首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The TSC13/YDL015c gene was identified in a screen for suppressors of the calcium sensitivity of csg2Delta mutants that are defective in sphingolipid synthesis. The fatty acid moiety of sphingolipids in Saccharomyces cerevisiae is a very long chain fatty acid (VLCFA) that is synthesized by a microsomal enzyme system that lengthens the palmitate produced by cytosolic fatty acid synthase by two carbon units in each cycle of elongation. The TSC13 gene encodes a protein required for elongation, possibly the enoyl reductase that catalyzes the last step in each cycle of elongation. The tsc13 mutant accumulates high levels of long-chain bases as well as ceramides that harbor fatty acids with chain lengths shorter than 26 carbons. These phenotypes are exacerbated by the deletion of either the ELO2 or ELO3 gene, both of which have previously been shown to be required for VLCFA synthesis. Compromising the synthesis of malonyl coenzyme A (malonyl-CoA) by inactivating acetyl-CoA carboxylase in a tsc13 mutant is lethal, further supporting a role of Tsc13p in VLCFA synthesis. Tsc13p coimmunoprecipitates with Elo2p and Elo3p, suggesting that the elongating proteins are organized in a complex. Tsc13p localizes to the endoplasmic reticulum and is highly enriched in a novel structure marking nuclear-vacuolar junctions.  相似文献   

2.
Sphingolipids play a key role in cells as structural components of membrane lipid bilayers and signaling molecules implicated in important physiological and pathological processes. Their metabolism is tightly regulated. Mechanisms controlling sphingolipid metabolism are far from being completely understood. However, they already reveal the integration of sphingolipids in the whole metabolic network as signaling devices that coordinate different metabolic pathways. A picture of sphingolipids integrated into metabolic networks might help to understand sphingolipid homeostasis. This review describes recent advances in the regulation of de novo sphingolipid synthesis with a focus on the bridges that exist with other metabolic pathways and the importance of this crosstalk in the control of sphingolipid homeostasis. This article is part of a Special Issue entitled New Frontiers in Sphingolipid Biology.  相似文献   

3.
Very long-chain fatty acids (VLCFAs, chain length >C20) exist in tissues throughout the body and are synthesized by repetition of the fatty acid (FA) elongation cycle composed of four successive enzymatic reactions. In mammals, the TER gene is the only gene encoding trans-2-enoyl-CoA reductase, which catalyzes the fourth reaction in the FA elongation cycle. The TER P182L mutation is the pathogenic mutation for nonsyndromic mental retardation. This mutation substitutes a leucine for a proline residue at amino acid 182 in the TER enzyme. Currently, the mechanism by which the TER P182L mutation causes nonsyndromic mental retardation is unknown. To understand the effect of this mutation on the TER enzyme and VLCFA synthesis, we have biochemically characterized the TER P182L mutant enzyme using yeast and mammalian cells transfected with the TER P182L mutant gene and analyzed the FA elongation cycle in the B-lymphoblastoid cell line with the homozygous TER P182L mutation (TERP182L/P182L B-lymphoblastoid cell line). We have found that TER P182L mutant enzyme exhibits reduced trans-2-enoyl-CoA reductase activity and protein stability, thereby impairing VLCFA synthesis and, in turn, altering the sphingolipid profile (i.e. decreased level of C24 sphingomyelin and C24 ceramide) in the TERP182L/P182L B-lymphoblastoid cell line. We have also found that in addition to the TER enzyme-catalyzed fourth reaction, the third reaction in the FA elongation cycle is affected by the TER P182L mutation. These findings provide new insight into the biochemical defects associated with this genetic mutation.  相似文献   

