首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autophagic (type II) cell death has been suggested to play pathogenetic roles in cerebral ischemia. Growth arrest and DNA damage response 45b (Gadd45b) has been shown to protect against rat brain ischemia injury through inhibiting apoptosis. However, the relationship between Gadd45b and autophagy in cerebral ischemia/reperfusion (I/R) injury remains uncertain. The aim of this study is to investigate the effect of Gadd45b on autophagy. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) model of rat primary cortex neurons, and lentivirus interference used to silence Gadd45b expression. Cell viability and injury assay were performed using CCK-8 and LDH kit. Autophagy activation was monitored by expression of ATG5, LC3, Beclin-1, ATG7 and ATG3. Neuron apoptosis was monitored by expression of Bcl-2, Bax, cleaved caspase3, p53 and TUNEL assay. Neuron neurites were assayed by double immunofluorescent labeling with Tuj1 and LC3B. Here, we demonstrated that the expression of Gadd45b was strongly up-regulated at 24 h after 3 h OGD treatment. ShRNA-Gadd45b increased the expression of autophagy related proteins, aggravated OGD/R-induced neuron cell apoptosis and neurites injury. ShRNA-Gadd45b co-treatment with autophagy inhibitor 3-methyladenine (3-MA) or Wortmannin partly inhibited the ratio of LC3II/LC3I, and slightly ameliorated neuron cell apoptosis under OGD/R. Furthermore, shRNA-Gadd45b inhibited the p-p38 level involved in autophagy, but increased the p-JNK level involved in apoptosis. ShRNA-Gadd45b co-treatment with p38 inhibitor obviously induced autophagy. ShRNA-Gadd45b co-treatment with JNK inhibitor alleviated neuron cell apoptosis. In conclusion, our data suggested that Gadd45b inhibited autophagy and apoptosis under OGD/R. Gadd45b may be a common regulatory protein to control autophagy and apoptosis.  相似文献   

2.
We investigated the neuroprotective action of nicotinamide in focal ischemia. Male spontaneously hypertensive rats (5–7 months old) were subjected to photothrombotic occlusion of the right distal middle cerebral artery (MCA). Either nicotinamide (125 or 250 mg/kg) or vehicle was injected IV before MCA occlusion. Changes in the cerebral blood flow (CBF) were monitored using laser-Doppler flowmetry, and infarct volumes were determined with TTC staining 3 days after MCA occlusion. In another set of experiments, the brain nicotinamide and nicotinamide adenine dinucleotide (NAD+) levels were analyzed by HPLC using the frozen samples dissected from the regions corresponding to the ischemic core and penumbra. In the 250-mg/kg nicotinamide group, the ischemic CBF was significantly increased compared to that the untreated group, and the infarct volumes were substantially attenuated (–36%). On the other hand, the ischemic CBF in the 125 mg/kg nicotinamide group was not significantly different from the untreated CBF, however, the infarct volumes were substantially attenuated (–38%). Cerebral ischemia per se did not affect the concentrations of nicotinamide and NAD+ both in the penumbra and ischemic core. In the nicotinamide groups, the brain nicotinamide levels increased significantly in all areas examined, and brain NAD+ levels increased in the penumbra but not in the ischemic core. Increased brain levels of nicotinamide are considered to be primarily important for neuroprotection against ischemia, and the protective action may be partly mediated through the increased NAD+ in the penumbra.  相似文献   

3.
Our previous studies demonstrated that inflammatory reaction and neuronal apoptosis are the most important pathological mechanisms in ischemia-induced brain damage. Propofol has been shown to attenuate ischemic brain damage via inhibiting neuronal apoptosis. The present study was performed to evaluate the effect of propofol on brain damage and inflammatory reaction in rats of focal cerebral ischemia. Sprague–Dawley rats underwent permanent middle cerebral artery occlusion, then received treatment with propofol (10 or 50 mg/kg) or vehicle after 2 h of ischemia. Neurological deficit scores, cerebral infarct size and morphological characteristic were measured 24 h after cerebral ischemia. The enzymatic activity of myeloperoxidase (MPO) was assessed 24 h after cerebral ischemia. Nuclear factor-kappa B (NF-κB) p65 expression in ischemic rat brain was detected by western blot. Cyclooxygenase-2 (COX-2) expression in ischemic rat brain was determined by immunohistochemistry. ELISA was performed to detect the serum concentration of tumor necrosis factor-α (TNF-α). Neurological deficit scores, cerebral infarct size and MPO activity were significantly reduced by propofol administration. Furthermore, expression of NF-κB, COX-2 and TNF-α were attenuated by propofol administration. Our results demonstrated that propofol (10 and 50 mg/kg) reduces inflammatory reaction and brain damage in focal cerebral ischemia in rats. Propofol exerts neuroprotection against ischemic brain damage, which might be associated with the attenuation of inflammatory reaction and the inhibition of inflammatory genes.  相似文献   

