首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of varying the grain (G) to straw (S) ratio (G:S) of whole-crop wheat and barley silages on intake and digestibility and whole-crop barley silage on rumen fermentation characteristics were examined in two parallel studies. For the intake and digestibility study, eight Aberdeen Angus cross-bred steers (mean bodyweight 407 kg (S.D. 24.2)) were used in two (barley and wheat) 4 × 4 Latin Square designed experiments. The dietary treatments were four G:S ratios: 0:100, 30:70, 60:40 and 90:10. Intake of grain linearly increased (P<0.001) while that of straw decreased (P<0.001) as the ratio of G:S increased for both cereals. No effect (P>0.05) was observed in total dry matter (DM) intake (DMI) or in DMI per kg liveweight. There was a positive linear (P<0.001) effect on the digestibility of the DM and organic matter (OM) and a negative linear effect on neutral detergent fibre (aNDFom) digestibility (P<0.01) as the G:S ratio increased for both cereals. Both a positive linear (P<0.05) and quadratic (P<0.01) effect were observed for the G:S ratio on nitrogen (N) digestibility of barley and a corresponding positive linear increase (P<0.01) for wheat. A negative linear effect was found for digestibility of starch (P<0.01) and a positive linear effect for faecal grain content (P<0.01) with increasing G:S ratio. Four Holstein–Friesian steers (mean bodyweight 659 kg (S.D. 56.9)) fitted with rumen cannulae were used in the rumen study. A negative linear effect of G:S ratio was found on rumen pH (P<0.001) while a positive linear effect was found on rumen ammonia (P<0.001) and total volatile fatty acid (VFA) concentration (P<0.01) with increasing G:S ratio. A negative linear effect (P<0.01) was found on the molar proportion of acetic acid. However, this decrease was offset by linear increases in the molar proportions of iso- and n-butyric acid, iso- (P<0.01) and n- (P<0.05) valeric acid, and to a lesser extent in propionic acid (P<0.01). No effect of treatment was found on rumen pool sizes of DM or its constituents. A positive linear effect (P<0.01) was found on the effective degradability (ED) of the DM, OM, N and starch while it was found to be negative in aNDFom (P<0.05). No effect (P>0.05) was found on the fractional clearance rates of DM, OM, aNDFom or starch or on liquid passage rate. It is concluded that increasing the G:S ratio in whole-crop wheat or barley silage linearly increased the intake of digestible nutrients for both wheat and barley and increasing the G:S ratio for whole-crop barley increased the concentration of fermentation products (total VFA, ammonia and the molar proportions of the VFAs, except acetic acid) in the rumen.  相似文献   

2.
This study investigated the effects of, and interactions between, dietary grain source and marginal changes in alfalfa hay (AH) particle size (PS) on digestive processes of dairy cows. A total of eight Holstein dairy cows (175 days in milk) were allocated in a replicated 4 × 4 Latin square design with four 21-day periods. The experiment was a 2 × 2 factorial arrangement with two levels of theoretical PS of AH (fine = 15 mm or long = 30 mm) each combined with two different sources of cereal grains (barley grain alone or barley plus corn grain in a 50 : 50 ratio). Results showed that cows consuming diets supplemented with corn had greater dry matter and nutrient intakes (P < 0.01), independent of forage PS. In addition, the apparent digestibility of fiber fractions was greater for diets supplemented with corn (P = 0.01). The feeding of barley grain-based diets was associated with greater apparent digestibility of non-fiber carbohydrates, and this variable was even greater when long AH was fed (P = 0.04). Moreover, the feeding of long AH resulted in longer time spent eating (P = 0.03) and higher pH (P < 0.01), as well as a tendency for higher acetate-to-propionate ratio in the rumen fluid (P = 0.06) at 3 h post feeding. In conclusion, the results indicated that the marginal increase of PS of AH may prolong eating time and improve rumen fermentation, particularly in diets based on barley grain. Partial substitution of barley grain by corn can improve feed intake and fiber digestibility in mid-lactation dairy cows.  相似文献   

3.
Ruminants can tolerate moderate concentrations of dietary tannin, making it feasible to replace corn with sorghum in ruminant diets; however, conditioning temperature of pelleted total mixed ration (PTMR) greatly affects nutrient digestibility. The objective was to determine effects of grain type and conditioning temperature during pelleting on growth performance, ruminal fermentation, meat quality and blood metabolites of fattening lambs. This was a 2 × 3 factorial study, with corn and sorghum and three conditioning temperatures (65, 75 and 85 °C) in a randomized complete design, with 36 lambs (120 ± 10.2 d and 24.9 ± 3.3 kg) grouped by weight and randomly allocated. The resulting six PTMRs were referred to as 65-S, 75-S and 85-S for sorghum-based diets, and 65-C, 75-C and 85-C for corn-based diets, for low, medium and high pelleting temperatures, respectively. There was no grain type × conditioning temperature (Grain × Temp) interaction on growth performance and apparent nutrient digestibility. Furthermore, grain type did not affect DM intake (DMI), average daily gain (ADG) or feed conversion ratio (FCR) of fattening lambs. Pelleting at 75 °C improved ADG (P < 0.03) and FCR (P < 0.02) of fattening lambs compared to other temperatures. There was a Grain × Temp interaction (P < 0.01) on ruminal pH (lowest in lambs fed 75-S). There tended (P = 0.07) to be a Grain × Temp interaction for total volatile fatty acid (VFA), and there were Grain × Temp interactions for molar proportions of acetate (P < 0.04), butyrate (P < 0.03) and branch-chained VFA (P < 0.01). Lambs fed sorghum-based PTMR had greater molar proportion of propionate (P < 0.03) and lower acetate to propionate ratio (A:P, P < 0.04). Lambs fed sorghum-based PTMR had higher plasma concentrations of urea nitrogen (N) (P < 0.03), glucose (P < 0.01) and alkaline phosphatase (P < 0.05), whereas other blood metabolites were not affected by treatments. There were Grain × Temp (P < 0.03) interactions for color coordinates of longissimus and mid-gluteal muscle. Lambs fed sorghum-based PTMR had lower (P < 0.01) dressing percentage and meat quality than those fed corn-based PTMR. We concluded that sorghum can replace corn in lamb diets without compromising growth performance and feed efficiency; furthermore, feeding sorghum vs corn improved rumen fermentation, with reduced A:P ratio and enhanced N and glucose utilization. Finally, pelleting at 75 °C increased feeding value of either sorghum- or corn-based PTMR for fattening lambs.  相似文献   