4.
5.
Sphingolipids, major lipid components of the eukaryotic plasma membrane, have a variety of physiological functions and have been associated with many diseases. They have also been implicated in apoptosis. Sphingolipids are heterogeneous in their acyl chain length, with long-chain (C16) and very long-chain (C24) sphingolipids being predominant in most mammalian tissues. We demonstrate that knockdown of ELOVL1 or CERS2, which catalyze synthesis of C24 acyl-CoAs and C24 ceramide, respectively, drastically reduced C24 sphingolipid levels with a complementary increase in C16 sphingolipids. Under ELOVL1 or CERS2 knockdown conditions, cisplatin-induced apoptosis significantly increased. Enhanced sensitivity to cisplatin-induced apoptosis exhibited close correlation with increases in caspase-3/7 activity. No significant alterations in sphingolipid metabolism such as ceramide generation were apparent with the cisplatin-induced apoptosis, and inhibitors of ceramide generation had no effect on the apoptosis. Apoptosis induced by UV radiation or C6 ceramides also increased in ELOVL1 or CERS2 knockdown cells. Changes in the composition of sphingolipid chain length may affect susceptibility to stimuli-induced apoptosis by affecting the properties of cell membranes, such as lipid microdomain/raft formation.  相似文献   

6.
Sphingolipids function as required membrane components of virtually all eukaryotic cells. Data indicate that members of the sphingolipid family of lipids, including sphingoid bases, sphingoid base phosphates, ceramides, and complex sphingolipids, serve vital functions in cell biology by both direct mechanisms (e.g., binding to G-protein coupled receptors to transduce an extracellular signal) and indirect mechanisms (e.g., facilitating correct intracellular protein transport). Because of the diverse roles these lipids play in cell biology, it is important to understand not only their biosynthetic pathways and regulation of sphingolipid synthesis, but also the mechanisms by which some sphingolipid species with specific functions are modified or converted to other sphingolipid species with alternate functions. Due to many factors including ease of culture and genetic modification, and conservation of major sphingolipid metabolic pathways, Saccharomyces cerevisiae has served as an ideal model system with which to identify enzymes of sphingolipid biosynthesis and to dissect sphingolipid function. Recent exciting developments in sphingolipid synthesis, transport, signaling, and overall biology continue to fuel vigorous investigation and inspire investigations in mammalian sphingolipid biology.  相似文献   

7.
Sphingolipids are ubiquitous membrane constituents whose metabolites function as signaling molecules in eukaryotic cells. Sphingosine 1-phosphate, a key sphingolipid second messenger, regulates proliferation, motility, invasiveness, and programmed cell death. These effects of sphingosine 1-phosphate and similar phosphorylated sphingoid bases have been observed in organisms as diverse as yeast and humans. Intracellular levels of sphingosine 1-phosphate are tightly regulated by the actions of sphingosine kinase, which is responsible for its synthesis and sphingosine-1-phosphate phosphatase and sphingosine phosphate lyase, the two enzymes responsible for its catabolism. In this study, we describe the cloning of the Caenorhabditis elegans sphingosine phosphate lyase gene along with its functional expression in Saccharomyces cerevisiae. Promoter analysis indicates tissue-specific and developmental regulation of sphingosine phosphate lyase gene expression. Inhibition of C. elegans sphingosine phosphate lyase expression by RNA interference causes accumulation of phosphorylated and unphosphorylated long-chain bases and leads to poor feeding, delayed growth, reproductive abnormalities, and intestinal damage similar to the effects seen with exposure to Bacillus thuringiensis toxin. Our results show that sphingosine phosphate lyase is an essential gene in C. elegans and suggest that the sphingolipid degradative pathway plays a conserved role in regulating animal development.  相似文献   

8.
Sphingolipids are essential components of eukaryotic cells with important functions in membrane biology and cellular signaling. Their levels are tightly controlled and coordinated with the abundance of other membrane lipids. How sphingolipid homeostasis is achieved is not yet well understood. Studies performed primarily in yeast showed that the phosphorylation states of several enzymes and regulators of sphingolipid synthesis are important, although a global understanding for such regulation is lacking. Here, we used high‐resolution MS‐based proteomics and phosphoproteomics to analyze the cellular response to sphingolipid synthesis inhibition. Our dataset reveals that changes in protein phosphorylation, rather than protein abundance, dominate the response to blocking sphingolipid synthesis. We identified Ypk signaling as a pathway likely to be activated under these conditions, and we identified potential Ypk1 target proteins. Our data provide a rich resource for on‐going mechanistic studies of key elements of the cellular response to the depletion of sphingolipid levels and the maintenance of sphingolipid homeostasis. All MS data have been deposited in the ProteomeXchange with identifier PXD003854 ( http://proteomecentral.proteomexchange.org/dataset/PXD003854 ).  相似文献   

