首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expected increase in the global demand for livestock products calls for insight in the scope to increase actual production levels across the world. This insight can be obtained by using theoretical concepts of production ecology. These concepts distinguish three production levels for livestock: potential (i.e. theoretical maximum) production, which is defined by genotype and climate only; feed-limited production, which is limited by feed quantity and quality; and actual production. The difference between the potential or limited production and the actual production is the yield gap. The objective of this paper, the first in a series of three, is to present a mechanistic, dynamic model simulating potential and feed-limited production for beef cattle, which can be used to assess yield gaps. A novelty of this model, named LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle), is the identification of the defining factors (genotype and climate) and limiting factors (feed quality and available feed quantity) for cattle growth by integrating sub-models on thermoregulation, feed intake and digestion, and energy and protein utilisation. Growth of beef cattle is simulated at the animal and herd level. The model is designed to be applicable to different beef production systems across the world. Main model inputs are breed-specific parameters, daily weather data, information about housing, and data on feed quality and quantity. Main model outputs are live weight gain, feed intake and feed efficiency (FE) at the animal and herd level. Here, the model is presented, and its use is illustrated for Charolais and Brahman × Shorthorn cattle in France and Australia. Potential and feed-limited production were assessed successfully, and we show that FE of herds is highest for breeds most adapted to the local climate conditions. LiGAPS-Beef also identified the factors that define and limit growth and production of cattle. Hence, we argue the model has scope to be used as a tool for the assessment and analysis of yield gaps in beef production systems.  相似文献   

2.
LiGAPS-Beef (Livestock simulator for Generic analysis of Animal Production Systems – Beef cattle) is a generic, mechanistic model designed to quantify potential and feed-limited growth, which provides insight in the biophysical scope to increase beef production (i.e. yield gap). Furthermore, it enables identification of the bio-physical factors that define and limit growth, which provides insight in management strategies to mitigate yield gaps. The aim of this paper, third in a series of three, is to evaluate the performance of LiGAPS-Beef with independent experimental data. After model calibration, independent data were used from six experiments in Australia, one in Uruguay and one in the Netherlands. Experiments represented three cattle breeds, and a wide range of climates, feeding strategies and cattle growth rates. The mean difference between simulated and measured average daily gains (ADGs) was 137 g/day across all experiments, which equals 20.1% of the measured ADGs. The root mean square error was 170 g/day, which equals 25.0% of the measured ADGs. LiGAPS-Beef successfully simulated the factors that defined and limited growth during the experiments on a daily basis (genotype, heat stress, digestion capacity, energy deficiency and protein deficiency). The simulated factors complied well to the reported occurrence of heat stress, energy deficiency and protein deficiency at specific periods during the experiments. We conclude that the level of accuracy of LiGAPS-Beef is acceptable, and provides a good basis for acquiring insight in the potential and feed-limited production of cattle in different beef production systems across the world. Furthermore, its capacity to identify factors that define or limit growth and production provides scope to use the model for yield gap analysis.  相似文献   

3.
The prediction of the control of nutrient partitioning, particularly energy, is a major issue in modelling dairy cattle performance. The proportions of energy channelled to physiological functions (growth, maintenance, gestation and lactation) change as the animal ages and reproduces, and according to its genotype and nutritional environment. This is the first of two papers describing a teleonomic model of individual performance during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. The conceptual framework is based on the coupling of a regulating sub-model providing teleonomic drives to govern the work of an operating sub-model scaled with genetic parameters. The regulating sub-model describes the dynamic partitioning of a mammal female's priority between life functions targeted to growth (G), ageing (A), balance of body reserves (R) and nutrient supply of the unborn (U), newborn (N) and suckling (S) calf. The so-called GARUNS dynamic pattern defines a trajectory of relative priorities, goal directed towards the survival of the individual for the continuation of the specie. The operating sub-model describes changes in body weight (BW) and composition, foetal growth, milk yield and composition and food intake in dairy cows throughout their lifespan, that is, during growth, over successive reproductive cycles and through ageing. This dynamic pattern of performance defines a reference trajectory of a cow under normal husbandry conditions and feed regimen. Genetic parameters are incorporated in the model to scale individual performance and simulate differences within and between breeds. The model was calibrated for dairy cows with literature data. The model was evaluated by comparison with simulations of previously published empirical equations of BW, body condition score, milk yield and composition and feed intake. This evaluation showed that the model adequately simulates these production variables throughout the lifespan, and across a range of dairy cattle genotypes.  相似文献   

