首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effects of disodium fumarate (DF) on methane emission, ruminal fermentation and microbial abundance in goats under different forage (F) : concentrate (C) ratios and fed according to maintenance requirements. Four ruminally fistulated, castrated male goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and the main factors being the F : C ratios (41 : 59 or 58 : 42) and DF supplementation (0 or 10 g/day). DF reduced methane production (P < 0.05) on average by 11.9%, irrespective of the F : C ratio. The concentrations of total volatile fatty acids, acetate and propionate were greater in the rumen of goats supplemented with DF (P < 0.05), whereas the abundance of methanogens was lower (P < 0.05). In high-forage diets, the abundance of Selenomonas ruminantium, a fumarate-reducing bacterium, was greater in the rumen of goats supplemented with DF. The abundance of fungi, protozoa, Ruminococus flavefaciens and Fibrobacter succinogenes were not affected by the addition of DF. Variable F : C ratios affected the abundance of methanogens, fungi and R. flavefaciens (P < 0.05), but did not affect methane emission. The result implied that DF had a beneficial effect on the in vivo rumen fermentation of the goats fed diets with different F : C ratios and that this effect were not a direct action on anaerobic fungi, protozoa and fibrolytic bacteria, the generally recognized fiber-degrading and hydrogen-producing microorganisms, but due to the stimulation of fumarate-reducing bacteria and the depression of methanogens.  相似文献   

2.
Rubber seed oil (RO) that is rich in polyunsaturated fatty acids (FA) can improve milk production and milk FA profiles of dairy cows; however, the responses of digestion and ruminal fermentation to RO supplementation in vivo are still unknown. This experiment was conducted to investigate the effect of RO and flaxseed oil (FO) supplementation on nutrients digestibility, rumen fermentation parameters and rumen FA profile of dairy cows. Forty-eight mid-lactation Holstein dairy cows were randomly assigned to one of four treatments for 8 weeks, including basal diet (CON) or the basal dietary supplemented with 4% RO, 4% FO or 2% RO plus 2% FO on a DM basis. Compared with CON, dietary oil supplementation improved the total tract apparent digestibility of DM, neutral detergent fibre and ether extracts ( P < 0.05). Oil treatment groups had no effects on ruminal digesta pH value, ammonia N and microbial crude protein ( P > 0.05), whereas oil groups significantly changed the volatile fatty acid (VFA) profile by increasing the proportion of propionate whilst decreasing total VFA concentration, the proportion of acetate and the ratio of acetate to propionate ( P < 0.05). However, there were no differences in VFA proportions between the three oil groups (P > 0.05). In addition, dietary oil supplementation increased the total unsaturated FA proportion in the rumen by enhancing the proportion of trans-11 C18:1 vaccenic acid (VA), cis-9, trans-11 conjugated linoleic acid (CLA) and α-linolenic acid (ALA) ( P < 0.05). These results indicate that dietary supplementation with RO and FO could improve nutrients digestibility, ruminal fermentation and ruminal FA profile by enhancing the VA, cis-9, trans-11 CLA and ALA composition of lactating dairy cows. These findings provide a theoretical basis for the application of RO in livestock production.  相似文献   

3.
Moringa oleifera seeds are currently being used as a livestock feed across tropical regions of the world due to its availability and palatability. However, limited knowledge exists on the effects of the raw seeds on ruminant metabolism. As such, the rumen stimulation technique was used to evaluate the effects of substituting increasing concentrations of ground Moringa seeds (0, 100, 200 and 400 g/kg concentrate dry matter (DM)) in the diet on rumen fermentation and methane production. Two identical, Rusitec apparatuses, each with eight fermenters were used with the first 8 days used for adaptation and days 9 to 16 used for measurements. Fermenters were fed a total mixed ration with Urochloa brizantha as the forage. Disappearance of DM, CP, NDF and ADF linearly decreased (P<0.01) with increasing concentrations of Moringa seeds in the diet. Total volatile fatty acid production and the acetate to propionate ratio were also linearly decreased (P<0.01). However, only the 400 g/kg (concentrate DM basis) treatment differed (P<0.01) from the control. Methane production (%), total microbial incorporation of 15N and total production of microbial N linearly decreased (P<0.01) as the inclusion of Moringa seeds increased. Though the inclusion of Moringa seeds in the diet decreased CH4 production, this arose from an unfavourable decrease in diet digestibility and rumen fermentation parameters.  相似文献   

