首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this investigation was to determine whether tumour necrosis factor-alpha (TNF-α) has any effect on endothelial progenitor cells (EPCs). Total mononuclear cells were isolated from peripheral blood by Ficoll density gradient centrifugation, and then the cells were plated on fibronectin-coated culture dishes. After 7 days culture, attached cells were stimulated with tumour necrosis factor-α (final concentrations: 0, 10, 20, 50 and 100 mg/l) for 0, 6, 12, 24 and 48 h. EPCs were characterized as adherent cells double positive for DiLDL-uptake and lectin binding, by direct fluorescence staining. EPC proliferation and migration were assayed using the MTT assay and modified Boyden chamber assay, respectively. EPC adhesion assay was performed by re-plating those cells on fibronectin-coated dishes, and adherent cells were counted. Tube formation activity was assayed using a tube formation kit. Levels of apoptosis were revealed using an annexin V apoptosis detection kit. Vascular endothelial growth factor Receptor-1 (VEGF-R1) and stromal derived factor-1 (SDF-1) mRNA, assessed by real-time RT-PCR inducible nitric oxide synthase (iNOS) and endothelial nitric oxide synthase (eNOS) were assayed by western blot analysis. Incubation of EPCs with tumour necrosis factor-α reduced EPC proliferation, migration, adhesion, tube formation capacity, iNOS and eNOS in concentration- and time-dependent manners. Tumour necrosis factor-α reduced proliferation, migration, adhesion and tube formation capacity of EPCs. TNF-α increased EPC apoptosis level, reduced VEGF-R1 and SDF-1 mRNA expression; tumour necrosis factor-α also reduced iNOS and eNOS in the EPCs.  相似文献   

2.
Angiotensinogen (AGT), the precursor of angiotensin I, is known to be involved in tumor angiogenesis and associated with the pathogenesis of coronary atherosclerosis. This study was undertaken to determine the role played by AGT in endothelial progenitor cells (EPCs) in tumor progression and metastasis. It was found that the number of EPC colonies formed by AGT heterozygous knockout (AGT+/−) cells was less than that formed by wild-type (WT) cells, and that the migration and tube formation abilities of AGT+/− EPCs were significantly lower than those of WT EPCs. In addition, the gene expressions of vascular endothelial growth factor (VEGF), Flk1, angiopoietin (Ang)-1, Ang-2, Tie-2, stromal derived factor (SDF)-1, C-X-C chemokine receptor type 4 (CXCR4), and of endothelial nitric oxide synthase (eNOS) were suppressed in AGT+/− EPCs. Furthermore, the expressions of hypoxia-inducible factor (HIF)-1α and -2α were downregulated in AGT+/− early EPCs under hypoxic conditions, suggesting a blunting of response to hypoxia. Moreover, the activation of Akt/eNOS signaling pathways induced by VEGF, epithelial growth factor (EGF), or SDF-1α were suppressed in AGT+/− EPCs. In AGT+/− mice, the incorporation of EPCs into the tumor vasculature was significantly reduced, and lung tumor growth and melanoma metastasis were attenuated. In conclusion, AGT is required for hypoxia-induced vasculogenesis.  相似文献   

3.
Although high density lipoprotein (HDL) improves the functions of endothelial progenitor cells (EPCs), the effect of HDL ApoAI mimetic peptide reverse-D-4F (Rev-D4F) on EPC mobilization and repair of EPC dysfunctions remains to be studied. In this study, we investigated the effects of Rev-D4F on peripheral blood cell subpopulations in C57 mice treated with a high fat diet and the mechanism of Rev-D4F in improving the function of EPCs impaired by tumor necrosis factor-α (TNF-α). The high fat diet significantly decreased the number of EPCs, EPC migratory functions, and the percentage of lymphocytes in the white blood cells. However, it significantly increased the number of white blood cells, the percentage of monocytes in the white blood cells, and the level of vascular endothelial growth factor (VEGF) and TNF-α in the plasma. Rev-D4F clearly inhibited the effect of the high fat diet on the quantification of peripheral blood cell subpopulations and cytokine levels, and increased stromal cell derived factor 1α (SDF-1α) in the plasma. We provided in vitro evidence that TNF-α impaired EPC proliferation, migration, and tube formation through inactive AKT and eNOS, which was restored by Rev-D4F treatment. In contrast, both the PI3-kinase (PI3K) inhibitor (LY294002) and AKT inhibitor (perifosine) obviously inhibited the restoration of Rev-4F on EPCs impaired by TNF-α. Our results suggested that Rev-D4F increases the quantity of endothelial progenitor cells through increasing the SDF-1α levels and decreasing the TNF-α level of peripheral blood in high fat diet-induced C57BL/6J mice, and restores TNF-α induced dysfunctions of EPCs partly through stimulating the PI3K/AKT signal pathway.  相似文献   