4.
Heat stress in feedlot cattle causes reduced performance, and in the most severe cases, death of the animals, thus causing the loss of millions of dollars in revenue to the cattle industry. A study was designed to evaluate dynamics of thermoregulation and feeding activities when feeder cattle were exposed to simulated heat waves, in comparison with repeated sinusoidal hot and thermoneutral environments. Nine beef steers were randomly assigned to an individual pen in one of three environmental chambers. Each chamber was subjected to each of three temperature regimes (Heatwave simulation from Rockport, Mo., 1995, Heatwave simulation from Columbia, Mo., 1999, and Controlled heat stress treatment of 32±7°C) for a period of 18 days, according to a Latin square treatment design, with a 10-day thermoneutral period (18±7°C) separating treatment periods. Respiration rate, core body temperature, heat production, feed intake, and feeding behavior were measured on each animal for the duration of the experiment. Differences were found in all treatments for all parameters except feeding behavior. It was shown that the two simulated heat waves elicited very different thermoregulatory responses. Based on these results the heat wave centered at Rockport, Mo. in 1995 was devastating because the animals were not acclimated to hot conditions, thus causing an acute response to heat stress. The responses of cattle to conditions at Columbia, Mo. showed some acclimation to heat prior to the peak stress days, and therefore a dampened response was seen. It appears the extreme conditions at Columbia, Mo., 1999 were made severe by environmental conditions not simulated during this study (low wind speed and intensive solar radiation). Overall, it was determined while a cyclic heat stress treatment is a representative model to test heat stress in cattle, further heat stress experiments should be conducted in an actual feedlot.Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. 9th Street Drive, West Palmetto, FL 34221, USA.  相似文献   

5.
The objective of this study was to estimate the genetic parameters for thermoregulation traits and the relationships with performance of Large White lactating sows reared in a tropical humid climate. The thermoregulation traits were rectal temperature (RT), cutaneous temperature (CT) and respiratory rate (RR) during lactation measured in the afternoon (1200 h) and in the morning (0700 h). The production traits were sow’s average daily feed intake (ADFI), litter BW gain (LBWg) and sow’s proportion of BW change between farrowing and weaning (BWc). Complete data included 931 lactating performance on 329 Large White sows from the INRA experimental unit in Guadeloupe (French West Indies). Random regression models using linear spline functions were used for longitudinal data (RT, CT, RR and daily feed intake). Results showed that when ignoring values at the beginning and the end of lactation, the traits studied can be treated as the same trait throughout days of lactation, with fairly constant heritability and variance. However, largest heritabilities and genetic variances were estimated in mid-lactation. Heritability estimates on average performance during lactation were low to moderate for thermoregulation traits (0.35±0.09 for RT, 0.34±0.12 for CT and 0.39±0.13 for RR). Heritability estimates for production traits were 0.26±0.08 for ADFI, 0.20±0.07 for BWc and 0.31±0.09 for LBWg. Significant genetic correlations between thermoregulation traits and production traits were only obtained for ADFI and RR (0.35±0.12). From this study it can be concluded that thermoregulation traits are heritable, indicating that there are genetic differences in heat stress tolerance in lactating Large White sows.  相似文献   