4.
A study was conducted to evaluate the main effects of dietary nitrate adaptation by cattle and alfalfa cell wall to starch ratio in in vitro substrates on nitrate disappearance and nitrite and volatile fatty acid (VFA) concentrations, as well as hydrogen (H2) and methane (CH4) accumulations. Rumen fluid from steers fed diets containing urea or nitrate was added into in vitro incubations containing sodium nitrate as the sole nitrogen source and 20 cell wall : 80 starch or 80 cell wall : 20 starch as the carbohydrate source. The results showed that during 24 h incubation, rumen fluid inoculums from steers adapted to dietary nitrate resulted in more rapid nitrate disappearance by 6 h of incubation (P < 0.01), no significant effect on nitrite concentration and diminished CH4 accumulation (P < 0.05). Cell wall to starch ratio did not affect nitrate disappearance, CH4 accumulation and total VFA concentration. The higher cell wall ratio had the lower total gas production and H2 concentration (P < 0.05). Ammonia-N (NH3-N) concentration increased because of adaptation of donors to nitrate feeding (P < 0.05). Nitrate adaptation did not alter total VFA concentration, but increased acetate, and decreased propionate and butyrate molar proportions (P < 0.01).  相似文献   

5.
Four rumen fistulated wethers were used to investigate the effect of glyphosate contaminated feed on rumen fermentation. The rations were based on corn silage, urea and a vitamin-mineral premix, either in the absence or presence of 0.77?g glyphosate per kg DM. Furthermore, rations were fed either with or without aromatic amino acid supplementation. During four periods of 28 days, sheep received each of the four dietary treatments according to a Latin square. After 14 days of adaptation rumen fermentation parameters (pH, ammonia, volatile fatty acids) were measured on day 15 over a five-hour period after the morning feeding. The remaining 13 days served for in sacco degradation studies with grass hay and corn grain. Ammonia (NH3) and pH of rumen fluid were within the normal range for all dietary treatments (NH3: 9.1 – 32.3?mmol·l???1, pH: 6.2 – 6.7). Neither rumen fermentation parameters nor in sacco DM and NDF degradation of incubated feedstuffs were significantly affected by glyphosate, with or without aromatic amino acid supplementation. Kinetic profiles of the in sacco dry matter and NDF degradation of grass hay were almost identical for the dietary treatments.  相似文献   

6.
The process of ensiling was studied in fresh maize (15% dry matter (DM)), wilted maize (18 and 24% DM) and maize mixed with 5–20% of wheat straw (18, 25 and 29% DM). Silages with 24% DM were preserved better than those with lower dry matter content. There was a significant change, with time, in pH, titrable acidity, volatile fatty acids, lactic acid, number of lactic acid bacteria, volatile nitrogen and soluble sugars in all the treatments. There was a significant decline in volatile fatty acids (P<0.05) and ammonia (P<0.01) production, and a significant increase in soluble sugar (P<0.01) in silages made after wilting. A significant decline in titrable acidity (P<0.01), volatile fatty acid production (p<0.05) and ammonia nitrogen (P<0.01), and a significant increase in pH (P<0.01) were found in silages of maize mixed with wheat straw. The overall rate of fermentation decreased during the first few days of fermentation in wilted and wheat straw silages, but the final products had characteristics of a good silage. In the second experiment the effect of urea and molasses was studied on wheat straw plus maize (15:85) silage with an initial DM content of 31–34%. Three levels of molasses (0, 3 and 6% of fresh weight) and two levels of urea (0 and 0.5% of fresh weight) were studied. Urea treatment with 3% molasses was found to be the best on the basis of silage characteristics.  相似文献   