4.
Number and function of endothelial progenitor cells (EPCs) are down-regulated in patients with coronary artery disease (CAD). Integrin-linked kinase (ILK) is a signal and adaptor protein that regulates survival of mature endothelial cells and vascular development.Here we show that EPC dysfunction in patients with CAD is paralleled by down-regulation of ILK while restoration of ILK expression rescues the migratory defect of CAD-EPCs. Human EPCs transduced with dominant-negative ILK (DN-ILK) display significantly reduced expression of CD34+/VEGFR-2+, DiI-Ac-LDL uptake, and Ulex europaeus lectin binding. Mechanistically, DN-ILK-transfected EPCs are characterized by decreased proliferation, while proliferation is increased in wild-type ILK-transfected EPCs. These effects are paralleled by changes in cyclin D1 expression, colony forming units, and cytoskeletal rearrangement. Functionally, ILK is necessary and sufficient for SDF-1-triggered migration and adhesion in EPCs.These data extend current knowledge about the role of ILK in EPC biology and implicate ILK as a therapeutic target in CAD.  相似文献   

5.
Angiogenesis requires the mobilization of progenitor cells from the bone marrow (BM) and homing of progenitor cells to ischemic tissue. The cholesterol lowering drug Statins can stimulate angiogenesis via mobilization of BM derived endothelial progenitor cells (EPCs), promoting EPC migration, and inhibiting EPC apoptosis. The chemokine stromal cell-derived factor-1 (SDF-1) augments EPC chemotaxis, facilitates EPC incorporation into the neovasculature. The combined use of a statin to mobilize EPCs and local over-expression of SDF-1 to augment EPC homing to ischemic muscle resulted in superior angiogenesis versus use of either agent alone. Their effects are through augmenting EPC mobilization, incorporation, proliferation, migration, and tube formation while inhibiting EPC apoptosis. Statin and SDF-1 therefore display synergism in promoting neovascularization by improving reperfusion of ischemic muscle, increasing progenitor cell presentation and capillary density in ischemic muscle, and diminishing apoptosis. These results suggest that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia.  相似文献   

6.
Bone marrow (BM) is a source of mesenchymal stromal cells (MSCs) and endothelial progenitor cells (EPCs). MSCs provide a specific niche in the BM and biological features of EPCs may be changed with this niche. Stromal cell-derived factor 1 (SDF-1) secreted from primary BM-MSCs and biological features of this niche on EPC development are still yet to be understood. The aim of this study was to evaluate the role of SDF-1 produced by MSCs on EPC development. We applied the CRISPR/Cas9 system for the knock-out of the SDF-1 gene in BM-derived MSCs. BM-derived EPCs were then cocultured with MSCsSDF-1−/− or MSCsSDF-1+/+ to identify the role of MSC-derived SDF-1α on proliferation, migration and angiogenic activity of EPCs. Next, pre-expanded EPCs were harvested and co-transplanted with MSCsSDF-1−/− or MSCsSDF-1+/+ into sublethally irradiated mice to analyze the potency of these cells for marrow reconstitution. Our results revealed that proliferation, colony formation, migration and angiogenic activity of EPCs was significantly increased after coculture with MSCsSDF-1+/+. We also found that co-transplantation of EPCs with MSCsSDF-1+/+, in contrast to MSCsSDF-1−/−, into irradiated mice resulted in marrow repopulation and hematologic recovery, leading to improved survival of transplanted mice. In conclusions, MSC-derived SDF-1 niche plays an important role in the development of EPCs and this niche is essential for bone marrow repopulation by these cells and can enhance the efficiency of EPC therapy for ischemic diseases.  相似文献   

7.

Background

Cilostazol(CLZ) has been used as a vasodilating anti-platelet drug clinically and demonstrated to inhibit proliferation of smooth muscle cells and effect on endothelial cells. However, the effect of CLZ on re-endothelialization including bone marrow (BM)-derived endothelial progenitor cell (EPC) contribution is unclear. We have investigated the hypothesis that CLZ might accelerate re-endothelialization with EPCs.

Methodology/Principal Findings

Balloon carotid denudation was performed in male Sprague-Dawley rats. CLZ group was given CLZ mixed feed from 2weeks before carotid injury. Control group was fed normal diet. CLZ accelerated re-endothelialization at 2 weeks after surgery and resulted in a significant reduction of neointima formation 4 weeks after surgery compared with that in control group. CLZ also increased the number of circulating EPCs throughout the time course. We examined the contribution of BM-derived EPCs to re-endothelialization by BM transplantation from Tie2/lacZ mice to nude rats. The number of Tie2-regulated X-gal positive cells on injured arterial luminal surface was increased at 2 weeks after surgery in CLZ group compared with that in control group. In vitro, CLZ enhanced proliferation, adhesion and migration activity, and differentiation with mRNA upregulation of adhesion molecule integrin αvβ3, chemokine receptor CXCR4 and growth factor VEGF assessed by real-time RT-PCR in rat BM-derived cultured EPCs. In addition, CLZ markedly increased the expression of SDF-1α that is a ligand of CXCR4 receptor in EPCs, in the media following vascular injury.

Conclusions/Significance

CLZ promotes EPC mobilization from BM and EPC recruitment to sites of arterial injury, and thereby inhibited neointima formation with acceleration of re-endothelialization with EPCs as well as pre-existing endothelial cells in a rat carotid balloon injury model. CLZ could be not only an anti-platelet agent but also a promising tool for endothelial regeneration, which is a key event for preventing atherosclerosis or restenosis after vascular intervention.  相似文献   

8.