6.
Grass-based diets are of increasing social-economic importance in dairy cattle farming, but their low supply of glucogenic nutrients may limit the production of milk. Current evaluation systems that assess the energy supply and requirements are based on metabolisable energy (ME) or net energy (NE). These systems do not consider the characteristics of the energy delivering nutrients. In contrast, mechanistic models take into account the site of digestion, the type of nutrient absorbed and the type of nutrient required for production of milk constituents, and may therefore give a better prediction of supply and requirement of nutrients. The objective of the present study is to compare the ability of three energy evaluation systems, viz. the Dutch NE system, the agricultural and food research council (AFRC) ME system, and the feed into milk (FIM) ME system, and of a mechanistic model based on Dijkstra et al. [Simulation of digestion in cattle fed sugar cane: prediction of nutrient supply for milk production with locally available supplements. J. Agric. Sci., Cambridge 127, 247–60] and Mills et al. [A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation and application. J. Anim. Sci. 79, 1584–97] to predict the feed value of grass-based diets for milk production. The dataset for evaluation consists of 41 treatments of grass-based diets (at least 0.75 g ryegrass/g diet on DM basis). For each model, the predicted energy or nutrient supply, based on observed intake, was compared with predicted requirement based on observed performance. Assessment of the error of energy or nutrient supply relative to requirement is made by calculation of mean square prediction error (MSPE) and by concordance correlation coefficient (CCC). All energy evaluation systems predicted energy requirement to be lower (6–11%) than energy supply. The root MSPE (expressed as a proportion of the supply) was lowest for the mechanistic model (0.061), followed by the Dutch NE system (0.082), FIM ME system (0.097) and AFRC ME system (0.118). For the energy evaluation systems, the error due to overall bias of prediction dominated the MSPE, whereas for the mechanistic model, proportionally 0.76 of MSPE was due to random variation. CCC analysis confirmed the higher accuracy and precision of the mechanistic model compared with energy evaluation systems. The error of prediction was positively related to grass protein content for the Dutch NE system, and was also positively related to grass DMI level for all models. In conclusion, current energy evaluation systems overestimate energy supply relative to energy requirement on grass-based diets for dairy cattle. The mechanistic model predicted glucogenic nutrients to limit performance of dairy cattle on grass-based diets, and proved to be more accurate and precise than the energy systems. The mechanistic model could be improved by allowing glucose maintenance and utilization requirements parameters to be variable.  相似文献   

7.
Efficiency of energy utilisation and voluntary feed intake in ruminants   总被引:1,自引:0,他引:1  
Energy requirements of animals are most readily expressed in terms of net energy (NE), while the energy yield of feed is, at least initially, expressed in terms of metabolisable energy (ME). Energy evaluation systems 'translate' NE requirements into ME requirements (ME systems) or assign NE values to feeds (NE systems). Efficiency of ME utilisation is higher for maintenance than for production and the NE yield of a feed varies, therefore, with ME intake. In addition, energetic efficiency for maintenance and production is thought to be different for lactating and non-lactating animals and to be affected by diet quality. As a result, there are currently many national energy evaluation systems that are complex, differ in their approach and are, as a result, difficult to compare. As ruminants in most production systems are fed ad libitum, this is also the most appropriate intake level at which to estimate energetic efficiency. Analyses of older as well as more recent data suggest that ad libitum feeding (i) abolishes the effects of diet quality on energetic efficiency (almost) completely, (ii) abolishes the differences between lactating and non-lactating animals (almost) entirely and (iii) results in overall energetic efficiencies that are always close to 0.6. The paper argues that there is now sufficient information to develop an international energy evaluation system for ad libitum fed ruminants. Such a system should (i) unify ME and NE systems, (ii) avoid the systematic bias and large errors that can be associated with current systems (iii) be simpler than current systems and (iv) have as a starting point a constant efficiency of ME utilisation, with a value of around 0.6. The remarkably constant efficiency of ME utilisation in ad libitum fed ruminants could be the result of energetic efficiency as well as feed intake regulation being affected by the same variables or of a direct role of energetic efficiency in feed intake regulation. Models to predict intake on the basis of the latter hypothesis are already available for non-reproducing ruminants but remain to be developed for reproducing animals.  相似文献   

