首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steroidogenic Acute Regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), 17β-hydroxysteroid dehydrogenase (17β-HSD), 5α-Reductase (5α-Red), P450 aromatase are key enzymes involved in steroidogenesis. Recently, we showed the expression and the localization of P450 aromatase in Podarcis sicula testis during the different phases of the reproductive cycle, showing its involvement in the control of steroidogenesis, particularly in 17β-estradiol synthesis. Now, we have investigated the presence and distribution of the other enzymes involved in steroidogenesis, i.e. StAR, 3β-HSD, 17β-HSD and 5α-Red, during three significant periods of the reproductive cycle: summer stasis (July–August), autumnal resumption (November) and reproductive period (May–June). We demonstrated for the first time that all these enzymes are always present in somatic cells (Leydig and Sertoli) and germ cells (spermatogonia, spermatocytes I and II, spermatids and spermatozoa) of Podarcis testis, mainly in spermatids and spermatozoa. The present results strongly suggest that in Podarcis testis both somatic and germ cells could be involved in local sex hormone synthesis and that 5α-Red and P450 could carry out a pivot role.  相似文献   

2.
We demonstrated previously that testosterone regulates aromatase activity in the anterior/dorsolateral hypothalamus of male rhesus macaques. To determine the level of the androgen effect, we developed a ribonuclease protection assay to study the effects of testosterone or dihydrotestosterone (DHT) on aromatase (P450(AROM)) mRNA in selected brain areas. Adult male rhesus monkeys were treated with testosterone or DHT. Steroids in serum were quantified by RIA. Fourteen brain regions were analyzed for P450(AROM) mRNA. Significant elevations of its message over controls (P<0.05) were found in the medial preoptic area/anterior hypothalamus of both androgen treatment groups and the medial basal hypothalamus of the testosterone-treated males. Other brain areas were not affected by androgen treatment. We conclude that testosterone and DHT regulate P450(AROM) mRNA in brain regions that mediate reproductive behaviors and gonadotropin release. The P450(AROM) mRNA of other brain areas is not androgen dependent. Brain-derived estrogens may also be important for maintaining neural circuitry in brain areas not related to reproduction. The control of P450(AROM) mRNA in these areas may differ from what we report here, but it is equally important to understand the function of in situ estrogen formation in these areas.  相似文献   

3.
The neurotrophic effects of oestrogen formed in the brain are important in brain sexual differentiation of the central nervous system and behaviour. Aromatase, converting testosterone to oestradiol-17β, is a key enzyme involved in brain development. In primary cell cultures of foetal hypothalamus, we have found that male neurones consistently have higher aromatase activity than in the female. Using a specific antibody to the mouse aromatase, immunoreactivity was localized in the neural soma and neurites in hypothalamic cultures. Additionally more male foetal hypothalamus neurones express aromatase than in the female. Testosterone increases aromatase activity in parallel with a greater number of aromatase-immunoreactive neurones. Testosterone also increases soma size, neurite length, and branching of cultured hypothalamic neurones. The neuronal aromatase activity appears to be sensitive to the inductive effects of androgen only during the later stages of foetal development. Endogenous inhibitors of the aromatase are also likely to have a regulatory role. This work suggests that regulation of a network of aromatase neurones, sensitive to the hormonal environment of the hypothalamus, may determine when oestrogens are available for neurotrophic effects underlying brain differentiation.  相似文献   

4.
Brain aromatase cytochrome P450 converts androgens to estrogens that play a critical role in the development of sexually dimorphic neural structures, the modulation of neuroendocrine function(s), and the regulation of sexual behavior. We characterized the influence of surgical castration on brain aromatase in Norway Brown and Wistar adult rats and compared their responses to Sprague-Dawley rats that were surgically or biochemically castrated (with flutamide, a known androgen receptor blocker). Aromata enzyme activity was measured by the tritiated water release assay in the medial basal hypothalmus/preoptic area (MBH/POA) and amygdala brain regions. The present results demonstrate that independent of the rat strain examined, MBH/POA aromatase is regulated by androgens (in Sprague-Dawley, Norway Brown and Wistar males). However, intact Wistar animals displayed significantly higher MBH/POA aromatase levels compared to Sprague-Dawley control values. Conversely, in the amygdala region, there was an apparent lack of androgen hormone action upon aromatase enzyme activity in some of the rat strains tested. The importance of brain aromatase regulating estrogen biosynthesis and influencing brain development and function is covered.  相似文献   