Background

The roles of circulating endothelial progenitor cell (EPC) and mononuclear cell apoptosis (MCA) in liver cirrhosis (LC) patients are unknown. Moreover, vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF)-1α are powerful endogenous substances enhancing EPC migration into circulation. We assessed the level and function of EPCs [CD31/CD34 (E1), KDR/CD34 (E2), CXCR4/CD34 (E3)], levels of MCA, VEGF and SDF-1α in circulation of LC patients.

Methods

Blood sample was prospectively collected once for assessing EPC level and function, MCA, and plasma levels of VEGF and SDF-1α using flow cytometry and enzyme-linked immunosorbent assay (ELISA), respectively, in 78 LC patients and 25 age- and gender-matched healthy controls.

Results

Number of EPCs (E1, E2, E3) was lower (all p < 0.0001), whereas SDF-1α level and MCA were higher (p < 0.001) in study patients compared with healthy controls. Number of EPCs (E2, E3) was higher but MCA was lower (all p < 0.05) in Child''s class A compared with Child''s class B and C patients, although no difference in VEGF and SDF-1α levels were noted among these patients. Chronic hepatitis B and esophageal varices bleeding were independently, whereas chronic hepatitis C, elevated aspartate aminotransferase (AST), and decompensated LC were inversely and independently correlated with circulating EPC level (all p < 0.03). Additionally, angiogenesis and transwell migratory ability of EPCs were reduced in LC patients than in controls (all p < 0.001).

Conclusion

The results of this study demonstrated that level, angiogenic capacity, and function of circulating EPCs were significantly reduced, whereas plasma levels of SDF-1α and circulating MCA were substantially enhanced in cirrhotic patients.  相似文献   

9.
Endothelial progenitor cells (EPCs) in the circulatory system have been suggested to maintain vascular homeostasis and contribute to adult vascular regeneration and repair. These processes require that EPCs break down the extracellular matrix (ECM), migrate, differentiate and undergo tube morphogenesis. Evidently, the ECM plays a critical role by providing biochemical and biophysical cues that regulate cellular behaviour. Using a chemically and mechanically tunable hydrogel to study tube morphogenesis in vitro, we show that vascular endothelial growth factor (VEGF) and substrate mechanics co‐regulate tubulogenesis of EPCs. High levels of VEGF are required to initiate tube morphogenesis and activate matrix metalloproteinases (MMPs), which enable EPC migration. Under these conditions, the elasticity of the substrate affects the progression of tube morphogenesis. With decreases in substrate stiffness, we observe decreased MMP expression while increased cellular elongation, with intracellular vacuole extension and coalescence to open lumen compartments. RNAi studies demonstrate that membrane type 1‐MMP (MT1‐MMP) is required to enable the movement of EPCs on the matrix and that EPCs sense matrix stiffness through signalling cascades leading to the activation of the RhoGTPase Cdc42. Collectively, these results suggest that coupled responses for VEGF stimulation and modulation of substrate stiffness are required to regulate tube morphogenesis of EPCs.  相似文献   

10.
The levels of fibroblast growth factor 23 (FGF23) rapidly increases after acute kidney injury (AKI). However, the role of FGF23 in AKI is still unclear. Here, we observe that pretreatment with FGF23 protein into ischemia-reperfusion induced AKI mice ameliorates kidney injury by promoting renal tubular regeneration, proliferation, vascular repair, and attenuating tubular damage. In vitro assays demonstrate that SDF-1 induces upregulation of its receptor CXCR4 in endothelial progenitor cells (EPCs) via a non-canonical NF-κB signaling pathway. FGF23 crosstalks with the SDF-1/CXCR4 signaling and abrogates SDF-1-induced EPC senescence and migration, but not angiogenesis, in a Klotho-independent manner. The downregulated pro-angiogenic IL-6, IL-8, and VEGF-A expressions after SDF-1 infusion are rescued after adding FGF23. Diminished therapeutic ability of SDF-1-treated EPCs is counteracted by FGF23 in a SCID mouse in vivo AKI model. Together, these data highlight a revolutionary and important role that FGF23 plays in the nephroprotection of IR-AKI.Subject terms: Extracellular signalling molecules, DNA methylation, Acute kidney injury, Experimental models of disease  相似文献   

