首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background and Aims

In Arabidopsis thaliana, the degree of methylesterification (DM) of homogalacturonans (HGs), the main pectic constituent of the cell wall, can be modified by pectin methylesterases (PMEs). In all organisms, two types of protein structure have been reported for PMEs: group 1 and group 2. In group 2 PMEs, the active part (PME domain, Pfam01095) is preceded by an N-terminal extension (PRO part), which shows similarities to PME inhibitors (PMEI domain, Pfam04043). This PRO part mediates retention of unprocessed group 2 PMEs in the Golgi apparatus, thus regulating PME activity through a post-translational mechanism. This study investigated the roles of a subtilisin-type serine protease (SBT) in the processing of a PME isoform.

Methods

Using a combination of functional genomics, biochemistry and proteomic approaches, the role of a specific SBT in the processing of a group 2 PME was assessed together with its consequences for plant development.

Key Results

A group 2 PME, AtPME17 (At2g45220), was identified, which was highly co-expressed, both spatially and temporally, with AtSBT3.5 (At1g32940), a subtilisin-type serine protease (subtilase, SBT), during root development. PME activity was modified in roots of knockout mutants for both proteins with consequent effects on root growth. This suggested a role for SBT3.5 in the processing of PME17 in planta. Using transient expression in Nicotiana benthamiana, it was indeed shown that SBT3.5 can process PME17 at a specific single processing motif, releasing a mature isoform in the apoplasm.

Conclusions

By revealing the potential role of SBT3.5 in the processing of PME17, this study brings new evidence of the complexity of the regulation of PMEs in plants, and highlights the need for identifying specific PME–SBT pairs.  相似文献   

2.
Secondary cell walls, which contain lignin, have traditionally been considered essential for the mechanical strength of the shoot of land plants, whereas pectin, which is a characteristic component of the primary wall, is not considered to be involved in the mechanical support of the plant. Contradicting this conventional knowledge, loss-of-function mutant alleles of Arabidopsis thaliana PECTIN METHYLESTERASE35 (PME35), which encodes a pectin methylesterase, showed a pendant stem phenotype and an increased deformation rate of the stem, indicating that the mechanical strength of the stem was impaired by the mutation. PME35 was expressed specifically in the basal part of the inflorescence stem. Biochemical characterization showed that the activity of pectin methylesterase was significantly reduced in the basal part of the mutant stem. Immunofluorescence microscopy and immunogold electron microscopy analyses using JIM5, JIM7, and LM20 monoclonal antibodies revealed that demethylesterification of methylesterified homogalacturonans in the primary cell wall of the cortex and interfascicular fibers was suppressed in the mutant, but lignified cell walls in the interfascicular and xylary fibers were not affected. These phenotypic analyses indicate that PME35-mediated demethylesterification of the primary cell wall directly regulates the mechanical strength of the supporting tissue.  相似文献   

3.
4.
Pollen development is a post-meiotic process that produces mature pollen grains from microspores and can be regarded as an ideal model for the study of important plant physiological processes such as reproduction, cellular differentiation, cell fate determination, signal transduction, membrane transport, and fusion and polar growth. The regulation of pollen development is a complicated biological process that is crucial for sexual reproduction in flowering plants (Yamamoto et al.,  相似文献   