5.
Testosterone at physiological levels cannot exert negative feedback action on LH secretion in long-term castrated male monkeys. The cellular basis of this refractoriness is unknown. To study it, we compared two groups of male rhesus macaques: one group (group 1, n = 4) was castrated and immediately treated with testosterone for 30 days; the second group (group 2, n = 4) was castrated and treated with testosterone for 9 days beginning 21 days after castration. Feedback control of LH by testosterone in group 1 was normal, whereas insensitivity to its action was found in group 2. Using the endpoints of concentrations of aromatase activity (P450(AROM) messenger RNA [mRNA]) and androgen receptor mRNA in the medial preoptic anterior hypothalamus and in the medial basal hypothalamus, we found that aromatase activity in both of these tissues was significantly lower, P: < 0.01, in group 2 compared with group 1 males. P450(AROM) mRNA and androgen receptor mRNA did not differ, however. Our data suggest that the cellular basis of testosterone insensitivity after long-term castration may reside in the reduced capacity of specific brain areas to aromatize testosterone. Because P450(AROM) mRNA did not change in group 2 males, we hypothesize that an estrogen-dependent neural deficit, not involving the regulation of the P450(AROM) mRNA, occurs in long-term castrated monkeys.  相似文献   

6.
7.
8.
Steroid sex hormones have an organizational role in gender-specific brain development. Aromatase (cytochrome P450AR), converting testosterone (T) to estradiol-17β (E2) is a key enzyme in brain development and the regulation of aromatase determines the availability of E2 effective for neural differentiation. Gender differences in brain development and behaviour are likely to be influenced by E2 acting during sensitive periods. This differentiating action has been demonstrated in rodent and avian species, but also probably occurs in primates including humans. In rodents, E2 is formed in various hypothalamic areas of the brain during fetal and postnatal development. The question considered here is whether hypothalamic aromatase activity is gender-specific during sensitive phases of behavioural and brain development, and when these sensitive phases occur. In vitro preoptic and limbic aromatase activity has been measured in two strains of wild mice, genetically selected for behavioural aggression based on attack latency, and in the BALB/c mouse. Short attack latency males show a different developmental pattern of aromatase activity in hypothalamus and amygdala to long attack latency males. Using primary brain cell cultures of the BALB/c mouse, sex differences in hypothalamic aromatase activity during both early embryonic and later perinatal development can be demonstrated, with higher E2 formation in males. The sex dimorphisms are brain region specific, since no differences between male and female are detectable in cultured cortical cells. Immunoreactive staining with a polyclonal aromatase antibody identifies a neuronal rather than an astroglial localization of the enzyme. T increases fetal brain aromatase activity and numbers of aromatase-immunoreactive hypothalamic neuronal cell bodies. T appears to influence the growth of hypothalamic neurons containing aromatase. Differentiation of sexually dimorphic brain mechanisms may involve maturation of a gender-specific network of estrogen-forming neurons which are steroid-sensitive in early development.  相似文献   

9.
Estrogens are required for both the organization of the brain in early development and adult behavior. Two approaches have been used in our laboratory to study the behavioral role of brain aromatase. First, brain metabolism of testosterone (T) has been related to behavior in the same individual using a well established neuroendocrine model, the ring dove, in which estradiol-17β (E2) has specific effects on brain mechanisms of male behavior. Aromatase in preoptic area (POA) (a) has a high activity (Vmax) and strong substrate binding affinity (Km < 5 nM), (b) is regulated by both androgens and estrogens, and the type of regulation differs according to brain area, (c) is influenced by products of an endogenous inactivating pathway, 5β-reduction; 5β-dihydrotestosterone and other 5β-reduced metabolites appear to be non-genomic regulators of the brain aromatase. Preoptic aromatase activity is also influenced by photoperiod and socio-sexual stimuli. The codistribution of regulated aromatase activity and estrogen receptor cells is found to be T-dependent. Our second approach has been to relate the aromatase system to developmental sex differences in brain structure and behavior of the Mongolian gerbil. Neonatal gerbil aromatase is relatively active in the POA, but has a weaker T substrate-binding affinity (Km = 30 nM) than the dove. T acting via its metabolite, E2, masculinizes the sexually dimorphic area of the hypothalamus; the differentiating effect is asymmetric. We suggest that the regulation of the brain aromatase system may be lateralized during steroid-sensitive periods of development.  相似文献   