4.
A mild cerebral ischemic insult, also known as ischemic preconditioning (IPC), confers transient tolerance to a subsequent ischemic challenge in the brain. This study was conducted to investigate whether bone morphogenetic protein-7 (BMP-7) is involved in neuroprotection elicited by IPC in a rat model of ischemia. Ischemic tolerance was induced in rats by IPC (15 min middle cerebral artery occlusion, MCAO) at 48 h before lethal ischemia (2 h MCAO). The present data showed that IPC increased BMP-7 mRNA and protein expression after 24 h reperfusion following ischemia in the brain. In rats of ischemia, IPC-induced reduction of cerebral infarct volume and improvement of neuronal morphology were attenuated when BMP-7 was inhibited either by antagonist noggin or short interfering RNA (siRNA) pre-treatment. Besides, cerebral IPC-induced up-regulation of B-cell lymphoma 2 (Bcl-2) and down-regulation of cleaved caspase-3 at 24 h after ischemia/reperfusion (I/R) injury were reversed via inhibition of BMP-7. These findings indicate that BMP-7 mediates IPC-induced tolerance to cerebral I/R, probably through inhibition of apoptosis.  相似文献   

5.
In the absence of clinically-efficacious therapies for ischemic stroke there is a critical need for development of new therapeutic concepts and approaches for prevention of brain injury secondary to cerebral ischemia. This study tests the hypothesis that administration of PNU-120596, a type-II positive allosteric modulator (PAM-II) of α7 nicotinic acetylcholine receptors (nAChRs), as long as 6 hours after the onset of focal cerebral ischemia significantly reduces brain injury and neurological deficits in an animal model of ischemic stroke. Focal cerebral ischemia was induced by a transient (90 min) middle cerebral artery occlusion (MCAO). Animals were then subdivided into two groups and injected intravenously (i.v.) 6 hours post-MCAO with either 1 mg/kg PNU-120596 (treated group) or vehicle only (untreated group). Measurements of cerebral infarct volumes and neurological behavioral tests were performed 24 hrs post-MCAO. PNU-120596 significantly reduced cerebral infarct volume and improved neurological function as evidenced by the results of Bederson, rolling cylinder and ladder rung walking tests. These results forecast a high therapeutic potential for PAMs-II as effective recruiters and activators of endogenous α7 nAChR-dependent cholinergic pathways to reduce brain injury and improve neurological function after cerebral ischemic stroke.  相似文献   

6.
ABSTRACT: BACKGROUND: Cerebral ischemia has been shown to induce activation of matrix metalloproteinases (MMPs), particularly MMP-9, which is associated with impairment of the neurovasculature, resulting in blood-brain barrier breakdown, hemorrhage and neurodegeneration. We previously reported that the thiirane inhibitor SB-3CT, which is selective for gelatinases (MMP-2 and 9), could antagonize neuronal apoptosis after transient focal cerebral ischemia. RESULTS: Here, we used a fibrin-rich clot to occlude the middle cerebral artery (MCA) and assessed the effects of SB-3CT on the neurovasculature. Results show that neurobehavioral deficits and infarct volumes induced by embolic ischemia are comparable to those induced by the filament-occluded transient MCA model. Confocal microscopy indicated embolus-blocked brain microvasculature and neuronal cell death. Post-ischemic SB-3CT treatment attenuated infarct volume, ameliorated neurobehavioral outcomes, and antagonized the increases in levels of proform and activated MMP-9. Embolic ischemia caused degradation of the neurovascular matrix component laminin and tight-junction protein ZO-1, contraction of pericytes, and loss of lectin-positive brain microvessels. Despite the presence of the embolus, SB-3CT mitigated these outcomes and reduced hemorrhagic volumes. Interestingly, SB-3CT treatment for seven days protected against neuronal laminin degradation and protected neurons from ischemic cell death. CONCLUSION: These results demonstrate considerable promise for the thiirane class of selective gelatinase inhibitors as potential therapeutic agents in stroke therapy.  相似文献   