7.
The use of antibiotics as supplements in animal feed is restricted due to possible health hazards associated with them. Consequently, there is increasing interest in exploiting natural products to improve health and production of livestock with no detrimental side effects. In this study, we examined the effect of Astragalus membranaceus root (AMT) supplementation on DM intake, growth performance, rumen fermentation and immunity of Tibetan sheep. Twenty-four male Tibetan sheep (31 ± 1.4 kg; 9 months old) were assigned randomly to one of four dietary treatments with different levels of AMT: 0, 20, 50 and 80 g/kg DM (A0, A2, A5 and A8, respectively) in addition to their basal diets. A0 acted as a control group, and measurements were recorded over a 56-d feeding period. Sheep fed with AMT had a higher average daily gain and a lower feed:gain ratio than controls (P < 0.001). Rumen concentrations of NH3-N (P < 0.001), total volatile fatty acids (P = 0.028), acetate (P = 0.017) and propionate (P = 0.031) in A5 and A8 were higher than those in A0. The addition of AMT in the feed significantly increased serum antioxidant and immunity factors of the sheep and increased the concentrations of serum interleukin, immunoglobulin and tumour necrosis factor-α (P = 0.010). We concluded that AMT can be used as a feed additive to improve growth performance and rumen fermentation and enhance the immunity of Tibetan sheep. Some responses exhibited a dose-dependent response, whereas other did not exhibit a pattern, with an increase in AMT. The addition of 50 and 80 g/kg AMT of total DM intake showed the most promising results.  相似文献   

8.
Safflower seed (SS), Carthamus tinctorius L., has the highest concentration of linoleic acid among 80 oilseeds. It was hypothesized that an Iranian variety of SS can be effectively fed with cottonseeds (CS) to maintain feed intake, energy metabolism and productivity of early lactation cows under negative energy balance. Our objective was to determine effects of feeding diets containing 100 g whole CS with (1) no SS (SS0), (2) 75 g CS + 25 g SS (SS25), or (3) 50 g CS + 50 g SS (SS50), per kg of dietary DM, on feed intake, rumen fermentation, blood metabolites and milk production of early lactation cows fed diets based on a uniform mixtures of alfalfa hay and corn silage. Nine multiparous early lactation Holstein cows (46 ± 7 d in milk) were used in a replicated 3 × 3 Latin square design study with three 21-d periods. Each period had 14 d of adaptation and 7 d of data collection. Dietary inclusion of SS did not affect (P>0.10) DM intake, rumen pH and concentrations of ammonia and VFA, blood concentrations of insulin, non-esterified fatty acids, urea and triglycerides, and milk production. Adding SS linearly reduced blood glucose (P=0.05) and beta-hydroxybutyric acid (P<0.05), and increased blood total cholesterol (P<0.01) and low-density lipoproteins (P<0.05) concentrations. Results demonstrated that SS as an economical and rich source of essential fatty acids can be included up to 50 g/kg of dietary DM alongside CS for early lactation cows without affecting feed intake while maintaining rumen fermentation, peripheral energy supply and milk production.  相似文献   

9.
It has been suggested that the rumen microbiome and rumen function might be disrupted if methane production in the rumen is decreased. Furthermore concerns have been voiced that geography and management might influence the underlying microbial population and hence the response of the rumen to mitigation strategies. Here we report the effect of the dietary additives: linseed oil and nitrate on methane emissions, rumen fermentation, and the rumen microbiome in two experiments from New Zealand (Dairy 1) and the UK (Dairy 2). Dairy 1 was a randomized block design with 18 multiparous lactating cows. Dairy 2 was a complete replicated 3 x 3 Latin Square using 6 rumen cannulated, lactating dairy cows. Treatments consisted of a control total mixed ration (TMR), supplementation with linseed oil (4% of feed DM) and supplementation with nitrate (2% of feed DM) in both experiments. Methane emissions were measured in open circuit respiration chambers and rumen samples were analyzed for rumen fermentation parameters and microbial population structure using qPCR and next generation sequencing (NGS). Supplementation with nitrate, but not linseed oil, decreased methane yield (g/kg DMI; P<0.02) and increased hydrogen (P<0.03) emissions in both experiments. Furthermore, the effect of nitrate on gaseous emissions was accompanied by an increased rumen acetate to propionate ratio and consistent changes in the rumen microbial populations including a decreased abundance of the main genus Prevotella and a decrease in archaeal mcrA (log10 copies/ g rumen DM content). These results demonstrate that methane emissions can be significantly decreased with nitrate supplementation with only minor, but consistent, effects on the rumen microbial population and its function, with no evidence that the response to dietary additives differed due to geography and different underlying microbial populations.  相似文献   