11.
Angiogenesis requires the mobilization of progenitor cells from the bone marrow (BM) and homing of progenitor cells to ischemic tissue. The cholesterol lowering drug Statins can stimulate angiogenesis via mobilization of BM derived endothelial progenitor cells (EPCs), promoting EPC migration, and inhibiting EPC apoptosis. The chemokine stromal cell-derived factor-1 (SDF-1) augments EPC chemotaxis, facilitates EPC incorporation into the neovasculature. The combined use of a statin to mobilize EPCs and local overexpression of SDF-1 to augment EPC homing to ischemic muscle resulted in superior angiogenesis versus use of either agent alone. Their effects are through augmenting EPC mobilization, incorporation, proliferation, migration and tube formation while inhibiting EPC apoptosis. Statin and SDF-1 therefore display synergism in promoting neovascularization by improving reperfusion of ischemic muscle, increasing progenitor cell presentation and capillary density in ischemic muscle, and diminishing apoptosis. These results suggest that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia.Key words: angiogenesis, endothelial progenitor cells, statin, SDF-1, migrationAngiogenesis is the process by which new vessels form in ischemic tissue. The cytokine Stromal Cell Derived Factor-1 (SDF-1) is released into the circulation in response to ischemia and is an initiating signal in the angiogenesis process. SDF-1 mobilizes bone marrow cells (BMC) by binding to the cell surface receptor CXCR4. BMCs then enter the circulation and migrate to the ischemic site following the SDF-1 gradient. On arrival, BMCs promote angiogenesis by providing cellular elements such as endothelial cells (EC) and perivascular cells and also by secreting signaling proteins that mature the angiogenesis process. BMC surface CXCR4 expression and the SDF-1/CXCR4 interaction are essential for BMC to home to the injured site.Cell-based strategies to improve neovascularization of ischemic tissue have been achieved by injecting mononuclear cells derived from either BM1 or peripheral blood, directly into ischemic muscle,2 or by mobilizing BM-MNC with cytokines3 or other drugs such as statins.46Statins are 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors and are primarily used to lower circulating cholesterol levels. In addition to reducing cholesterol synthesis, inhibition of the mevalonate pathway prevents synthesis of isoprenoid intermediates including geranylgeranylpyrophosphate. Geranylgeranylation is important in the posttranslational modification of intracellular signaling proteins, including Rho GTPases. This mechanism underlies many of the pleiotropic effects including the ability of statins to stabilize endothelial nitric oxide synthase mRNA and increase nitric oxide biosynthesis. In fact, statins have been shown to protect against ischemic injury of the heart and stimulate angiogenesis in ischemic limbs of normocholesterolemic animals.7,8 The mechanism of action of statins has been demonstrated via mobilization of BM endothelial progenitor cells (EPCs) and facilitation of EPC incorporation into the neovasculature through a phosphoinositide-3 (PI-3) kinase-dependent pathway.46 Statins have also been reported to enhance EPC migration, augment EPC chemotaxis and inhibit EPC apoptosis both in vitro and in vivo.4,9,10SDF-1, an 89-amino acid polypeptide, is a member of the chemokine CXC subfamily originally isolated from murine bone marrow stromal cells.11 SDF-1 was initially identified as a potent chemoattractant for lymphocytes and monocytes, and as an enhancer of B cell proliferation. SDF-1 is considered to be a key regulator of hematopoietic stem cell trafficking between BM and the peripheral circulation. SDF-1 is highly expressed in ischemic tissues.12,13 Elevation of SDF-1 levels in peripheral blood results in BMC mobilization to the peripheral circulation with a concurrent decrease within the BM.14 SDF-1 not only mobilizes progenitor cells in BM but also directs them to the ischemic site by promoting cell migration and proliferation.3,15 SDF-1 may generate a gradient similar to developmental morphogens during ischemia that provides the cues and directions for progenitor cell mobilization into peripheral blood and homing to ischemic tissues.16,17 Furthermore, SDF-1 also reduces EPC apoptosis and enhances survival of the progenitor cells.3,18 SDF-1, either delivered locally in its protein form,3,19,20 or generated in situ via plasmid and viral vector-mediated gene expression,10,21,22 enhances neovascularization by augmenting EPC recruitment into ischemic tissues.SDF-1 binding to its receptor CXCR4 on the cell surface provides essential signals for mobilization and homing of EPCs to the injured site.2325 SDF-1 binding with CXCR4 triggers internalization of CXCR4. This SDF-1/CXCR4 interaction results in elevation of cytoplasmic Ca2+ levels26 and phosphorylation of PI-3 kinase and other protein kinases, e.g. Akt,21 MEK/ERK27,28 and Janus kinase (JAK)-2.29 Activation of Akt protein kinase further upregulates the activity of eNOS by increasing both eNOS expression and phosphorylation, which in turn catalyzes the production of nitric oxide (NO), an important signal molecule for vascular protection and remodeling.21,26 Disruption of SDF-1/CXCR4 interaction impaired incorporation of EPC into sites of ischemia, and disturbed ischemic limb neo-vascularization.30To explore if the combined use of a statin to mobilize BM EPCs and local overexpression of SDF-1 to augment EPC homing to ischemic muscle will result in superior angiogenesis versus use of either agent alone, we used the murine hindlimb ischemia model to determine the effects of Fluvastatin and SDF-1 on angiogenesis.10 Fluvastatin (5 mg/kg) was injected intra-peritoneally into the mice daily for 7 days to mobilize progenitor cells prior to ischemia-inducing surgery. NIH 3T3 cells transduced with the retroviral vector carrying SDF-1 gene were injected I.M. into the ischemic limb after surgery to locally deliver SDF-1 to ischemic muscle.22 The number of circulating EPCs increased 9–18 fold seven days post statin/SDF-1 treatment.Our data of single treatment with Fluvastatin are consistent with the previous reports that statins not only augment mobilization of progenitor cells by increasing circulating EPC originated from BM,4,31 but also modulate their differentiation. We further give a new insight view of the mechanism for statin induced EPC mobilization. We found that statin induced activation of matrix metalloproteinases (MMP)-2 and -9 in EPC. The increased MMP activity could result in degradation of extracellular matrix.17 Progenitor cells will be such mobilized into circulation when the cellular attachment is reduced within the bone marrow niches. We show that statin alone can enhance the phosphorylation of Akt, promote EPC proliferation, migration