5.
The homeostasis of iron (Fe) in plants is strictly regulated to maintain an optimal level for plant growth and development but not cause oxidative stress. About 30% of arable land is considered Fe deficient because of calcareous soil that renders Fe unavailable to plants. Under Fe-deficient conditions, Arabidopsis (Arabidopsis thaliana) shows retarded growth, disordered chloroplast development, and delayed flowering time. In this study, we explored the possible connection between Fe availability and the circadian clock in growth and development. Circadian period length in Arabidopsis was longer under Fe-deficient conditions, but the lengthened period was not regulated by the canonical Fe-deficiency signaling pathway involving nitric oxide. However, plants with impaired chloroplast function showed long circadian periods. Fe deficiency and impaired chloroplast function combined did not show additive effects on the circadian period, which suggests that plastid-to-nucleus retrograde signaling is involved in the lengthening of circadian period under Fe deficiency. Expression pattern analyses of the central oscillator genes in mutants defective in CIRCADIAN CLOCK ASSOCIATED1/LATE ELONGATED HYPOCOTYL or GIGANTEA demonstrated their requirement for Fe deficiency-induced long circadian period. In conclusion, Fe is involved in maintaining the period length of circadian rhythm, possibly by acting on specific central oscillators through a retrograde signaling pathway.Metals such as iron (Fe), copper (Cu), zinc (Zn), manganese (Mn), molybdenum, and nickel are essential for the various biological processes that govern plant growth and development (Marschner, 1995). For example, Fe is required for DNA synthesis, photosynthesis, nitrogen fixation, hormone synthesis, and electron transport in the respiratory chain (Briat and Lobreaux, 1997). Similarly, Cu is an important component of electron-transfer reactions mediated by proteins such as superoxide dismutase, cytochrome oxidase, and plastocyanin (Clemens, 2001). Zn is a cofactor for many enzymes, and many proteins contain Zn-binding structural domains (Clarke and Berg, 1998). Although only minimal quantities of these micronutrients are required by plants, their limited availability in soils can significantly hinder crop production and affect nutritional quality (Grotz and Guerinot, 2002). In the case of Fe, about 30% of arable land worldwide is considered calcareous, rendering Fe in these soils unavailable to plants (Mori, 1999). Understanding of the fundamental processes involving metal uptake and sequestration has increased in recent years, but how the availability of particular metals interacts with internal signals to govern the growth and development of plants is largely unknown.The daily biological rhythms of many organisms are regulated by a near 24-h circadian clock that is synchronized by environmental changes such as light and temperature (Harmer, 2009; Imaizumi, 2010). The circadian clock regulates diverse aspects of plant growth and development. The operation of the circadian clock in plants can basically be divided into three main parts, input, central oscillator, and output pathways, and each part has its own complex networks. In Arabidopsis (Arabidopsis thaliana), the central oscillator is composed of a network of multiple feedback loops that can be divided into the morning, central, and evening loops (Harmer, 2009). The central feedback loop is composed of the morning-expressed genes CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) and the evening-expressed gene TIMING OF CAB EXPRESSION1 (TOC1; Schaffer et al., 1998; Wang and Tobin, 1998; Strayer et al., 2000; Alabadí et al., 2001). Although TOC1 is genetically required for the activation of morning genes (Schaffer et al., 1998; Wang and Tobin, 1998; Strayer et al., 2000), it acts as a repressor and directly regulates the expression of CCA1 and LHY (Gendron et al., 2012; Huang et al., 2012; Pokhilko et al., 2012). In the morning loop, CCA1/LHY form another negative feedback loop with the morning genes PSEUDO-RESPONSE REGULATOR7 (PRR7) and PRR9, with PRR9/PRR7 directly repressing the expression of CCA1 and LHY (Farré et al., 2005; Nakamichi et al., 2010). In the evening loop, TOC1 forms a negative feedback loop with GIGANTEA (GI) by repressing its expression, and GI in turn activates the expression of TOC1 through an unknown component, Y (Huq et al., 2000; Mizoguchi et al., 2005). After receiving input signals in the form of environmental cues, the central oscillator of the Arabidopsis circadian clock generates various rhythmic outputs that control various physiological events (Hotta et al., 2007; de Montaigu et al., 2010).The central oscillator controls a range of important physiological output processes such as flowering, stress and hormone responses, and regulation of nutrient acquisition (Haydon et al., 2011). Although the uptake of nutrition in plants is known to be influenced by light and temperature (Lahti et al., 2005; Baligar et al., 2006), the interaction between nutritional status and the circadian clock is less well studied. The homeostasis of Cu is known to influence the regulation of oscillator genes (Andrés-Colás et al., 2010; Peñarrubia et al., 2010). Arabidopsis under excess Cu or overexpressing Cu transporters COPT1 and COPT3 showed increased Cu accumulation and reduced expression of CCA1, LHY, and circadian clock output genes. Defective developmental phenotypes were also observed in these plants. Spatial and temporal control of Cu homeostasis, therefore, may be important for plant environmental fitness (Andrés-Colás et al., 2010). It has also been reported that disordered circadian rhythm affects Fe homeostasis. Tight regulation of Fe homeostasis to maintain an optimal Fe level in plants has been found to be associated with circadian clock regulators such as TIME FOR COFFEE (TIC) that modulates the expression of the ferritin gene AtFer1 (Duc et al., 2009). The expression of AtFer1 was up-regulated with excess Fe. TIC could repress AtFer1 expression under low-Fe conditions in photoperiodic light and dark cycles (Duc et al., 2009). However, whether Fe status feeds back to regulate the circadian clock is uncertain.Although Fe homeostasis in terms of uptake and translocation has been studied for decades, Fe availability is still an agricultural problem worldwide. Revealing the interplay between Fe homeostasis and internal cues such as modulation of the circadian clock can help increase understanding of their contributions to overall plant development. In this work, we investigated the effect of Fe deficiency on the circadian clock and found that it lengthened the circadian period. Our data suggest that the functional status of chloroplasts under Fe deficiency may play a key role in the lengthened circadian period.  相似文献   

6.
Liu  Shasha  Zhong  Jun  Ling  Sheng  Liu  Yaqin  Xu  Ya  Yao  Jialing 《Plant Molecular Biology Reporter》2021,39(1):87-97
Plant Molecular Biology Reporter - Pollen tube germination and elongation are important processes for double fertilization in flowering plants. However, little is known about the regulatory...  相似文献   