9.
Sphingolipids are major lipid constituents of the eukaryotic plasma membrane. Without certain sphingolipids, cells and/or embryos cannot survive, indicating that sphingolipids possess important physiological functions that are not substituted for by other lipids. One such role may be signaling. Recent studies have revealed that some sphingolipid metabolites, such as long-chain bases (LCBs; sphingosine (Sph) in mammals), long-chain base 1-phosphates (LCBPs; sphingosine 1-phosphate (S1P) in mammals), ceramide (Cer), and ceramide 1-phosphate (C1P), act as signaling molecules. The addition of phosphate groups to LCB/Sph and Cer generates LCBP/S1P and C1P, respectively. These phospholipids exhibit completely different functions than those of their precursors. In this review, we describe recent advances in understanding the functions of LCBP/S1P and C1P in mammals and in the yeast Saccharomyces cerevisiae. Since LCB/Sph, LCBP/S1P, Cer, and C1P are mutually convertible, regulation of not only the total amount of the each lipid but also of the overall balance in cellular levels is important. Therefore, we describe in detail their metabolic pathways, as well as the genes involved in each reaction.  相似文献   

10.
Lipid structures affect membrane biophysical properties such as thickness, stability, permeability, curvature, fluidity, asymmetry, and interdigitation, contributing to membrane function. Sphingolipids are abundant in plant endomembranes and plasma membranes (PMs) and comprise four classes: ceramides, hydroxyceramides, glucosylceramides, and glycosylinositolphosphoceramides (GIPCs). They constitute an array of chemical structures whose distribution in plant membranes is unknown. With the aim of describing the hydrophobic portion of sphingolipids, 18 preparations from microsomal (MIC), vacuolar (VM), PM, and detergent-resistant membranes (DRM) were isolated from Arabidopsis (Arabidopsis thaliana) leaves. Sphingolipid species, encompassing pairing of long-chain bases and fatty acids, were identified and quantified in these membranes. Sphingolipid concentrations were compared using univariate and multivariate analysis to assess sphingolipid diversity, abundance, and predominance across membranes. The four sphingolipid classes were present at different levels in each membrane: VM was enriched in glucosylceramides, hydroxyceramides, and GIPCs; PM in GIPCs, in agreement with their key role in signal recognition and sensing; and DRM in GIPCs, as reported by their function in nanodomain formation. While a total of 84 sphingolipid species was identified in MIC, VM, PM, and DRM, only 34 were selectively distributed in the four membrane types. Conversely, every membrane contained a different number of predominant species (11 in VM, 6 in PM, and 17 in DRM). This study reveals that MIC, VM, PM, and DRM contain the same set of sphingolipid species but every membrane source contains its own specific assortment based on the proportion of sphingolipid classes and on the predominance of individual species.

Sphingolipidomes from microsomes, vacuole, plasma, and detergent-resistant membranes from Arabidopsis are described and compared and the possible roles of sphingolipid classes and individual species are discussed.  相似文献   