and inhibit cell apoptosis in vitro. The proangiogenic effects of statin are also illustrated in vivo using a murine hind-limb ischemia model. In this model, Fluvastatin treatment results in more EPC in circulation, more BM derived progenitor cells in ischemic muscle, more cell proliferation, enhanced capillary formation, and diminished cell apoptosis; these effects end up in improved reperfusion versus control. The beneficial effects of statin on angiogenesis are independent of cholesterol since the total serum cholesterol level is not changed by Fluvastatin treatment under these experimental conditions.To be noted, the effect of statins on EPCs was found to be concentration dependent. EPC proliferation, migration and the inhibition of apoptosis are enhanced at low statin concentrations (10 nM and 100 nM) but are significantly inhibited at a higher statin concentration (1,000 nM). The toxic effect of statin at high concentration cannot be compensated by addition of SDF-1, indicating that Statin causes apoptosis in a pathway different from the pathway that SDF-1 uses to prevent EPC apoptosis. Increased apoptosis at the higher statin concentration could explain the reversed effect of stain in angiogenesis. These findings are consistent with the reports in which statins were found to have proangiogenic effects at low therapeutic concentrations but angiostatic effects at high concentrations, the latter effect being reversible by geranylgeranyl pyrophosphate.32,33Combined statin and SDF-1 treatment significantly enhanced angiogenesis versus treatment with either reagent alone. More cell proliferation and less apoptosis were observed both in vitro and in vivo, along with increased cell migration and tube formation in vitro, and enhanced progenitor cell incorporation and higher capillary density in ischemic tissue in vivo. It is interesting to note that neither statin nor SDF-1 alone promotes EPC tube formation, but combined treatment results in significant EPC tube formation. These results suggest that SDF-1 and statin have different mechanisms of action with regards to the promotion of neovascularization. It is possible that each drug affects a specific subset of progenitor cells.The facilitative effect of both statin and SDF-1 on EPC proliferation and migration is involved with Akt phosphorylation and endothelial nitric oxide synthase (eNOS) activation. The mechanism by which statins promote angiogenesis is through, at least partly, improved nitric oxide bioavailability. Statins have been reported to induce eNOS mRNA stability34 and eNOS activity through a PI3k/Akt dependent pathway.31,3537 However, neither eNOS mRNA/protein expression nor EPCs are reported to be essential for the therapeutic effect of Fluvastatin on hypoxia-induced pulmonary hypertension; Fluvastatin improved eNOS phosphorylation by a mechanism independent of Akt activation.38 Our data favor a mechanism involving Akt phosphorylation since phosphorylated Akt is increased when EPCs are cultured in the presence of statin, and statin-enhanced EPC proliferation and migration were inhibited by the PI3K/Akt inhibitor LY294002.The angiogenic effects of SDF-1 also involve increased production of NO26 as NO is essential for EC migration and angiogenesis. SDF-1α gene transfer has been shown to enhance eNOS activity.21 Our in vitro data confirmed the involvement of Akt and eNOS in SDF-1 mediated cell migration.10 Phosphorylated Akt is increased when EPCs are cultured in the presence of SDF-1. The facilitative effect of SDF-1 on EPC migration is blocked by both the Akt inhibitor LY294002 and the eNOS inhibitor L-NMMA. In contrast, L-NMMA does not reverse the inhibitory effect of SDF-1 on apoptosis, indicating that the inhibitory effect of SDF-1 on apoptosis is not mediated through NO.22We also show that the expression of MMP-2 and MMP-9 was increased when EPCs were cultured in the presence of statin or SDF-1. MMPs are a family of proteolytic enzymes that degrade components of the extracellular matrix (ECM). Degradation of ECM is an essential step for cell mobilization and migration. Our data indicate that the novel effect of statin and SDF-1 on migration is through enhancement of MMP-2 and MMP-9 activity, resulting in ECM degradation, thus promoting progenitor cell mobilization and migration. Both Akt phosphorylation and expression of MMP-2 and MMP-9 in EPCs are further enhanced by combined treatment with statin and SDF-1. This result indicates that treatment of EPCs with either statin or SDF-1 as monotherapy results in a sub-maximal angiogenic response. The effects of statin partially overlap with that of SDF-1; and the combined use of two factors appears to have an optimal effect on progenitor cells (Fig. 1).Open in a separate windowFigure 1Effect of statins and SDF-1 on promoting angiogenesis. Statin enhances the phosphorylation of Akt with a yet undefined mechanism. SDF-1 binding with the G-protein coupled membrane receptor CXCR4 results in phosphorylation of protein kinases like PI3 kinase and Akt. Activation of Akt then upregulates the activities of MMPs and eNOS. NOS catalyze the synthesis of NO which is essential for the EPC migration. MMPs degrade extracellular matrix to initiate cell migration. Activation of Akt also prevents cell apoptosis. These reactions promote cell migration and proliferation and enhance EPC survival. EPCs from bone marrow are thus mobilized into circulation. The circulating EPC are homed into ischemia area in lure of SDF-1. EPCs contribute to neovascularisation, either directly by incorporation into endothelium and differentiation into endothelial cells or indirectly by differentiating into perivascular cells that provide physical support and secrete signaling proteins and structural enzymes enabling the angiogenesis process. The effects of statin partially overlap with that of SDF-1; and the combined use of two factors appears to have an additive/synergistic effect on progenitor cells.In summary, the combination of progenitor cell mobilization with statin and targeted recruitment into the ischemic bed by SDF-1 leads to improved blood flow in the ischemic limb versus treatment with either agent alone. Statin and SDF-1 therefore display synergism in promoting neovascularization. This result suggests that the combination of statin and SDF-1 may be a new therapeutic strategy in the treatment of limb ischemia. However, the use of statins as a clinical modifier of angiogenesis is still unproven. A great number of patients have been treated with these drugs and if they were potently proangiogenic, one might expect to see an increased risk of tumors. However, there is no evidence that these drugs encourage tumor development. Likewise, there is no definitive evidence for an antiangiogenic, tumor-modulating action of statins. We await further studies with interest.  相似文献   