10.
11.
12.
芳香化酶活性发现在脊椎动物脑、脑垂体和性腺中,但在文昌鱼脑和哈氏窝的组织特异性定位尚无可利用资料。本文用免疫细胞化学和原位杂交技术,首次发现芳香化酶活性组织特异性定位在幼年和性腺发育不同时期雌、雄文昌鱼神经系统(脑和脊髓)、轮器、哈氏窝和性腺中。芳香化酶蛋白和转录物在前脑、中脑、脊髓、轮器和哈氏窝十分丰富,而后脑、早期卵巢和精巢不够丰富;没有芳香化酶表达的部位是哈氏窝另两种细胞(不规则形细胞和带纤毛粘液细胞)以及成熟卵巢和精巢;芳香化酶免疫活性物质分布在胞质,核为阴性。芳香化酶在文昌鱼神经系统、哈氏窝和性腺的分布模式与低等脊椎动物中的分布模式极为类似,尤其是芳香化酶在脑内调节哈氏窝分泌活动的神经内分泌中枢表达,并形成类似脊椎动物的文昌鱼原始的脑-芳香化酶调节系统。这些结果有力地证明,文昌鱼脑和哈氏窝高水平的芳香化酶活性像在其它脊椎动物中一样,对局部介导睾酮芳香化起着关键作用,同时还可能影响脑-芳香化酶系统参与调节哈氏窝的分泌活动[动物学报49(6):800~806,2003]。  相似文献   

13.
14.
The estrogen synthesizing enzyme, P450 aromatase, plays a critical role in the regulation of vertebrate sexual behavior. Songbirds differ from other avian species in the distribution and expression of aromatase in the telencephalon. The highest concentration of aromatase in the songbird brain is found in the caudomedial neostriatum (NCM). This area surrounds the only nucleus of the neural song system that contains estrogen receptors, the high vocal center (HVC). It has been suggested that estrogen produced in NCM via aromatization of circulating testosterone (T) is involved in song development and adult song plasticity. The modalities of regulation of aromatase in NCM are not well understood, and some studies suggest that in NCM, unlike in the preoptic-hypothalamic areas, aromatase is not regulated by androgen and/or estrogen. In this work, we studied whether the treatment of female canaries with T, which induces the development of malelike song and the masculinization of the song system, also induces an increase in the expression and activity of aromatase in NCM. Our results show that both the expression and activity of aromatase in NCM increase in female canaries following T treatment. This study provides the first direct evidence that T regulates telencephalic aromatase in songbirds, and suggests that an increase in estrogen production in NCM might be functional in neural and behavioral plasticity during phases of song organization.  相似文献   

15.
The aromatase cytochrome P-450 and its clinical impact   总被引:8,自引:0,他引:8  
  相似文献   

16.
The adrenal gland regulates metabolism and maintains normal electrolyte balance. Adrenal hormones are equivalent in all vertebrates; the chromaffin tissue produces adrenaline and noradrenaline and the steroidogenic tissue produces most of the steroid hormones present in mammals. Podarcis sicula belongs to the Squamata family of lizards and it is the most abundant lizard species in southern Italy. This species shows a reproductive annual cycle and the presence of seasonal variations in the activity of the hypothalamus-hypophyseal-thyroid axis. To investigate the existence of an annual cycle of lizard adrenal gland, we have measured plasma concentrations of corticosterone, ACTH, noradrenaline and adrenaline. We have shown that corticosterone rapidly increased from January to March to reach a peak value that persisted until July, then, it slowly decreased until December. ACTH levels increased from January to May and slowly decreased from July to December. Noradrenaline levels were higher in March and then decreased until December. On the contrary, adrenaline levels increased from March to July and slowly decreased until December. Our results demonstrate the existence of an annual cycle of the lizard adrenal gland activity. This is very interesting because its activity is important to rightly regulate the reproductive status of the Podarcis sicula lizard.  相似文献   