11.
The sphingolipid metabolite sphingosine 1-phosphate (S1P) functions as a lipid mediator and as a key intermediate of the sole sphingolipid to glycerophospholipid metabolic pathway (S1P metabolic pathway). In this pathway, S1P is converted to palmitoyl-CoA through 4 reactions, then incorporated mainly into glycerophospholipids. Although most of the genes responsible for the S1P metabolic pathway have been identified, the gene encoding the trans-2-enoyl-CoA reductase, responsible for the saturation step (conversion of trans-2-hexadecenoyl-CoA to palmitoyl-CoA) remains unidentified. In the present study, we show that TER is the missing gene in mammals using analyses involving yeast cells, deleting the TER homolog TSC13, and TER-knockdown HeLa cells. TER is known to be involved in the production of very long-chain fatty acids (VLCFAs). A significant proportion of the saturated and monounsaturated VLCFAs are used for sphingolipid synthesis. Therefore, TER is involved in both the production of VLCFAs used in the fatty acid moiety of sphingolipids as well as in the degradation of the sphingosine moiety of sphingolipids via S1P.  相似文献   

12.
Sphingolipids are major components of the plasma membrane, tonoplast, and other endomembranes of plant cells. Previous compositional analyses have focused only on individual sphingolipid classes because of the widely differing polarities of plant sphingolipids. Consequently, the total content of sphingolipid classes in plants has yet to be quantified. In addition, the major polar sphingolipid class in the model plant Arabidopsis thaliana has not been previously determined. In this report, we describe the separation and quantification of sphingolipid classes from A. thaliana leaves using hydrolysis of sphingolipids and high performance liquid chromatography (HPLC) analysis of o-phthaldialdehyde derivatives of the released long-chain bases to monitor the separation steps. An extraction solvent that contained substantial proportions of water was used to solubilized >95% of the sphingolipids from leaves. Neutral and charged sphingolipids were then partitioned by anion exchange solid phase extraction. HPLC analysis of the charged lipid fraction from A. thaliana revealed only one major anionic sphingolipid class, which was identified by mass spectrometry as hexose-hexuronic-inositolphosphoceramide. The neutral sphingolipids were predominantly composed of monohexosylceramide with lesser amounts of ceramides. Extraction and separation of sphingolipids from soybean and tomato showed that, like A. thaliana, the neutral sphingolipids consisted of ceramide and monohexosylceramides; however, the major polar sphingolipid was found to be N-acetyl-hexosamine-hexuronic-inositolphosphoceramide. In extracts from A. thaliana leaves, hexosehexuronic-inositolphosphoceramides, monohexosylceramides, and ceramides accounted for approximately 64, 34, and 2% of the total sphingolipids, respectively, suggesting an important role for the anionic sphingolipids in plant membranes.  相似文献   

13.
Sphingolipids have been suggested to act as second messengers for an array of cellular signaling activities in plant cells, including stress responses and programmed cell death (PCD). However, the mechanisms underpinning these processes are not well understood. Here, we report that an Arabidopsis mutant, fumonisin B1 r_esistant11-1 (/br11-1), which fails to generate reactive oxygen intermediates (ROIs), is incapable of initiating PCD when the mutant is challenged by fumonisin B l (FB0, a specific inhibitor of ceramide synthase. Molecular analysis indicated that FBR11 encodes a long-chain base 1 (LCB 1) subunit of serine palmitoyltransferase (SPT), which catalyzes the first rate-limiting step of de novo sphingolipid synthesis. Mass spectrometric analysis of the sphingolipid concentrations revealed that whereas the fbr11-1 mutation did not affect basal levels of sphingoid bases, the mutant showed attenuated formation of sphingoid bases in response to FBl. By a direct feeding experiment, we show that the free sphingoid bases dihydrosphingosine, phytosphingosine and sphingosine efficiently induce ROI generation followed by cell death. Conversely, ROI generation and cell death induced by dihydrosphingosine were specifically blocked by its phosphorylated form dihydrosphingosine- 1-phosphate in a dosedependent manner, suggesting that the maintenance of homeostasis between a free sphingoid base and its phosphorylated derivative is critical to determining the cell fate. Because alterations of the sphingolipid level occur prior to the ROI production, we propose that the free sphingoid bases are involved in the control of PCD in Arabidopsis, presumably through the regulation of the ROI level upon receiving different developmental or environmental cues.  相似文献   