10.
The two most popular rumen-protected fatty acid supplements in dairy cow rations are calcium salts of palm oil fatty acid calcium salts of palm oil fatty acid (CSFA) and prilled saturated fatty acids (SFAs). The objectives of this study were to determine the effects of supplementing SFA in the form of triglycerides (TSFA), as compared to CSFA, on yields, efficiency and diet digestibility in high-yielding dairy cows. Twenty-eight (14 cows in each group) multiparous cows were fed a basal diet supplemented (on DM basis) with either 12 g/kg TSFA (~350 g/cow per day – contained 980 g/kg fat; 882.3 g/kg SFAs) or 14 g/kg CSFA (~440 g/cow per day – contained 800 g/kg fat; 566.4 g/kg SFAs). The supplement amounts in the diet were balanced according to fat content. Rumen samples were taken for measurements of ammonia and volatile fatty acids concentrations, and fecal samples were taken for digestibility measurements. The CSFA cows produced 3% higher milk yields (47.6 v. 46.2 kg/day; P < 0.0001) and 4.7% higher 4% fat-corrected milk (FCM; 44.7 v. 42.7 kg/day; P = 0.02) than the TSFA cows. No difference in milk-fat content was observed, but milk-protein content was higher in the TSFA than CSFA cows. Yields of fat and protein were similar, but lactose yields were higher in TSFA cows. There were no differences in dry matter intake or efficiency calculations between groups. The ruminal ammonia concentrations were similar between groups, whereas acetate concentrations and acetate : propionate ratio were greater for CSFA than TSFA cows. The apparent total-tract digestibility of dry (P < 0.0007) and organic matters (P < 0.0003), fat (P < 0.0001), NDF and ADF (P = 0.02) were lower in the TSFA v. CSFA cows. In conclusion, the CSFA-supplemented cows produced 3% higher milk and 4.7% higher 4% FCM than the TSFA cows. However, TSFA supplementation did not depress milk-protein content. The apparent total-tract digestibility was lower for all dietary components in the TSFA cows, which was probably due to the effects of both degree of saturation and triglyceride form of the TSFA supplement. Considering that diets were balanced according to the fat content of the supplements, the lower yields of milk and FCM observed in the TSFA than CSFA cows were likely due to the lower digestibility of the fat and other nutrients in the TSFA cows, which might have negatively influenced the dietary energy content.  相似文献   

11.
The aim of this study was to isolate a glycerol-producing yeast strain from nature to prepare glycerol-enriched yeast culture (GY), and preliminarily evaluate the effects of GY on blood metabolites and ruminal fermentation in goats. During the trial, six isolates were isolated from unprocessed honey, and only two isolates with higher glycerol yield were identified by analysis of 26S ribosomal DNA sequences. One of the two isolates was identified as Saccharomyces cerevisiae, a direct-fed microbe permitted by the FDA. This isolate was used to prepare GY. The fermentation parameters were optimized through single-factor and orthogonal design methods to maximize the glycerol yield and biomass. The final GY contained 38.7±0.6 g/L glycerol and 12.6±0.5 g/L biomass. In vivo, eight castrated male goats with ruminal fistula were used in a replicated 4×4 Latin square experiment with four consecutive periods of 15 d. Treatments were as follows: control, LGY, MGY, and HGY with 0, 100, 200, and 300 mL GY per goat per day, respectively. The GY was added in two equal portions at 08∶00 and 17∶00 through ruminal fistula. Samples of blood and ruminal fluid were collected on the last one and two days of each period, respectively. Results showed that the plasma concentrations of triglyceride and total cholesterol were not affected by the supplemented GY. Compared with the control, goats supplemented with MGY and HGY had significantly higher (P<0.05) concentrations of plasma glucose and total protein, ruminal volatile fatty acid and molar proportion of propionate, and significantly lower (P<0.05) ruminal pH and ammonia nitrogen. These parameters changed linearly with increasing GY supplementation level (P<0.05). In conclusion, GY has great potential to be developed as a feed additive with dual effects of glycerol and yeast for ruminants.  相似文献   