7.
《Autophagy》2013,9(6):762-769
It has been reported that ischemic insult increases the formation of autophagosomes and activates autophagy. However, the role of autophagy in ischemic neuronal damage remains elusive. This study was taken to assess the role of autophagy in ischemic brain damage. Focal cerebral ischemia was introduced by permanent middle cerebral artery occlusion (pMCAO). Activation of autophagy was assessed by morphological and biochemical examinations. To determine the contribution of autophagy/lysosome to ischemic neuronal death, rats were pretreated with a single intracerebral ventricle injection of the autophagy inhibitors 3-methyl-adenine (3-MA) and bafliomycin A1 (BFA) or the cathepsin B inhibitor Z-FA-fmk after pMCAO. The effects of 3-MA and Z-FA-fmk on brain damage, expression of proteins involved in regulation of autophagy and apoptosis were assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunoblotting. The results showed that pMACO increased the formation of autophagosomes and autolysosomes, the mRNA and protein levels of LC3-II and the protein levels of cathepsin B. 3-MA, BFA and Z-FA-fmk significantly reduced infarct volume, brain edema, and motor deficits. The neuroprotective effects of 3-MA and Z-FA-fmk were associated with an inhibition on ischemia-induced upregulation of LC3-II and cathepsin B and a partial reversion of ischemia-induced downregulation of cytoprotective Bcl-2. These results demonstrate that ischemic insult activates autophagy and an autophagic mechanism may contribute to ischemic neuronal injury. Thus, autophagy may be a potential target for developing a novel therapy for stroke.  相似文献   

8.
Wen YD  Sheng R  Zhang LS  Han R  Zhang X  Zhang XD  Han F  Fukunaga K  Qin ZH 《Autophagy》2008,4(6):762-769
It has been reported that ischemic insult increases the formation of autophagosomes and activates autophagy. However, the role of autophagy in ischemic neuronal damage remains elusive. This study was taken to assess the role of autophagy in ischemic brain damage. Focal cerebral ischemia was introduced by permanent middle cerebral artery occlusion (pMCAO). Activation of autophagy was assessed by morphological and biochemical examinations. To determine the contribution of autophagy/lysosome to ischemic neuronal death, rats were pretreated with a single intracerebral ventricle injection of the autophagy inhibitors 3-methyl-adenine (3-MA) and bafliomycin A1 (BFA) or the cathepsin B inhibitor Z-FA-fmk after pMCAO. The effects of 3-MA and Z-FA-fmk on brain damage, expression of proteins involved in regulation of autophagy and apoptosis were assessed with 2,3,5-triphenyltetrazolium chloride (TTC) staining and immunoblotting. The results showed that pMACO increased the formation of autophagosomes and autolysosomes, the mRNA and protein levels of LC3-II and the protein levels of cathepsin B. 3-MA, BFA and Z-FA-fmk significantly reduced infarct volume, brain edema and motor deficits. The neuroprotective effects of 3-MA and Z-FA-fmk were associated with an inhibition on ischemia-induced upregulation of LC3-II and cathepsin B and a partial reversion of ischemia-induced downregulation of cytoprotective Bcl-2. These results demonstrate that ischemic insult activates autophagy and an autophagic mechanism may contribute to ischemic neuronal injury. Thus, autophagy may be a potential target for developing a novel therapy for stroke.  相似文献   