12.
Chen J  Jin J  Song M  Dong H  Zhao G  Huang L 《Gene》2012,496(2):128-135

Objective

C-reactive protein (CRP), the prototypic marker of inflammation, has been shown to be an independent predictor of atherosclerosis. CRP can regulate receptor for advanced glycation end-products (RAGE) expression in endothelial progenitor cells (EPCs). Endothelial nitric oxide synthase (eNOS) deficiency is a pivotal event in atherogenesis. It is believed that decreased eNOS bioactivity occurs early in atherogenesis. Therefore, we tested the hypothesis that CRP can alter eNOS expression and promote apoptosis in EPCs through RAGE.

Methods and results

EPCs, isolated from bone marrow, were cultured in the presence or absence of LPS-free CRP (5, 10, 15, 20, and50 μg/ml). RAGE protein expression and siRNA were measured by flow cytometric analysis. PCR was used to detect eNOS mRNA expression. eNOS protein expression was measured by Western blot analysis. A spectrophotometer was used to assess eNOS activity. A modified Boyden's chamber was used to assess the migration of EPCs and the number of recultured EPCs was counted to measure adhesiveness. A MTT assay was used to determine proliferation. Apoptosis was evaluated by annexin V immunostaining and TUNEL staining. Co-culturing with CRP caused a significant down-regulation of eNOS expression, inhibited the proliferation, migration, and adhesion of EPCs, and induced EPC apoptosis. In addition, these effects were attenuated during RAGE protein expression blockade by siRNA.

Conclusions

CRP, at concentrations known to predict cardiovascular event, directly quenches the expression of eNOS and diminishes NO production, and may serve to impair EPC function and promote EPC apoptosis through RAGE. These data further support a direct role of CRP in the development and/or progression of atherosclerosis and indicate a new pathophysiologic mechanism of disturbed vascular adaptation in atherosclerosis.  相似文献   

13.
目的:研究血管内皮生长因子(VEGF)和基质衍生因子-1(SDF-1)的协同作用对高血压脑出血患者内皮祖细胞(EPCs)增殖迁移能力的影响。方法:采集急性期高血压脑出血患者与健康对照的外周静脉血,分离培养外周血中的EPCs。用分别含有不同VEGF与SDF-1的培养基处理患者外周血分离的EPCs,Western blot检测各组细胞以及患者和对照中VEGF和SDF-1的蛋白表达。MTT法检测细胞增值能力,Transwell法检测细胞迁移能力,分别转染VEGF-si RNA与SDF-1-si RNA至各组细胞观察抑制VEGF和SDF-1对EPCs增殖迁移能力的影响。结果:VEGF和SDF-1在患者中的表达显著高于健康对照组。VEGF和SDF-1对EPCs的增殖和迁移能力有促进作用,且在其协同作用下效果显著。抑制VEGF或SDF-1显著降低VEGF和SDF-1对EPCs增殖迁移能力的促进作用。结论:VEGF和SDF-1的协同作可促进急性期高血压脑出血患者EPCs的细胞增殖能力和迁移能力,对患者血管修复提供新的治疗方向。  相似文献   

14.
15.

Background

Kidney transplantation (RTx) leads to amelioration of endothelial function in patients with advanced renal failure. Endothelial progenitor cells (EPCs) may play a key role in this repair process. The aim of this study was to determine the impact of RTx and immunosuppressive therapy on the number of circulating EPCs.