8.
The objective of this meta-analysis was to develop and validate empirical equations predicting BW gain (BWG) and carcass traits of growing cattle from intake and diet composition variables. The modelling was based on treatment mean data from feeding trials in growing cattle, in which the nutrient supply was manipulated by wide ranges of forage and concentrate factors. The final dataset comprised 527 diets in 116 studies. The diets were mainly based on grass silage or grass silage partly or completely replaced by whole-crop silages, hay or straw. The concentrate feeds consisted of cereal grains, fibrous by-products and protein supplements. Mixed model regression analysis with a random study effect was used to develop prediction equations for BWG and carcass traits. The best-fit models included linear and quadratic effects of metabolisable energy (ME) intake per metabolic BW (BW0.75), linear effects of BW0.75, and dietary concentrations of NDF, fat and feed metabolisable protein (MP) as significant variables. Although diet variables had significant effects on BWG, their contribution to improve the model predictions compared with ME intake models was small. Feed MP rather than total MP was included in the final model, since it is less correlated to dietary ME concentration than total MP. None of the quadratic terms of feed variables was significant (P>0.10) when included in the final models. Further, additional feed variables (e.g. silage fermentation products, forage digestibility) did not have significant effects on BWG. For carcass traits, increased ME intake (ME/BW0.75) improved both dressing proportion (P<0.01) and carcass conformation (P<0.001) and increased (P<0.001) carcass fat score. Increased dietary CP concentration had no significant (P>0.10) effect on dressing proportion or carcass conformation score, but it increased (P<0.01) carcass fat score. The current study demonstrated that ME intake per BW0.75 was clearly the most important variable explaining the BWG response in growing cattle. The effect of increased ME supply displayed diminishing responses that could be associated with increased energy concentration of BWG, reduced diet metabolisability (proportion of ME of gross energy) and/or decreased efficiency of ME utilisation for growth with increased intake. Negative effects of increased dietary NDF concentration on BWG were smaller compared to responses that energy evaluation systems predict for energy retention. The present results showed only marginal effects of protein supply on BWG in growing cattle.  相似文献   

9.
用光合-蒸散耦合模型模拟冬小麦CO2通量的日变化   总被引:1,自引:0,他引:1  
王靖  于强  李湘阁  孙晓敏  朱治林 《生态学报》2004,24(12):2782-2788
根据SPAC理论建立了一个冬小麦光合和蒸散的耦合模型.冬小麦CO2通量包括冠层光合、呼吸和土壤呼吸.冠层光合采用了Farquhar光合作用生化模型,并通过冠层阻力的参数化将光合作用与蒸腾作用耦合起来.用涡度相关方法观测了CO2通量,对模型进行了验证,结果显示模型可以较好地模拟CO2通量日变化过程.对模型的敏感性分析发现日间CO2通量最敏感的参数是初始量子效率.其次,CO2通量对光响应曲线凸度、CO2补偿点、凋萎点和叶面积指数的变化也有着较强的敏感性;夜间CO2通量敏感的参数是最适温度下Rubisco催化能力和暗呼吸参数.  相似文献   

10.
王靖  于强  李湘阁  孙晓敏  朱治林 《生态学报》2004,24(12):2782-2788
根据 SPAC理论建立了一个冬小麦光合和蒸散的耦合模型。冬小麦 CO2 通量包括冠层光合、呼吸和土壤呼吸。冠层光合采用了 Farquhar光合作用生化模型 ,并通过冠层阻力的参数化将光合作用与蒸腾作用耦合起来。用涡度相关方法观测了 CO2通量 ,对模型进行了验证 ,结果显示模型可以较好地模拟 CO2 通量日变化过程。对模型的敏感性分析发现日间 CO2 通量最敏感的参数是初始量子效率。其次 ,CO2 通量对光响应曲线凸度、CO2 补偿点、凋萎点和叶面积指数的变化也有着较强的敏感性 ;夜间 CO2 通量敏感的参数是最适温度下 Rubisco催化能力和暗呼吸参数  相似文献   