9.
The effects of a selective inducible nitric oxide synthase inhibitor aminoguanidine (AG) on neuronal cells survival in hippocampal CA1 region after middle cerebral artery occlusion (MCAO) were examined. Transient focal cerebral ischemia was induced in rats by 60 or 90 min of MCAO, followed by 7 days of reperfusion. AG treatment (150 mg/kg i.p.) significantly reduced total infarct volumes: by 70% after 90 min MCAO and by 95% after 60 min MCAO, compared with saline-treated ischemic group. The number of degenerating neurons in hippocampal CA1 region was also markedly lower in aminoguanidine-treated ischemic groups compared to ischemic groups without AG-treatment. The number of iNOS-positive cells significantly increased in the hippocampal CA1 region of ischemic animals, whereas it was reduced in AG-treated rats. Our findings demonstrate that aminoguanidine decreases ischemic brain damage and improves neurological recovery after transient focal ischemia induced by MCAO.  相似文献   

10.
We have investigated the role of the BH3-only pro-death Bcl-2 family protein, Bid, in ischemic neuronal death in a murine focal cerebral ischemia model. Wild-type and bid-deficient mice of inbred C57BL/6 background were subjected to 90-min ischemia induced by left middle cerebral artery occlusion followed by 72-h reperfusion. The volume of ischemic infarct was significantly smaller in the bid-deficient brains than in the wild-type brains, suggesting that Bid participated in the ischemic neuronal death. Indeed, following the ischemic treatment there was a significant reduction of apoptosis in the ischemic areas, particularly in the inner infarct border zone (the penumbra), of the bid-deficient brains. In addition, activation of Bid in the wild-type brains could be readily detected at approximately 3 h after ischemia, as evidenced by its proteolytic cleavage and translocation to the mitochondria as determined using Western blot analysis and immunofluorescence staining. Correspondingly, mitochondrial release of cytochrome c could be detected around the same time Bid was cleaved in the wild-type brains. However, no significant cytochrome c release was detected in the bid-deficient brains until 24 h later. This suggests that, although the mitochondrial apoptosis pathway might be activated by multiple mechanisms during focal cerebral ischemia, Bid is critical to its early activation. This notion was further supported by the finding that caspase-3 activation was severely impaired in the bid-deficient brains, whereas activation of caspase-8 was much less affected. Taken together, these data suggest that Bid is activated early in neuronal ischemia in a caspase-8-dependent fashion and that Bid is perhaps one of the earliest and most potent activators of the mitochondrial apoptosis pathway. Thus, the role of Bid in the induction of ischemic neuronal death may render this molecule an attractive target for future therapeutic intervention.  相似文献   

11.
摘要 目的:探索紫檀芪(PTE)对小鼠缺血性脑损伤后脑水肿期神经细胞凋亡的影响。方法:将实验小鼠分为3组即假手术组(sham组)、脑缺血再灌注损伤组(IR组)和紫檀芪治疗组(PTE+IR组),其中PTE于造模前连续5天每天腹腔给药(5 mg/kg)1次;然后于造模后3 d进行脑组织TTC染色并计算脑梗死体积比;于造模后2 h、12 h和1、2、4、6、8、10、12及14 d进行小鼠神经行为学评分;使用TUNEL试剂盒于造模后3、7和14 d检测缺血半暗带和海马的凋亡神经细胞。结果:PTE可减轻脑梗死体积、改善神经行为学评分以及抑制缺血半暗带和海马的神经细胞凋亡。结论:PTE在小鼠缺血性脑损伤后脑水肿期具有明确的神经保护作用,其机制与抑制细胞凋亡有关。  相似文献   

12.
Recently, some studies suggested that inhibition of Rho-kinase (ROCK) prevented cerebral ischemia injury through inhibiting inflammatory reaction, increasing cerebral blood flow, modulating the neuronal actin cytoskeleton polymerization, and preventing tau hyperphosphorylation and p25/CDK5 increase. However, there is little information regarding the effects of ROCK inhibitor on the neuronal apoptosis in ischemic brain injury. In this study, we determined whether ROCK inhibitor, fasudil, inhibited ischemic neuronal apoptosis through phosphatase and tensin homolog deleted on chromosome10 (PTEN)/Akt/signal pathway in vivo. Adult male Sprague-Dawley rats were subjected to permanent middle cerebral artery occlusion. Rats received ROCK inhibitor, fasudil (10?mg/kg), at 30?min before middle cerebral artery occlusion. The infarct area, neuronal apoptosis and caspase-3 activity was significantly decreased by fasudil with improvement of neurological deterioration. However, the beneficial effects of fasudil were attenuated by the co-application of LY294002 (PI3K inhibitor). Fasudil maintained postischemic Akt activity at relatively proper level and decreased the augmentation of PTEN and ROCK activity in the penumbra area. Furthermore, fasudil inhibited attenuation of GSK-β and Bad phosphorylation in the penumbra area. In conclusion, the findings provide another consideration that fasudil protects the brain against ischemia injury through decreasing neuronal apoptosis and reveals the link between the ROCK inhibition and the PTEN/Akt pathway.  相似文献   

