genes encoding desirable proteins, such as vascular endothelial factor (VEGF), into ischemic tissues. VEGF is a vital growth factor in the development of blood vessels. Although its mechanisms of action are numerous, its sole function seems to be the augmentation of angiogenesis. VEGF is active in growth and development, in wound healing, and in various pathologic conditions, such as psoriasis and rheumatoid arthritis. The role of VEGF in the field of plastic surgery is just beginning to be explored; it may someday prove to be very rewarding.  相似文献   

18.
The identification of angiogenic growth factors, such as vascular endothelial growth factor and fibroblast growth factor, has fueled interest in using such factors to induce therapeutic angiogenesis. The results of numerous animal studies and clinical trials have offered promise for new treatment strategies for various ischemic diseases. Increased understanding of the cellular and molecular biology of vessel growth has, however, prompted investigators and clinicians alike to reconsider the complexity of therapeutic angiogenesis. The realization that formation of a stable vessel is a complex, multistep process may provide useful insights into the design of the next generation of angiogenesis therapy.  相似文献   

19.
20.
Proangiogenesis is generally regarded as an effective approach for treating ischemic heart disease. Vascular endothelial growth factor (VEGF)-A is a strong and essential proangiogenic factor. Reactive oxygen species (ROS), endoplasmic reticulum (ER) stress, and autophagy are implicated in the process of angiogenesis. This study is designed to clarify the regulatory mechanisms underlying VEGF-A, ROS, ER stress, autophagy, and angiogenesis in acute myocardial infarction (AMI). A mouse model of AMI was successfully established by occluding the left anterior descending coronary artery. Compared with the sham-operated mice, the microvessel density, VEGF-A content, ROS production, expression of vascular endothelial cadherin, positive expression of 78 kDa glucose-regulated protein/binding immunoglobulin protein (GRP78/Bip), and LC3 puncta in CD31-positive endothelial cells of the ischemic myocardium were overtly elevated. Moreover, VEGF-A exposure predominantly increased the expression of beclin-1, autophagy-related gene (ATG) 4, ATG5, inositol-requiring enzyme-1 (IRE-1), GRP78/Bip, and LC3-II/LC3-I as well as ROS production in the human umbilical vein endothelial cells (HUVECs) in a dose and time-dependent manner. Both beclin-1 small interfering RNA and 3-methyladenine treatment predominantly mitigated VEGF-A-induced tube formation and migration of HUVECs, but they failed to elicit any notable effect on VEGF-A-increased expression of GRP78/Bip. Tauroursodeoxycholic acid not only obviously abolished VEGF-A-induced increase of IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I, but also negated VEGF-A-induced tube formation and migration of HUVECs. Furthermore, N-acetyl- l -cysteine markedly abrogated VEGF-A-increased ROS production, IRE-1, GRP78/Bip, beclin-1 expression, and LC3-II/LC3-I in the HUVECs. Taken together, our data demonstrated that increased spontaneous production of VEGF-A may induce angiogenesis after AMI through initiating ROS–ER stress-autophagy axis in the vascular endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号