12.
Replacement of conventional feedstuffs with cheap non-conventional ingredients may improve livestock performance and the quality of their products, particularly milk. The study considered the effects of Moringa oleifera (MO) foliage in replacement of berseem clover (BC) on feed utilisation and lactational performance in Nubian goats. A total of 16 lactating Nubian does, weighing 36.2±0.8 kg, were randomly assigned to four experimental treatments containing 0, 125, 250 and 375 g of MO per kg diet to replace 0 (M0), 25 (M25), 50 (M50) and 75% (M75) of BC (on dry matter (DM) basis) in a quadruplicated 4×4 Latin square design. The MO diets increased (P<0.01) feed intake and nutrient digestibility. Feeding MO diets improved (P<0.01) ruminal volatile fatty acids, acetate and propionate but reduced (P<0.01) valerate and iso-butyrate. Moringa diets increased (P<0.01) serum total protein, albumin and glucose but decreased (P<0.05) cholesterol and triglycerides. Milk yield and energy corrected milk, and milk total solids, fat and energy content were increased (P<0.01) in MO diets. Yields of milk components and energy were greater (P<0.05) for MO diets than for control diet. Milk total saturated fatty acids and athrogenicity index were lower (P<0.01), and unsaturated fatty acids, conjugated fatty acids and UFA/SFA ratio higher (P<0.05) for MO diets. It is concluded that feeding MO to replace 75% DM of BC improved feed utilisation, ruminal fermentation, and milk yield and quality in lactating Nubian goats.  相似文献   

13.
This study aimed at assessing the impact of four barley forms on total tract apparent digestibility of dietary fibre in horses fed a large amount of starch in the morning meal (0.27% BW). Processed barley forms had a greater pre-caecal starch digestibility than the whole form. Based on this result, we hypothesised that using barley-processing methods would limit the potential dumping of undegraded starch in the hindgut of horses and, consequently, the potential negative effect on fibre degradation in the hindgut. In a 4×4 latin square design, four mature geldings fitted with a right ventral colon-fistula were fed a meadow hay : concentrate (62 : 38; dry matter (DM) basis) diet at 1.7% BW. The concentrate was made of 80% barley distributed either as whole grain or as processed forms: 2.5 mm ground, pelleted or steam-flaked. For each period, total tract apparent digestibilities of DM, NDF and ADF were determined over 3 consecutive days by total faecal collection, whereas pH, volatile fatty acids (VFA) concentrations and cultural functional bacteria counts (total anaerobic, cellulolytic bacteria, lactic acid producers, amylolytic bacteria and lactic acid utilisers) in colonic content were evaluated on 1 day 4 h after the morning meal. Total tract apparent digestibility of DM and dietary fibre was influenced (P<0.05) by barley form. Diets including thermo-mechanically treated barley forms led to a higher (P<0.05) total tract apparent digestibility of NDF than those constituted of ground barley and also led to a greater (P<0.05) total tract apparent digestibility of ADF than those made of whole or ground barley forms. However, no significant difference was observed in colonic pH, VFA concentrations and cultural bacteria concentrations. Owing to a high starch supply in the morning meal, the concentration of the functional bacteria in the colonic content averaged 7.8 log CFU/ml, 5.9 NPM/ml, 6.9 and 7.3 CFU/ml for total anaerobic, cellulolytic, amylolytic and lactic acid-utilising bacteria, respectively. Consequently, providing horses with pelleted or steam-flaked instead of ground barley forms may limit the negative impact of starch on fibre digestibility in horses fed a high level of starch in the morning meal (0.27% BW). Moreover, the fibre-to-starch ratio fed in this experiment did not cause any digestive upset.  相似文献   