11.
The mitigation of enteric methane emission in beef cattle production is important for reducing feed energy loss and increasing environmental sustainability. The main objective of this study was to evaluate the effect of different oilseeds included in fermented total mixed rations (whole soyabean seed (SBS, control), whole kapok seed (KPS) and cracked oil palm fruit (OPF)) on feed intake, digestibility, rumen microbial populations, energy partition and methane emissions in different cattle genotypes (Charolais crossbred v. Japanese Black crossbred). Three Charolais crossbred and three Japanese Black crossbred bulls were studied in a replicated 3×3 Latin square experimental design; genotypes were analysed in separate squares including three periods of 21 days each and three dietary oilseed treatments fed ad libitum. The cattle were placed in a metabolic cage equipped with a ventilated head box respiration system for evaluating digestibility and energy balance. As compared with Charolais crossbred individuals, Japanese Black crossbred bulls showed consistently lower dry matter intake (15.5%, P<0.01), metabolisable energy (ME) intake (13.8%, P<0.05), ME requirement for maintenance (10.3%; 386 v. 430 kJ/kg metabolic BW, respectively), faeces energy loss (19.2%, P<0.001) and enteric methane emissions (18.5%, P<0.001). However, these two genotypes did not differ in energy retention (ER) (P=0.80). Among the three dietary oilseed treatments, OPF exhibited higher NDF intake (P<0.01) and digestibility (P<0.01), which was associated with a larger (P<0.05) total number of bacteria in the rumen. In addition, the OPF diet contributed to higher ME intake and ER than that of the KPS diet, whereas the SBS diet presented intermediate values (P<0.05). The methane conversion factor of these crossbreds was not significantly affected by genotype (P>0.05) or diet (P>0.05) under the experimental conditions and ranged from 5.8% to 6.0% of gross energy intake. This value is lower than that reported by the Intergovernmental Panel on Climate Change (6.5%) for cattle fed with low-quality crop residues or by-products. Thus, our results imply that the Japanese Black crossbred cattle consume less feed and emits less enteric methane than the Charolais crossbred does, mainly owing to its lower ME requirement for maintenance. The OPF diet could be used to replace SBS for high beef production, although further studies are required to evaluate their application across a wide range of beef production systems.  相似文献   

12.
To investigate the dynamics of animal intake and production in grassland-based suckler systems, we constructed a model for suckling cows with their calves. The model calculates on a day-to-day basis the selective intake at pasture and the animal production (weight, condition, milk production) in response to energy intake. The model dynamically applies the feed evaluation systems developed by the INRA: the “cattle fill unit” system to predict forage intake, and the “feed unit” system to predict net energy requirements and supply. To predict intake at pasture, we adapted the cattle fill unit system by adding effects of herbage availability and sward structural composition on the amount and quality of intake.At pasture, the grazeable herbage is divided into structural components characterized by their biomass and digestibility. The model predicts the composition of the diet, assuming that the most digestible and abundant components of herbage are preferred. The amount of herbage ingested depends on the animal profile, the digestibility of the diet and the amount of herbage available. Sward depletion by animal intake at pasture has feedback effects on herbage growth and quality, which can be calculated by a vegetation model. Animal production is calculated based on net energy balance, which is the difference between net energy intake and net energy requirements for maintenance (for cow and calf), gestation and lactation (for the cow). The net energy balance determines weight and condition gain or loss, and – after 3 months of lactation – influences milk production the following day. Changes in weight and condition have feedback effects on energy requirements and intake capacity.Sensitivity analysis on the input values highlighted the importance of forage digestibility for the production of cows and calves. Calf growth was also driven over 3 months old by calf live weight, and under 3 months old by the milk production of the cow. The model's response to stocking rate during the grazing down of a paddock was consistent with current knowledge. The model was validated against experimental data for cows fed indoors or at pasture, at different feed allowances. Model predictions were precise for the digestibility of intake and for live weight (error represents 2–3% of the average observed value), satisfactory for dry matter intake, body condition score and milk production at the beginning of lactation (error represents 10% of the average observed value), and very imprecise for milk production after the third month of lactation (error represents 23% of the average observed value), but the latter had small consequences on calf live weight.  相似文献   