13.
目的:观察缺血后处理对大鼠局灶性脑缺血再灌注损伤后TLR4通路表达的影响。方法:成年健康雄性SD大鼠110只,随机分为假手术组(sham组)(n=10)、缺血再灌注组(I/R组)和后处理组(IP组),后两组又依据缺血再灌注6h、12h、24h、48h、72h不同的时间点再分五个亚组。对各组行神经行为学评分,脑组织梗死体积测量,TUNEL技术检测神经细胞凋亡的情况,免疫组织化学技术观察各组大鼠脑组织TLR4、NF-κB和TNF-α蛋白的表达,原位杂交方法检测各组大鼠脑组织TLR4mRNA、NF-κBmRNA的表达。结果:缺血后处理可下调TLR4、NF-κB、TNF-α细胞炎性因子的表达,抑制细胞凋亡、减少脑梗死体积,改善神经行为。结论:后处理可通过抑制TLR4信号通路表达,减少脑梗死体积,改善神经功能。  相似文献   

14.
目的通过观察选择性细胞周期抑制剂olomoucine对局灶性脑缺血边缘区神经元凋亡的影响,以探讨细胞周期调控与神经元细胞凋亡的关系。方法建立光化学法诱导大鼠局灶性脑缺血模型,随机分为脑缺血组(对照组和干预组)和假手术组,采用HE染色显示梗死灶并测定其面积;应用免疫荧光化学法检测梗死灶周围神经元核心抗原(NeuN)的表达及通过TUNEL方法检测神经元凋亡;免疫印迹(Western blot)观察损伤侧皮层NeuN、周期素蛋白A(cyclin A)和周期素蛋白B1(cyclin B1)蛋白的表达。结果缺血后3d对照组梗死灶面积占脑片面积百分比值的平均值明显大于干预组(P<0.05);缺血后缺血边缘区NeuN表达减弱,对照组NeuN表达明显弱于干预组(P<0.05);缺血后梗死灶周围可见大量TUNEL阳性染色细胞,而且对照组数量明显多于干预组(P<0.05);干预组大鼠NeuN(TUNAL双标阳性表达明显弱于对照组大鼠(P<0.05);NeuN的蛋白量的表达,干预组较对照组明显增加(P<0.05),而对照组cyclin A和cyclin B1蛋白量的表达明显高于干预组(P<0.05)。结论通过对细胞周期的调控,可减少神经元凋亡和脑梗死体积,从而为缺血性脑损伤后的神经元提供一个保护作用。  相似文献   

15.
Previous studies have demonstrated that the c-Jun N-terminal kinase (JNK) pathway plays an important role in inducing neuronal apoptosis following cerebral ischemic injury. JNK signaling pathway in activated during cerebral ischemic injury. It participates in ischemia-induced neuronal apoptosis. However, whether JNK signaling is involved in the process of neuronal apoptosis of diabetes-induced cerebral ischemia is largely unknown. This study was undertaken to evaluate the influence of cerebral ischemia–reperfusion injury on phosphorylation of JNK in diabetic rats. Twenty-four adult streptozotocin induced diabetic and 24 adult non-diabetic rats were randomly subjected to 15 min of forebrain ischemia followed by reperfusion for 0, 1, 3, and 6 h. Sixteen sham-operated diabetic and non-diabetic rats were used as controls. Apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL). Protein expression of phospho-JNK was examined by immunohistochemistry and Western blot. The numbers of TUNEL-positive cells and phospho-JNK protein expression in the cerebral cortices after 1, 3 and 6 h reperfusion was significantly higher in diabetic rats compared to non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). Western blot analysis showed significantly higher phospho-JNK protein expression in the cerebral cortices of the diabetic rats after 1 and 3 h reperfusion than that was presented in non-diabetic animals subjected to ischemia and reperfusion (p < 0.05). These findings suggest that increased phosphorylation of JNK may be associated with diabetes-enhanced ischemic brain damage.  相似文献   