Methods

We analyzed 52 RTx patients (58±13 years; 33 males, mean ± SD) and 16 age- and gender-matched subjects with normal kidney function (57±17; 10 males). RTx patients received a calcineurin inhibitor (CNI)-based (65%) or a CNI-free therapy (35%) and steroids. EPC number was determined by double positive staining for CD133/VEGFR2 and CD34/VEGFR2 by flow cytometry. Stromal cell-derived factor 1 alpha (SDF-1) levels were assessed by ELISA. Experimentally, to dissociate the impact of RTx from the impact of immunosuppressants, we used the 5/6 nephrectomy model. The animals were treated with a CNI-based or a CNI-free therapy, and EPCs (Sca+cKit+) and CD26+ cells were determined by flow cytometry.

Results

Compared to controls, circulating number of CD34+/VEGFR2+ and CD133+/VEGFR2+ EPCs increased in RTx patients. There were no correlations between EPC levels and statin, erythropoietin or use of renin angiotensin system blockers in our study. Indeed, multivariate analysis showed that SDF-1 – a cytokine responsible for EPC mobilization – is independently associated with the EPC number. 5/6 rats presented decreased EPC counts in comparison to control animals. Immunosuppressive therapy was able to restore normal EPC values in 5/6 rats. These effects on EPC number were associated with reduced number of CD26+ cells, which might be related to consequent accumulation of SDF-1.

Conclusions

We conclude that kidney transplantation and its associated use of immunosuppressive drugs increases the number of circulating EPCs via the manipulation of the CD26/SDF-1 axis. Increased EPC count may be associated to endothelial repair and function in these patients.  相似文献   

16.
Circulating endothelial progenitor cells (EPCs) play a significant role in neovascularization of ischaemic tissues and in re-endothelization of injured blood vessels. Identification of compounds able to enhance EPC levels and improve their functional activity, noticeably compromised by risk factors for coronary heart disease, is of clinical interest. This study evaluates the effects of red wine on EPCs. After being isolated from total peripheral blood mononuclear cells, EPC phenotype was confirmed by the presence of double positive cells for DiLDL uptake and lectin binding and by expression of CD34, CD133 and VE-cadherin cell surface markers. Long-term culture in the presence of red wine (1 microl/ml), containing resveratrol (Resv) at physiological concentration (nM), determined a time-dependent amelioration of cell number (P < 0.05). The presence of red wine prevented the TNF-alpha-induced reduction of EPC number (P < 0.05) and this effect was accompanied by reduced p38-phosphorylation expression levels (P < 0.05) and increased NOx levels (P < 0.05) Indeed, pure Resv alone significantly improved the TNF-alpha reduced EPC number (P < 0.05). This evidence indicates novel beneficial effects of red wine and Resv in the positive modulation of EPCs levels.  相似文献   

17.
Circulating endothelial progenitor cells (EPCs), which function in vascular repair, are the markers of endothelial dysfunction and vascular health. Fibroblast growth factor 21 (FGF21), a liver‐secreted protein, plays a crucial role in glucose homeostasis and lipid metabolism. FGF21 has been reported to attenuate the progression of atherosclerosis, but its impact on EPCs under high oxidative stress conditions remains unclear. In vitro studies showed that the β‐klotho protein was expressed in cultured EPCs and that its expression was upregulated by FGF21 treatment. Hydrogen peroxide (H2O2)‐induced oxidative stress impaired EPC function, including cell viability, migration and tube formation. Pretreatment with FGF21 restored the functions of EPCs after the exposure to H2O2. Administration of N(ω)‐nitro‐L‐arginine methyl ester (L‐NAME), an inhibitor of nitric oxide synthase, inhibited the effects of FGF21 in alleviating oxidative injury by suppressing endothelial nitric oxide synthase (eNOS). In an in vivo study, the administration of FGF21 significantly reduced total cholesterol (TC) and blood glucose levels in apolipoprotein E (ApoE)‐deficient mice that were fed a high‐fat diet (HFD). Endothelial function, as reflected by acetylcholine‐stimulated aortic relaxation, was improved after FGF21 treatment in ApoE‐deficient mice. Analysis of mRNA levels in the aorta indicated that FGF21 increased the mRNA expression of eNOS and upregulated the expression of the antioxidant genes superoxide dismutase (SOD)1 and SOD2 in ApoE‐deficient mice. These data suggest that FGF21 improves EPC functions via the Akt/eNOS/nitric oxide (NO) pathway and reverses endothelial dysfunction under oxidative stress. Therefore, administration of FGF21 may ameliorate a HFD‐induced vascular injury in ApoE‐deficient mice.  相似文献   

18.

Background

Asthmatic responses involve a systemic component where activation of the bone marrow leads to mobilization and lung-homing of progenitor cells. This traffic may be driven by stromal cell derived factor-1 (SDF-1), a potent progenitor chemoattractant. We have previously shown that airway angiogenesis, an early remodeling event, can be inhibited by preventing the migration of endothelial progenitor cells (EPC) to the lungs. Given intranasally, AMD3100, a CXCR4 antagonist that inhibits SDF-1 mediated effects, attenuated allergen-induced lung-homing of EPC, vascularization of pulmonary tissue, airway eosinophilia and development of airway hyperresponsiveness. Since SDF-1 is also an eosinophil chemoattractant, we investigated, using a transgenic eosinophil deficient mouse strain (PHIL) whether EPC lung accumulation and lung vascularization in allergic airway responses is dependent on eosinophilic inflammation.