13.
The control of nutrient partitioning is complex and affected by many factors, among them physiological state and production potential. Therefore, the current model aims to provide for dairy cows a dynamic framework to predict a consistent set of reference performance patterns (milk component yields, body composition change, dry-matter intake) sensitive to physiological status across a range of milk production potentials (within and between breeds). Flows and partition of net energy toward maintenance, growth, gestation, body reserves and milk components are described in the model. The structure of the model is characterized by two sub-models, a regulating sub-model of homeorhetic control which sets dynamic partitioning rules along the lactation, and an operating sub-model that translates this into animal performance. The regulating sub-model describes lactation as the result of three driving forces: (1) use of previously acquired resources through mobilization, (2) acquisition of new resources with a priority of partition towards milk and (3) subsequent use of resources towards body reserves gain. The dynamics of these three driving forces were adjusted separately for fat (milk and body), protein (milk and body) and lactose (milk). Milk yield is predicted from lactose and protein yields with an empirical equation developed from literature data. The model predicts desired dry-matter intake as an outcome of net energy requirements for a given dietary net energy content. The parameters controlling milk component yields and body composition changes were calibrated using two data sets in which the diet was the same for all animals. Weekly data from Holstein dairy cows was used to calibrate the model within-breed across milk production potentials. A second data set was used to evaluate the model and to calibrate it for breed differences (Holstein, Danish Red and Jersey) on the mobilization/reconstitution of body composition and on the yield of individual milk components. These calibrations showed that the model framework was able to adequately simulate milk yield, milk component yields, body composition changes and dry-matter intake throughout lactation for primiparous and multiparous cows differing in their production level.  相似文献   

14.
This is the second of two papers describing a teleonomic model of individual performance during growth and over repeated reproductive cycles throughout the lifespan of dairy cattle. The model described in the first paper is based on the coupling of a regulating sub-model of the dynamic partitioning of a female mammal's priority over a lifetime with an operating sub-model of whole-animal performance. The model provides a reference pattern of performance under normal husbandry and feed regimen, which is expressed in this paper in a reference dynamic pattern of energy partitioning adapted to changes in nutrient supply. This paper deals with the representation of deviations from the reference pattern of performance. First, a model of intake regulation, accounting for feed allowance, physical limitation of the digestive tract and energy demand, is used to determine the actual intake, which may generate a deviation from the energy input under the reference pattern of partitioning. Second, a theoretical model is proposed to apportion the energy deviation between flows involved in performance and thus simulate lifetime performance when actual intake is above or below requirements. The model explicitly involves a homeorhetic drive by way of the tendency to home on to the teleonomic trajectory and a homeostatic control by way of the tendency to maintain an energy equilibrium in response to nutritional constraints. The model was evaluated through simulations reproducing typical feeding trials in dairy cows. Model simulations shown in graphs concern the effect of dietary energy content on intake, body weight and condition score, and milk yield. Results highlight the ability of the model to simulate the combination of physical and energetic regulation of intake, the accelerated, retarded and compensatory patterns of growth and the short- and long-term residual effects of pre-partum feeding on lactation.  相似文献   