14.
Sphingolipids have important functions as structural components of cells but they also function as signaling molecules regulating different cellular processes such as apoptosis, cell proliferation, cell migration, cell division and inflammation. Hence, a tight regulation of the sphingolipid homeostasis is essential to maintain proper cellular functions. Mammalian ORMDL proteins are orthologues of the yeast ORM1/2 proteins, which regulate ceramide synthesis in yeast. ORMDL proteins inhibit serine palmitoyltransferase (SPT), the enzyme regulating a rate-limiting step of the sphingolipid pathway to control the levels of ceramides and other sphingolipids. Sphingomyelinase phosphodiesterase like 3b (SMPDL3b) is a glycosylphosphatidylinositol (GPI) anchored protein in the plasma membrane (PM) and determines membrane fluidity in macrophages. We previously showed that differential expression of SMPDL3b alters the availability of Ceramide-1-phosphate (C1P) in human podocytes, which are terminally differentiated cells of the kidney filtration barrier. This observation lead us to investigate if SMPDL3b controls C1P availability in human podocytes by interfering with ceramide kinase (CERK) expression and function. We found that SMPDL3b interacts with CERK and can bind to C1P in vitro. Furthermore, CERK expression is reduced when SMPDL3b expression is silenced. These observations led us to propose that one of the mechanisms by which SMPDL3b influences the amount of C1P available in the podocytes is by interfering with the function of CERK thereby maintaining a balance in the levels of the C1P in podocytes.  相似文献   

15.
Sphingomyelin (SM) is a dominant sphingolipid in membranes of mammalian cells and this lipid class is specifically enriched in the plasma membrane, the endocytic recycling compartment, and the trans Golgi network. The distribution of SM and cholesterol among cellular compartments correlate. Sphingolipids have extensive hydrogen-bonding capabilities which together with their saturated nature facilitate the formation of sphingolipid and SM-enriched lateral domains in membranes. Cholesterol prefers to interact with SMs and this interaction has many important functional consequences. In this review, the synthesis, regulation, and intracellular distribution of SMs are discussed. The many direct roles played by membrane SM in various cellular functions and processes will also be discussed. These include involvement in the regulation of endocytosis and receptor-mediated ligand uptake, in ion channel and G-protein coupled receptor function, in protein sorting, and functioning as receptor molecules for various bacterial toxins, and for non-bacterial pore-forming toxins. SM is also an important constituent of the eye lens membrane, and is believed to participate in the regulation of various nuclear functions. SM is an independent risk factor in the development of cardiovascular disease, and new studies have shed light on possible mechanism behind its role in atherogenesis.  相似文献   

16.
The ins and outs of sphingolipid synthesis   总被引:14,自引:0,他引:14  
Sphingolipids are ubiquitous components of eukaryotic cell membranes, where they play important roles in intracellular signaling and in membrane structure. Even though the biochemical pathway of sphingolipid synthesis and its compartmentalization between the endoplasmic reticulum and Golgi apparatus have been known for many years, the molecular identity of the enzymes in this pathway has only recently been elucidated. Here, we summarize progress in the identification and characterization of the enzymes, the transport of ceramide from the endoplasmic reticulum to the Golgi apparatus, and discuss how regulating the synthesis of sphingolipids might impact upon their functions.  相似文献   