17.
Recent studies point to a key role for the estrogen synthesizing enzyme P450 aromatase (P450 arom) in ovary determination in fish, birds and reptiles. It is unclear whether estrogen synthesis is important in sex determination of Xenopus gonad. To determine whether the aromatase gene is transcribed in the gonads of Xenopus tadpoles during the sex determination, we cloned a P450 arom cDNA and examined the level of P450 arom and estrogen receptor (ER) gene expression in association with estrogen activity. cDNA clones for P450 arom were isolated from a Xenopus ovarian cDNA library. There was an open reading frame (ORF) of 1500 bp from the ATG start to TAA stop codons encoding 500 predicted amino acids. cDNAs for P450 arom have previously been cloned from various vertebrates. The homology between the Xenopus P450 aromatase and the human P450 arom was higher. The expression of the P450 arom gene was mainly limited to reproductive organs. To determine the beginning of estrogen activity in gonads of embryos, expression of the aromatase and ER gene was also examined by RQ-RT-PCR. Both Xenopus aromatase and ER mRNA was detected at stage 51 in gonads. These observations are consistent with estrogens having a key role in ovarian development in various other vertebrates.  相似文献   

18.
19.
Transcriptional regulation of aromatase in placenta and ovary   总被引:3,自引:0,他引:3  
Our goal is to define the cellular and molecular mechanisms for tissue- and cell-specific, developmental and hormonal regulation of the human CYP19 (aromatase P450/P450arom) gene in estrogen-producing cells. In this article, we review studies using transgenic mice and transfected cells to identify genomic regions and response elements that mediate CYP19 expression in placenta and ovary, as well as to define the molecular mechanisms for O2 regulation of differentiation and CYP19 gene expression in human trophoblast cells in culture. We also highlight recent findings regarding LRH-1 versus SF-1 mRNA expression and cellular localization in the mouse ovary during the estrous cycle and various stages of pregnancy. Spatial and temporal expression patterns of mRNAs encoding these orphan nuclear receptors in comparison to those of P450arom and 17-hydroxylase/17,20-lyase mRNAs, suggest an important role of LRH-1 together with SF-1 in ovarian steroidogenesis.  相似文献   

20.
To determine the molecular basis for changes in aromatase (P450arom) activity in rat ovarian follicles and corpora lutea, seven clones for rat P450arom cDNA have been identified and isolated from a rat granulosa cell λgtll cDNA expression library using a 62 mer deoxyoligonucleotide probe (derived from an amino acid sequence of purified human placental aromatase) and a human placental P450arom cDNA probe. One of the rat P450arom cDNA clones contained an insert 1.2 kb in size. Both the human 1.8 kb cDNA and the rat 1.2 kb cDNA probes hybridized to a single species of P450arom mRNA that was 2.6 kb in size. Northern blot analysis revealed that corpora lutea isolated on day 15 of pregnancy contained high amounts of P450arom mRNA, whereas granulosa cells of antral follicles of hormonally primed, hypophysectomized rats (i.e., those from which mRNA was isolated to construct the cDNA library) contained only low amounts of P450arom mRNA. The lower amounts of P450arom in granulosa cells of preovulatory follicles in the estradiol-follicle-stimulating hormone primed hypophysectomized rats were unexpected because follicles incubated in medium containing testosterone substrate produce more estradiol than do corpora lutea isolated on day 15 of pregnancy and incubated under similar conditions. Additional studies will determine the hormonal events responsible for the elevated amounts and constitutive maintenance of P450arom mRNA and aromatase activity in luteal cells in vivo and in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号