16.
As a traditional therapeutic method, electroacupuncture (EA) has been adopted as an alternative therapy for stroke recovery. Here, we aimed to evaluate whether EA therapy at points of Quchi (LI11) and Zusanli (ST36) alleviated neuronal apoptosis by PTEN signaling pathway after ischemic stroke. A total of 72 male Sprague–Dawley rats were randomized into three groups, including sham group, MCAO group, and EA group. EA was initiated after 24 h of reperfusion for 3 consecutive days. At 72 h following ischemia/reperfusion, neurological deficits, infarct volumes, and TUNEL staining were evaluated and the PTEN pathway-related proteins together with apoptosis-related proteins were detected. The results indicated that EA treatment significantly decreased cerebral infarct volume, neurological deficits and alleviated proportion of apoptotic cells in cerebral ischemic rats. Furthermore, EA significantly up-regulated the phosphorylation levels of PDK1, Akt(Thr308), GSK-3β, and down-regulated the phosphorylation levels of PTEN, Akt(Ser473) in the peri-infarct cortex. EA treatment significantly reduced the up-regulation of caspase-3, cleaved-caspase-3, Bim, and reversed the reduction of Bcl-2 induced by the ischemic stroke. These findings suggest that EA treatment at points of Quchi (LI11)- and Zusanli (ST36)-induced neuroprotection might involve inhibition of apoptosis via PTEN pathway.  相似文献   

17.
Shin WH  Park SJ  Kim EJ 《Life sciences》2006,79(2):130-137
Ischemic stroke results from a transient or permanent reduction in cerebral blood flow that is restricted to the territory of a major brain artery. The major pathobiological mechanisms of ischemia/reperfusion injury include excitotoxicity, oxidative stress, inflammation, and apoptosis. In the present report, we first investigated the protective effects of anthocyanins against focal cerebral ischemic injury in rats. The pretreatment of anthocyanins (300 mg/kg, p.o.) significantly reduced the brain infarct volume and a number of TUNEL positive cells caused by middle cerebral artery occlusion and reperfusion. In the immunohistochemical observation, anthocyanins remarkably reduced a number of phospho-c-Jun N-terminal kinase (p-JNK) and p53 immunopositive cells in the infarct area. Moreover, Western blotting analysis indicated that anthocyanins suppressed the activation of JNK and up-regulation of p53. Thus, our data suggested that anthocyanins reduced neuronal damage induced by focal cerebral ischemia through blocking the JNK and p53 signaling pathway. These findings suggest that the consumption of anthocyanins may have the possibility of protective effect against neurological disorders such as brain ischemia.  相似文献   

18.
7,8-dihydroxyflavone (7,8-DHF) is a recently identified potent agonist of tropomyosin-related kinase B that can cross the blood–brain barrier after oral or intraperitoneal administration. The aim of the present study was to determine whether 7,8-DHF has neuroprotective effects against cerebral ischemia and reperfusion (I/R) injury and, if so, to investigate the possible underlying mechanisms. Cerebral I/R injury rats were induced by middle cerebral artery occlusion for 90 min followed by reperfusion for 24 h. 7,8-DHF was administered intraperitoneally at a dose of 5 mg/kg immediately after ischemia. Our results showed that 7,8-DHF significantly reduced neurological deficit scores, infarct volumes, and neuronal apoptosis in brains of I/R rats. Meanwhile, 7,8-DHF also increased Bcl-2 expression, decreased expression of cleaved caspase-3, Bax and inducible nitric oxide synthase, and inhibited nuclear factor-κB activation in ischemic cortex. Finally, malondialdehyde and nitric oxide contents were reduced, but activities of glutathione, glutathione peroxidase and superoxide dismutase were restored in ischemic cortex treated with 7,8-DHF. Taken together, our findings demonstrated that 7,8-DHF is able to protect against cerebral I/R injury, which may be, at least in part, attributable to its anti-apoptotic, anti-oxidative and anti-inflammatory actions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号