14.
The aim was to determine the effect of substituting pumpkin seed cake (PSC) or extruded linseed (ELS) for soya bean meal in goats’ diets on milk yield, milk composition and fatty acids profile of milk fat. In total, 28 dairy goats were divided into three groups. They were fed with concentrate mixtures containing soya bean meal (Control; n=9), ELS (n=10) or PSC (n=9) as main protein sources in the trial lasting 75 days. Addition of ELS or PSC did not influence milk yield and milk gross composition in contrast to fatty acid profile compared with Control. Supplementation of ELS resulted in greater branched-chain fatty acids (BCFA) and total n-3 fatty acids compared with Control and PSC (P<0.05). Total n-3 fatty acids were accompanied by increased α-linolenic acid (ALA, C18:3n-3; 0.56 g/100 g fatty acids) and EPA (C20:5n-3; 0.12 g/100 g fatty acids) proportions in milk of the ELS group. In contrast, ELS and PSC resulted in lower linoleic acid (LA, C18:2n-6; 2.10 and 2.28 g/100 g fatty acids, respectively) proportions compared with Control (2.80 g/100 g fatty acids; P<0.05). Abovementioned resulted in lower LA/ALA ratio (3.81 v. 7.44 or 6.92, respectively; P<0.05) with supplementation of ELS compared with Control or PSC. The PSC diet decreased total n-6 fatty acids compared with the Control (2.96 v. 3.54 g/100 g fatty acids, P<0.05). Oleic acid (c9-C18:1), CLA (c9,t11-18:2) and t10-,t11-C18:1 did not differ between treatments (P⩾0.08), although stearic acid (C18:0) increased in ELS diets compared with Control (12.7 v. 10.2 g/100 g fatty acids, P<0.05). Partially substituted soya bean meal with ELS in hay-based diets may increase beneficial n-3 fatty acids and BCFA accompanied by lowering LA/ALA ratio and increased C18:0. Pumpkin seed cake completely substituted soya bean meal in the diet of dairy goats without any decrease in milk production or sharp changes in fatty acid profile that may have a commercial or a human health relevancy.  相似文献   

15.
The cecum plays an important role in the feed fermentation of ruminants. However, information is very limited regarding the cecal microbiota and their methane production. In the present study, the cecal content from twelve local Chinese goats, fed with either a hay diet (0% grain) or a high-grain diet (71.5% grain), were used to investigate the bacterial and archaeal community and their methanogenic potential. Microbial community analysis was determined using high-throughput sequencing of 16S rRNA genes and real-time PCR, and the methanogenesis potential was assessed by in vitro fermentation with ground corn or hay as substrates. Compared with the hay group, the high-grain diet significantly increased the length and weight of the cecum, the proportions of starch and crude protein, the concentrations of volatile fatty acids and ammonia nitrogen, but decreased the pH values (P?<?0.05). The high-grain diet significantly increased the abundances of bacteria and archaea (P?<?0.05) and altered their community. For the bacterial community, the genera Bifidobacterium, Prevotella, and Treponema were significantly increased in the high-grain group (P?<?0.05), while Akkermansia, Oscillospira, and Coprococcus were significantly decreased (P?<?0.05). For the archaeal community, Methanosphaera stadtmanae was significantly increased in the high-grain group (P?<?0.05), while Methanosphaera sp. ISO3-F5 was significantly decreased (P?<?0.05). In the in vitro fermentation with grain as substrate, the cecal microorganisms from the high-grain group produced a significantly higher amount of methane and volatile fatty acids (P?<?0.05), and produced significantly lower amount of lactate (P?<?0.05). Conclusively, high-grain diet led to more fermentable substrates flowing into the hindgut of goats, resulting in an enhancement of microbial fermentation and methane production in the cecum.  相似文献   

16.
Garlic (Allium sativum L.) and its constituents have been shown to modify rumen fermentation and improve growth performance. Garlic skin, a by-product of garlic processing, contains similar bioactive components as garlic bulb. This study aimed to investigate the effects of garlic skin supplementation on growth performance, ruminal microbes, and metabolites in ruminants. Twelve Hu lambs were randomly assigned to receive a basal diet (CON) or a basal diet supplemented with 80 g/kg DM of garlic skin (GAS). The experiment lasted for 10 weeks, with the first 2 weeks serving as the adaptation period. The results revealed that the average daily gain and volatile fatty acid concentration were higher (P < 0.05) in lambs fed GAS than those in the CON group. Garlic skin supplementation did not significantly (P > 0.10) affect the α-diversity indices, including the Chao1 index, the abundance-based coverage estimator value, and the Shannon and Simpson indices. At the genus level, garlic skin supplementation altered the ruminal bacterial composition by increasing (P < 0.05) the relative abundances of Prevotella, Bulleidia, Howardella, and Methanosphaera and decreasing (P < 0.05) the abundance of Fretibacterium. Concentrations of 139 metabolites significantly differed (P < 0.05) between the GAS and the CON groups. Among them, substrates for rumen microbial protein synthesis were enriched in the GAS group. The pathways of pyrimidine metabolism, purine metabolism, and vitamin B6 metabolism were influenced (P < 0.05) by garlic skin supplementation. Integrated correlation analysis also provided a link between the significantly altered rumen microbiota and metabolites. Thus, supplementation of garlic skin improved the growth performance of lambs by modifying rumen fermentation through shifts in the rumen microbiome and metabolome.  相似文献   