7.
8.
Cell reproduction is a complex process involving whole cell structures and machineries in space and time, resulting in regulated distribution of endomembranes, organelles, and genomes between daughter cells. Secretory pathways supported by the activity of the Golgi apparatus play a crucial role in cytokinesis in plants. From the onset of phragmoplast initiation to the maturation of the cell plate, delivery of secretory vesicles is necessary to sustain successful daughter cell separation. Tethering of secretory vesicles at the plasma membrane is mediated by the evolutionarily conserved octameric exocyst complex. Using proteomic and cytologic approaches, we show that EXO84b is a subunit of the plant exocyst. Arabidopsis thaliana mutants for EXO84b are severely dwarfed and have compromised leaf epidermal cell and guard cell division. During cytokinesis, green fluorescent protein–tagged exocyst subunits SEC6, SEC8, SEC15b, EXO70A1, and EXO84b exhibit distinctive localization maxima at cell plate initiation and cell plate maturation, stages with a high demand for vesicle fusion. Finally, we present data indicating a defect in cell plate assembly in the exo70A1 mutant. We conclude that the exocyst complex is involved in secretory processes during cytokinesis in Arabidopsis cells, notably in cell plate initiation, cell plate maturation, and formation of new primary cell wall.  相似文献   

9.
An actin fringe structure in the subapex plays an important role in pollen tube tip growth. However, the precise mechanism by which the actin fringe is generated and maintained remains largely unknown. Here, we cloned a 2606-bp full-length cDNA encoding a deduced 77-kD fimbrin-like protein from lily (Lilium longiflorum), named FIMBRIN1 (FIM1). Ll-FIM1 was preferentially expressed in pollen and concentrated at actin fringe in the subapical region, as well as in longitudinal actin-filament bundles in the shank of pollen tubes. Microinjection of Ll-FIM1 antibody into lily pollen tubes inhibited tip growth and disrupted the actin fringe. Furthermore, we verified the function of Ll-FIM1 in the fim5 mutant of its closest relative, Arabidopsis thaliana. Pollen tubes of fim5 mutants grew with a larger diameter in early stages but could recover into normal forms in later stages, despite significantly slower growth rates. The actin fringe of the fim5 mutants, however, was impaired during both early and late stages. Impressively, stable expression of fim5pro:GFP:Ll-FIM1 rescued the actin fringe and the growth rate of Arabidopsis fim5 pollen tubes. In vitro biochemical analysis showed that Ll-FIM1 could bundle actin filaments. Thus, our study has identified a fimbrin that may stabilize the actin fringe by cross-linking actin filaments into bundles, which is important for proper tip growth of lily pollen tubes.  相似文献   

10.
In higher plants, shoots show negative gravitropism and rootsshow positive gravitropism. To elucidate the molecular mechanismsof root and hypocotyl gravitropism, we segregated the secondmutation from the original phyB-1 mutant line which impairedboth root and hypocotyl gravitropism and characterized thisnovel mutation named rhg (for root and hyzypocotyl gravitropism).The rhg is a single recessive nuclear mutation and it is mappedon the lower part of the chromosome 1. Analyses on the gravitropicresponses of the rhg mutant indicate that root and hypocotylgravitropism are severely impaired but inflorescence stem gravitropismis not affected by the rhg mutation. In the rhg mutant seedlings,amyloplasts (statoliths for gravity-perception) were presentin the presumptive statocytes of roots and hypocotyls. Phototropismby roots and hypocotyls was not impaired in the rhg mutant.These results suggest that the RHG gene product probably actson the gravity-perception and/or the gravity-signal transductionin root and hypocotyl gravitropism. This is the first reportabout the genetic locus specifically involved in both root andhypocotyl gravitropism but not inflorescence stem gravitropism,supporting our hypothesis that the mechanisms of gravitropismare genetically different between hypocotyls and inflorescencestems. (Received March 11, 1997; Accepted April 17, 1997)  相似文献   

11.
The pollen grains of most angiosperms contain stores of RNAsand their translation products required for pollen germinationand subsequent early elongation of pollen tubes. Polypyrimidinetract-binding protein (PTB), which is involved in the regulationof pre-mRNA alternative splicing, internal ribosomal entry site(IRES)-mediated translation and mRNA localization/sorting, isknown to act as a bridging molecule between RNAs and a varietyof cellular factors to fulfill cellular functions in both thenucleus and cytoplasm. Moreover, it has been reported that PTBplays roles in the differentiation and development of animalcells and tissues. In the Arabidopsis genome, there are twoPTB-related genes, tentatively termed AtPTB1 and AtPTB2. Inthe present study, the physiological functions of AtPTBs wereinvestigated using genetic and cytological approaches. The AtPTBpromoter was highly active in vegetative cells of mature pollengrains, and AtPTB was localized in the nucleus and cytoplasmof these vegetative cells. Mutations in the AtPTB genes resultedin decreased germination efficiency, and this effect was rescuedby introduction of the AtPTB2 promoter::AtPTB2–GFP. Takentogether, these findings suggest that AtPTB is involved in pollengermination through possible RNA metabolism processes in late-maturingand mature pollen grains.  相似文献   