15.
16.
The Cornell Net Carbohydrate and Protein System (CNCPS) predicts cattle requirements and nutrient supply for site-specific situations. This paper describes the CNCPS version 6 (CNCPSv6), which represents a re-engineering and updating of CNCPS version 5 with the following objectives: (1) improve the organization of the model and user interface to improve speed and accuracy in formulating diets for a herd of dairy cattle, (2) expand the carbohydrate pools to include sugars, soluble fibers, and organic and volatile fatty acids, (3) integrate a fat model to account for ruminal lypolization and biohydrogenation, and absorption of fatty acids in the small intestine, and (4) update the computational sub-models with new information. The CNCPSv6 model was re-designed using object-oriented programming in which physiological functions (e.g. growth, lactation, pregnancy) and anatomical compartments (e.g. rumen, intestines) were programmed as objects. The interface uses farm, location, and group flow, which decreases the number of inputs required per cattle group and allows for more rapid evaluation of diets, feed requirements, and nutrient excretion by location, group, and herd. The revised implementation of the body reserves sub-model allows accounting for fluxes in energy reserves when formulating diets. Updated equations and coefficients include the prediction of rumen ammonia balance and feed passage rates, indigestible DM, MP lactation efficiency, and DMI. The CNCPSv6 was evaluated with data from individually fed lactating dairy cows from three independent studies. As implemented, CNCPSv6 accounted for a similar proportion of the variation (86%) in first limiting (ME or MP) milk production as CNCPSv5 but with a lower bias (1% versus 4%, respectively). We concluded the re-designing and updating of the CNCPS improved its ability to formulate and evaluate a feeding program for a herd of dairy cattle with greater accuracy and efficiency.  相似文献   

17.
Intake of endophyte-infected tall fescue by cattle results in fescue toxicosis, which is characterized by increased hyperthermia during heat stress and concomitant reductions in feed intake and growth. Rats were monitored at 21 or 31 °C for short- or long-term periods to determine temporal changes associated with the intake of endophyte-infected (E+) or uninfected (E−) fescue seed diets. Core temperature only changed in rats fed E+ diet at 31 °C. Intake of E+ diet reduced feed intake, daily gain, and serum prolactin. There were temporal and thermal differences in the response to endophytic toxins, with short-term changes diminishing over time at 21 °C, but increasing for certain parameters at 31 °C.  相似文献   

18.
The heat increment of feeding (HIF), including heat from digestion, assimilation, and nutrient interconversion, may substitute for thermogenesis and reduce thermoregulation costs. HIF and its substitution have been measured mainly in animals fed single large meals with high protein content, but many species such as some dabbling ducks (Anatini) feed more continuously in intermittent small meals with low protein content. We measured HIF in seven mallard ducks (Anas platyrhynchos) eating mixed grain (corn, wheat, milo) ad libitum while floating on water at 23 degrees C (thermoneutral) and 8 degrees C. HIF was calculated as the difference in oxygen consumption between fed and fasted birds, correcting for costs of behavior, heat storage (change in body temperature), and heating food. Substitution occurred if HIF was lower at 8 degrees C than at 23 degrees C. Food intake of mallards averaged 83% of that required for maintenance (zero energy balance) at 23 degrees C, and 68% of maintenance at 8 degrees C. Mean HIF (+/-1 SE) was 1.59+/-0.61 l O(2) at 23 degrees C and 1.48+/-0.68 l O(2) at 8 degrees C. These values were 4.9% and 3.9% of metabolizable energy intake, consistent with values expected for grain. HIF did not differ between temperatures (ANCOVA, birds as blocks, intake as covariate, P=0.51), indicating no measurable substitution at these intake levels in intermittent meals. For these large birds that feed on low-protein foods in intermittent small meals, the ecological importance of HIF substitution appears negligible during periods when food intake is below that required for energy balance.  相似文献   