17.
The combined addition of branched-chain volatile fatty acids (BCVFAs) and folic acid (FA) could improve growth performance and nutrient utilization by stimulating ruminal microbial growth and enzyme activity. This study was conducted to evaluate the effects of BCVFA and FA addition on growth performance, ruminal fermentation, nutrient digestibility, microbial enzyme activity, microflora and excretion of urinary purine derivatives (PDs) in calves. Thirty-six Chinese Holstein weaned calves (60 ± 5.4 days of age and 107 ± 4.7 kg of BW) were assigned to one of four groups in a randomized block design. Treatments were control (without additives), FA (with 10 mg FA/kg dietary DM), BCVFA (with 5 g BCVFA/kg dietary DM) and the combined addition of FA and BCVFA (10 mg/kg DM of FA and 5 g/kg DM of BCVFA). Supplements were hand-mixed into the top one-third of total mixed ration. Dietary concentrate to maize silage ratio was 50 : 50 on a DM basis. Dietary BCVFA or FA addition did not affect dry matter intake but increased average daily gain (ADG) and feed conversion efficiency. Ruminal pH and ammonia N were lower, and total volatile fatty acids (VFAs) concentration was higher for BCVFA or FA addition than for control. Dietary BCVFA or FA addition did not affect acetate proportion but decreased propionate proportion and increased acetate to propionate ratio. Total tract digestibility of DM, organic matter, CP and NDF was higher for BCVFA or FA addition than for control. Dietary BCVFA or FA addition increased activity of carboxymethyl cellulase and cellobiase, population of total bacteria, fungi, Ruminococcus albus, R. flavefaciens, Fibrobacter succinogenes and Prevotella ruminicola as well as total PD excretion. Ruminal xylanase, pectinase and protease activity and Butyrivibrio fibrisolvens population were increased by BCVFA addition, whereas population of protozoa and methanogens was increased by FA addition. The BCVFA × FA interaction was significant for acetate to propionate ratio, cellobiase activity and total PD excretion, and these variables increased more with FA addition in diet without BCVFA than in diet with BCVFA. The data indicated that supplementation with BCVFA or FA increased ADG, nutrient digestibility, ruminal total VFA concentration and microbial protein synthesis by stimulating ruminal microbial growth and enzyme activity in calves.  相似文献   

18.
The phytol moiety in chlorophyll molecules acts as an agonist of peroxisome proliferator-activated receptor-α in monogastric animals. The current study aimed to clarify the effects of dietary supplementation with phytol on the plasma concentrations of formate and amino acids related to one-carbon (1C) donors and its effects on lipid metabolism in sheep. Four mature sheep were fed with a mixed ration (metabolizable energy, 10.7 MJ/kg DM; CP, 150 g/kg DM) comprising barley, rice bran, soybean meal, and oat hay at 1.5 times maintenance metabolizable energy for three consecutive 14-day experimental periods. The first and third periods served as controls without phytol supplementation, while in the second period, phytol was added to the mixed ration at 12 g/kg of dietary DM per day. In each period, feces, urine, and jugular blood samples were collected. Dry matter intake in relation to metabolic BW was slightly lower (P < 0.01) in the first period than the second and third periods but did not differ between the latter two periods. Dry matter digestibility was slightly reduced (P = 0.05) by the phytol treatment. Nitrogen (N) intake and retention showed similar trends to DM intake, but urinary N was unchanged among the periods. Plasma cholesterol and phospholipid concentrations decreased during the phytol treatment period, while triglyceride concentration increased (P < 0.05). In the phytol treatment period, the plasma concentrations of serine and glycine (1C donors) increased, but the glutamate level decreased (P < 0.01). Plasma concentrations of formate and methionine increased (P < 0.01) from the first control period to the phytol supplementation period, but homocysteine and cysteine (intermediate and by-product of the methionine cycle) levels were unchanged among the treatment periods. In conclusion, dietary phytol affects lipid metabolism as well as amino acid metabolism and 1C donors in sheep. These effects may be associated with the activity of phytol as an agonist of the nuclear receptors, although this needs further investigation.  相似文献   