Methods

Wild-type (WT) BALB/c and eosinophil deficient (PHIL) mice were sensitized to house dust mite (HDM) using a chronic exposure protocol and treated with AMD3100 to modulate SDF-1 stimulated progenitor traffic. Following HDM challenge, lung-extracted EPCs were enumerated along with airway inflammation, microvessel density (MVD) and airway methacholine responsiveness (AHR).

Results

Following Ag sensitization, both WT and PHIL mice exhibited HDM-induced increase in airway inflammation, EPC lung-accumulation, lung angiogenesis and AHR. Treatment with AMD3100 significantly attenuated outcome measures in both groups of mice. Significantly lower levels of EPC and a trend for lower vascularization were detected in PHIL versus WT mice.

Conclusions

This study shows that while allergen-induced lung-homing of endothelial progenitor cells, increased tissue vascularization and development lung dysfunction can occur in the absence of eosinophils, the presence of these cells worsens the pathology of the allergic response.  相似文献   

19.
目的:研究冠状动脉严重狭窄稳定型心绞痛(Stable angina pectoris, SPA)患者循环内皮祖细胞(endothelial progenitor cells, EPCs)及基质细胞衍生因子(SDF)-1-alpha与冠状动脉侧支循环(CCC)形成的相关性,以期为治疗冠心病提供新的思路。方法:选择 2012 年8 月到2014 年12月在我院就诊的88 例冠状动脉严重狭窄的稳定型心绞痛患者(CCC 良好40 例、不良48 例),均采集 外周血测定EPC 数量、体外生成血管能力,并用ELISA 法检测其血浆SDF-1alpha 水平,采用直线相关和Pearson 检验分析CCC良好 与不良者各指标间及与CCC 分级的相关性;将所有入选病例随机分为6 组,并分离外周血单个核细胞并分别加入不同的培养 液,培养7 天后体外测定EPCs 数量以及生成血管的能力,并通过ELISA 法检测培养液上清中VEGF 的蛋白水平。结果:CCC 不 良组EPCs 数量、体外生成血管能力及SDF-1-alpha水平均明显低于CCC 良好组(P<0.05)。体外生成血管能力、循环EPCs 数量以及 SDF-1alpha水平均与CCC分级呈现显著的正相关性(r =0.72、0.67、0.79,均P<0.05);循环EPCs 数量、SDF-1alpha水平以及体外生成血 管能力亦均呈现显著正相关性(r =0.78、0.62,均P<0.05)。与PBS、SDF-1alpha+ AMD3100 及SDF-1alpha+ KI8751 干预物质比较,SDF-1琢 能够呈剂量依赖性的明显提高EPCs 数量、增强其体外生成血管的能力及VEGF水平(P<0.05)。结论:冠状动脉严重狭窄稳定型 心绞痛患者循环EPCs及SDF-1琢与CCC 形成有关,VEGF可能参与该过程。  相似文献   

20.

Background

Bone marrow-derived endothelial progenitor cells (EPCs), especially late EPCs, play a critical role in endothelial maintenance and repair, and postnatal vasculogenesis. Although the actin cytoskeleton has been considered as a modulator that controls the function and modulation of stem cells, its role in the function of EPCs, and in particular late EPCs, remains poorly understood.

Methodology/Principal Finding

Bone marrow-derived late EPCs were treated with jasplakinolide, a compound that stabilizes actin filaments. Cell apoptosis, proliferation, adhesion, migration, tube formation, nitric oxide (NO) production and endothelial NO synthase (eNOS) phosphorylation were subsequently assayed in vitro. Moreover, EPCs were locally infused into freshly balloon-injured carotid arteries, and the reendothelialization capacity was evaluated after 14 days. Jasplakinolide affected the actin distribution of late EPCs in a concentration and time dependent manner, and a moderate concentration of (100 nmol/l) jasplakinolide directly stabilized the actin filament of late EPCs. Actin stabilization by jasplakinolide enhanced the late EPC apoptosis induced by VEGF deprivation, and significantly impaired late EPC proliferation, adhesion, migration and tube formation. Furthermore, jasplakinolide attenuated the reendothelialization capacity of transplanted EPCs in the injured arterial segment in vivo. However, eNOS phosphorylation and NO production were increased in late EPCs treated with jasplakinolide. NO donor sodium nitroprusside (SNP) rescued the functional activities of jasplakinolide-stressed late EPCs while the endothelial NO synthase inhibitor L-NAME led to a further dysfunction induced by jasplakinolide in late EPCs.

Conclusions/Significance

A moderate concentration of jasplakinolide results in an accumulation of actin filaments, enhancing the apoptosis induced by cytokine deprivation, and impairing the proliferation and function of late EPCs both in vitro and in vivo. NO donor reverses these impairments, suggesting the role of NO-related mechanisms in jasplakinolide-induced EPC downregulation. Actin cytoskeleton may thus play a pivotal role in regulating late EPC function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号