12.
拟南芥钙依赖蛋白激酶参与植物激素信号转导   总被引:1,自引:0,他引:1  
在植物信号通路中,涉及到钙应答的蛋白激酶大多是钙依赖蛋白激酶。钙依赖蛋白激酶作为钙信号转导因子,参与了包括激素信号转导途径在内的很多传递过程。本工作在前人研究的基础上,对拟南芥AtCPK30基因的功能进行了深入的研究。RT-PCR分析结果表明:AtCPK30在植物根中的表达量很高,其在幼苗中的转录水平分别受ABA、IAA、2,4-D、GA_3和6-BA等激素的诱导调节。AtCPK30基因过表达的转基因株系幼苗的主根比野生型的长,同时发现转基因植株幼苗的根在缺钙的MS培养基上生长较野生型植株长,表明缺钙对转基因幼苗影响较小。用ABA、IAA、GA_3和BA处理时,转基因植株幼苗的根对激素更敏感。当野生型和转基因植株生长在含有生长素抑制剂NPA的MS培养基上时,NPA对转基因植株侧根的抑制比对野生型弱。GFP-CPK30融合蛋白的亚细胞定位研究结果表明:CPK30蛋白定位在细胞壁和细胞膜上。这些研究结果说明了AtCPK30作为钙信号转导因子,参与了多种激素调节植物根生长的过程。  相似文献   

13.
14.
15.
16.
17.
《植物生理学报》2013,(6):1984-1987
Dear Editor, In most plants, nitrogen (N) is acquired by roots in the form of nitrate (NO3-). In many species, NO3- is not assimi- lated in the roots, but is secreted into the xylem sap for translocation to the shoot, where it enters the cells to be metabolized and/or stored in the vacuoles. Several plasma membrane transporters involved in NO3- influx into the cell have been identified in Arabidopsis (Wang et ai., 2012), especially in the roots where members of the NPF (NRTI/PTR Family, L~ran et al., 2013) and NRT2 transporter families are predominantiy implicated. Concerning efflux to the xylem sap, only one transporter, NPF7.3/NRT1.5, has been shown to be involved. However, physiological characterization of npf7.31nrtl.5 knockout mutant plants demonstrated that other transporter(s) is (are) also contributing to xylem Ioad- inq of NO~- (Lin et al., 2008).  相似文献   

18.
Germination of dormant spores of Bacillus species is initiated when nutrient germinants bind to germinant receptors in spores’ inner membrane and this interaction triggers the release of dipicolinic acid and cations from the spore core and their replacement by water. Bacillus subtilis spores contain three functional germinant receptors encoded by the gerA, gerB, and gerK operons. The GerA germinant receptor alone triggers germination with L-valine or L-alanine, and the GerB and GerK germinant receptors together trigger germination with a mixture of L-asparagine, D-glucose, D-fructose and KCl (AGFK). Recently, it was reported that the B. subtilis gerW gene is expressed only during sporulation in developing spores, and that GerW is essential for L-alanine germination of B. subtilis spores but not for germination with AGFK. However, we now find that loss of the B. subtilis gerW gene had no significant effects on: i) rates of spore germination with L-alanine; ii) spores’ levels of germination proteins including GerA germinant receptor subunits; iii) AGFK germination; iv) spore germination by germinant receptor-independent pathways; and v) outgrowth of germinated spores. Studies in Bacillus megaterium did find that gerW was expressed in the developing spore during sporulation, and in a temperature-dependent manner. However, disruption of gerW again had no effect on the germination of B. megaterium spores, whether germination was triggered via germinant receptor-dependent or germinant receptor-independent pathways.  相似文献   

19.
拟南芥花粉活力的测定及其在花粉发育研究中的应用   总被引:1,自引:0,他引:1  
花粉发育是植物生活周期中一个重要且复杂的过程,需要多种基因的参与。花粉发育是否完善可以根据花粉形态特征,并通过检测花粉的生活力、萌发力、可育性和受精能力等生理特征来判断。以拟南芥候选基因突变体为材料,通过对花粉的这些生理特征的检测,可以初步推测候选基因参与花粉发育的功能和作用机制。本文介绍了用于花粉活力测定的几种技术的原理和方法,以及应用这些方法进行花粉发育研究的进展。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号