19.
Energy requirements for veal calves have not been updated recently despite the increased age at slaughter and the predominance of the Prim'Holstein breed in Europe. The objectives of this study were to determine the effects of four feeding levels (FLs) on protein and fat deposition and heat production in milk-fed calves at three stages of fattening and to determine energy requirements of calves. At each stage, 16 Prim'Holstein male calves (mean body weight (BW): 73.4, 151.6 and 237.4 kg) were fed a milk replacer at 79%, 87%, 95% or 103% of a reference FL. Measurements for one stage were conducted over 4 successive weeks in two open-circuit respiration chambers and consisted of a 6-day nitrogen and energy balance followed by a fasting day for estimating fasting heat production (FHP) of the calves. Heat production (HP) measurements were analyzed using a modeling approach to partition it between HP due to physical activity (AHP), feed intake (thermic effect of feeding (TEF)) and FHP. There was no effect of FL and stage on apparent digestibility coefficients, except for a tendency for increased digestibility coefficient of fat as animals got older. The metabolizable energy (ME)/digestible energy (DE) ratio did not depend on FL but decreased (P < 0.01) as animals got older in connection with marked increases in urinary glucose and urea excretion. The AHP and TEF components of HP were not affected by stage or FL and averaged 8.4% and 7.8% of ME intake, respectively. The FHP, expressed per kg BW0.85, increased with increasing FL, suggesting that also ME requirement for maintenance (MEm) may depend on FL. For an average intake of 625 kJ ME/kg BW0.85 per day (95% of the reference FL), FHP was 298 kJ/kg BW0.85 per day. Energy retention as protein and fat increased with increasing FL resulted in higher BW gain. But the rate of increase depended on stage of growth. The slope relating protein deposition to FL was lower in the finishing phase than in the growing phase, while the slope for lipid deposition was greater. Protein and fat contents of BW gain were not affected by FL but increased as animals got older. From these results, the energy requirements of veal calves are proposed according to a new approach, which considers that MEm (expressed per kg BW0.85) depends on ME intake (kJ/kg BW0.85) according to the following relationship: MEm = 197 + 0.25 × ME intake. The corresponding marginal efficiencies of ME utilization for protein and fat deposition are then 82% and 87%, respectively.  相似文献   

20.
The changes taking place with age in energy turnover of dairy cattle are largely unknown. It is unclear whether the efficiency of energy utilization in digestion (characterized by faecal and methane energy losses) and in metabolism (characterized by urine and heat energy losses) is altered with age. In the present study, energy balance data were obtained from 30 lactating Brown Swiss dairy cows aged between 2 and 10 years, and 12 heifers from 0.5 to 2 years of age. In order to evaluate a possible dependence of age effects on diet type, half of the cattle each originated from two herds kept at the same farm, which were fed either on a forage-only diet or on the same forage diet but complemented with 5 kg/day of concentrate since their first calving. During 2 days, the gaseous exchange of the animals was quantified in open-circuit respiration chambers, followed by an 8-day period of feed, faeces, urine and milk collection. Daily amounts and energy contents were used to calculate complete energy balances. Age and feeding regime effects were analysed by parametric regression analysis where BW, milk yield and hay proportion in forage as consumed were considered as covariates. Relative to intake of gross energy, the availability of metabolizable energy (ME) increased with age. This was not the result of an increasing energy digestibility, but of proportionately lower energy losses with methane (following a curvilinear relationship with the greatest losses in middle-aged cows) and urine (continuously declining). The efficiency of utilization of ME for milk production (kl) increased with age. Potential reasons include an increase in the propionate-to-acetate ratio in the rumen because of a shift away from fibre degradation and methane formation as well as lower urine energy losses. The greater kl allowed older cows to accrete more energy reserves in the body. As expected, offering concentrate enhanced digestibility, metabolizability and metabolic utilization of energy. Age and feeding regime did not interact significantly. In conclusion, older cows seem to have digestive and metabolic strategies to use dietary energy to a certain degree more efficiently than younger cows.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号