19.
The rumen microbial ecosystem is a complex system where rumen fermentation processes involve interactions among microorganisms. There are important relationships between diet and the ruminal bacterial composition. Thus, we investigated the ruminal fermentation characteristics and compared ruminal bacterial communities using tag amplicon pyrosequencing analysis in Yanbian yellow steers, which were fed linseed oil (LO) and propionate precursors. We used eight ruminally cannulated Yanbian yellow steers (510 ± 5.8 kg) in a replicated 4 × 4 Latin square design with four dietary treatments. Steers were fed a basal diet that comprised 80% concentrate and 20% rice straw (DM basis, CON). The CON diet was supplemented with LO at 4%. The LO diet was also supplemented with 2% dl-malate or 2% fumarate as ruminal precursors of propionate. Dietary supplementation with LO and propionate precursors increased ruminal pH, total volatile fatty acid concentrations, and the molar proportion of propionate. The most abundant bacterial operational taxonomic units in the rumen were related to dietary treatments. Bacteroidetes dominated the ruminal bacterial community and the genus Prevotella was highly represented when steers were fed LO plus propionate precursors. However, with the CON and LO diet plus malate or fumarate, Firmicutes was the most abundant phylum and the genus Ruminococcus was predominant. In summary, supplementing the diets of ruminants with a moderate level of LO plus propionate precursors modified the ruminal fermentation pattern. The most positive responses to LO and propionate precursors supplementation were in the phyla Bacteriodetes and Firmicutes, and in the genus Ruminococcus and Prevotella. Thus, diets containing LO plus malate or fumarate have significant effects on the composition of the rumen microbial community.  相似文献   

20.
Lowering dietary protein concentration is known to decrease urinary nitrogen (N) losses and increase milk N efficiency in dairy cows, but it may negatively affect animal productivity. Plant-derived essential oils (EO) may alleviate these negative effects by improving the efficiency of rumen fermentation in cows fed reduced feed protein diets. The experiment was conducted to investigate the effects of lowering crude protein (CP) supply alone or in a combination with an EO product on feed intake, milk production and composition, rumen fermentation, total tract digestibility and N utilization in dairy cows. Twenty-one Holstein cows were used in a replicated 3 × 3 Latin square design experiment. Each period consisted of 14 days for adaptation and 14 days for data collection and sampling. Cows were randomly assigned to one of three experimental diets: a 165 g/kg CP diet (control), a 155 g/kg CP diet (LCP) and LCP supplemented with 35 g/day per cow EO (LCPEO). The dry matter (DM) intake was decreased by LCP and LCPEO compared with the control; there was no effect of EO on DM intake. Milk yield and composition and feed efficiency were similar among treatments. Ruminal pH, lactate, ammonia and volatile fatty acids concentrations were not affected by treatment, except increased valerate concentration by LCPEO compared with LCP. The supplementation of EO tended to decrease protozoal counts. The LCP and LCPEO increased total tract digestibility of DM and organic matter and decreased CP digestibility compared with the control. Supplementation with EO did not affect total tract digestibility of dietary nutrients compared with the control or LCP. The LCP and LCPEO decreased urinary and fecal N excretions and increased milk N efficiency; nitrogen losses were not affected by EO. In this study, lowering dietary CP by 10 g/kg decreased urinary and fecal N excretion without affecting productivity. The supplementation of EO to LCP had only minor effects on rumen fermentation and did not affect productivity, digestibility and N excretion in lactating dairy cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号