17.
18.
【背景】脂肪酸延长酶家族参与脂肪酸代谢具有真核生物的高度保守性,且与膜脂的代谢密切相关。但细胞极长链脂肪酸(Very long-chain fatty acid,VLCFA)的合成缺陷对膜的稳定性及多烯类药物的敏感性影响并不完全明晰。【目的】探究细胞VLCFA延长酶ELO1、ELO2和ELO3的作用及功能。【方法】研究脂肪酸延长酶缺陷型elo1?、elo2?和elo3?对多烯类药物两性霉素B (Amphotericin B,AmB)、制霉菌素(Nystatin,Ny)及唑类硝酸益康唑(Econazolenitrate,Eco)的响应,检测不同酵母细胞的麦角固醇,检测其对Na+的响应及胞内钠钾离子水平。【结果】发现细胞VLCFA延长酶ELO2和ELO3缺陷后对AmB高度敏感;VLCFA延长酶缺陷突变株elo2?和elo3?对其它多烯类药物Ny及唑类药物Eco也十分敏感;细胞膜不饱和脂肪酸增加也会改变膜的稳定性,实验结果表明外源油酸(Oleic acid,OLA)增加了elo2?和elo3?突变体的AmB敏感性;相对野生型BY4741和elo1?,缺陷菌株elo2?和elo3?中麦角固醇的含量有显著下降;钠钾离子平衡是维护细胞正常生理的必要条件,也是检测细胞膜稳定性的重要参数,发现VLCFA的合成缺陷菌株对高浓度的NaCl比野生型菌株更敏感,使用ICP-AES检测不同浓度AmB胁迫下细胞内钠钾离子水平,也显示VLCFA延长酶缺陷菌株中,钠水平表现出上升趋势,并且细胞内钾含量明显降低。【结论】细胞VLCFA的合成缺陷会导致细胞膜更脆弱、稳定性下降,从而提高真菌对多烯类药物的敏感性,也表明脂肪酸延长酶是潜在的抗真菌治疗靶点。  相似文献   

19.
The plasma membrane delimits the cell, and its integrity is essential for cell survival. Lipids and proteins form domains of distinct composition within the plasma membrane. How changes in plasma membrane composition are perceived, and how the abundance of lipids in the plasma membrane is regulated to balance changing needs remains largely unknown. Here, we show that the Slm1/2 paralogues and the target of rapamycin kinase complex 2 (TORC2) play a central role in this regulation. Membrane stress, induced by either inhibition of sphingolipid metabolism or by mechanically stretching the plasma membrane, redistributes Slm proteins between distinct plasma membrane domains. This increases Slm protein association with and activation of TORC2, which is restricted to the domain known as the membrane compartment containing TORC2 (MCT; ref.?). As TORC2 regulates sphingolipid metabolism, our discoveries reveal a homeostasis mechanism in which TORC2 responds to plasma membrane stress to mediate compensatory changes in cellular lipid synthesis and hence modulates the composition of the plasma membrane. The components of this pathway and their involvement in signalling after membrane stretch are evolutionarily conserved.  相似文献   

20.
Histone deacetylase 6 (HDAC6) controls acetylation of a number of cytosolic proteins, most prominently tubulin. Tubacin is a small molecule inhibitor of HDAC6 selected for its selective inhibition of HDAC6 relative to other histone deacetylases. For this reason it has become a useful pharmacological tool to discern the biological functions of HDAC6 in numerous cellular processes. The interest of this laboratory is in the function and regulation of sphingolipids, a family of lipids based on the sphingosine backbone. Sphingolipid biosynthesis is initiated by the rate limiting enzyme serine palmitoyltransferase (SPT). Sphingolipids have critical and diverse functions in cell survival, apoptosis, intra- and intercellular signaling, and in membrane structure. In the course of examining the role of HDAC6 in the regulation of sphingolipid biosynthesis we observed that tubacin strongly inhibited de novo synthesis whereas HDAC6 knockdown very moderately stimulated synthesis. We resolved these seemingly contradictory results by demonstrating that, surprisingly, tubacin is a direct inhibitor of SPT activity in permeabilized cells. Furthermore tubacin inhibits de novo sphingolipid synthesis in intact cells at doses commonly used to test HDAC6 function and does so in an HDAC6-independent manner. Niltubacin is a chemical analog of tubacin which lacks tubacin’s HDAC6 activity, and so is often used as a control for off-target effects of tubacin. We find that niltubacin is inactive in the inhibition of sphingolipid biosynthesis, and so does not serve to distinguish the inhibitory effects of tubacin on HDAC6 from those on sphingolipid biosynthesis. These results indicate that caution should be used in the use of tubacin to study the role of HDAC6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号