4.
Moringa oleifera seeds are currently being used as a livestock feed across tropical regions of the world due to its availability and palatability. However, limited knowledge exists on the effects of the raw seeds on ruminant metabolism. As such, the rumen stimulation technique was used to evaluate the effects of substituting increasing concentrations of ground Moringa seeds (0, 100, 200 and 400 g/kg concentrate dry matter (DM)) in the diet on rumen fermentation and methane production. Two identical, Rusitec apparatuses, each with eight fermenters were used with the first 8 days used for adaptation and days 9 to 16 used for measurements. Fermenters were fed a total mixed ration with Urochloa brizantha as the forage. Disappearance of DM, CP, NDF and ADF linearly decreased (P<0.01) with increasing concentrations of Moringa seeds in the diet. Total volatile fatty acid production and the acetate to propionate ratio were also linearly decreased (P<0.01). However, only the 400 g/kg (concentrate DM basis) treatment differed (P<0.01) from the control. Methane production (%), total microbial incorporation of 15N and total production of microbial N linearly decreased (P<0.01) as the inclusion of Moringa seeds increased. Though the inclusion of Moringa seeds in the diet decreased CH4 production, this arose from an unfavourable decrease in diet digestibility and rumen fermentation parameters.  相似文献   

5.
Slow-release urea (SRU) can substitute dietary protein sources in the diet of feedlotting ruminant species. However, different SRU structures show varying results of productive performance. This study was conducted to investigate the effect of different sources of nitrogen on performance, blood parameter, ruminal fermentation and relative population of rumen microorganisms in male Mehraban lambs. Thirty-five male lambs with an average initial BW of 34.7 ± 1.8 kg were assigned randomly to five treatments. Diets consisted of concentrate mixture and mineral and vitamin supplements plus (1) alfalfa and soybean meal, (2) wheat straw and soybean meal, (3) wheat straw and urea, (4) wheat straw and Optigen® (a commercial SRU supplement) and (5) wheat straw and SRU produced in the laboratory. No statistical difference was observed in animal performance and DM intake among treatments. The mean value of ruminal pH and ammonia was higher (P < 0.05) for the SRU diet compared with WU diet. The difference in pH is likely to be due to the higher ammonia level as VFAs concentrations were unchanged. The level of blood urea nitrogen (BUN) was different among treatments (P = 0.065). The highest concentration of BUN was recorded in Optigen diet (183.1 mg/l), whereas the lowest value was recorded in wheat straw-soybean meal diet (147 mg/l). The amount of albumin and total protein was not affected by the treatments. The relative population of total protozoa, Fibrobacter succinogenes, Ruminococcus flavefaciens and Ruminococcus albus in the SRU treatment was higher (P < 0.01) than that in urea treatment at 3 h post-feeding. During the period of lack of high-quality forage and in order to reduce dietary costs, low-quality forage with urea sources can be used in the diet. Results of microbial populations revealed that SRU can be used as a nitrogen source which can sustainably provide nitrogen for rumen microorganism without negative effects on the performance of feedlotting lambs.  相似文献   

6.
With no acceptable method for collecting fresh rumen fluid from zoo ruminants, it was proposed that fecal bacterial concentrations may be correlated with rumen bacteria. If so, fecal bacterial concentrations could be used to study both the effects of diet on rumen bacteria as well as rumen abnormalities. Total and cellulolytic bacterial concentrations were determined in whole rumen contents and feces of sheep using a most‐probable‐number (MPN) assay. In a Latin square design, four crossbred ewes were fed diets of 100% long or chopped orchardgrass hay (OH) and 60% ground or whole shelled corn plus 40% chopped OH. In a second trial, the sheep were fed a pelleted complete feed at varying levels of intake i.e., control at 2.0% of body weight and at 1.8, 1.6, and 1.2% of body weight. Higher total rumen bacterial concentrations (P<0.01) were found on the high concentrate diets as compared with the high forage diets. Grinding the corn also increased total bacterial concentrations (P<0.05). Fecal concentrations of total bacteria were higher (P<0.01) with the high concentrate diets. Chopping the forage decreased the concentration of fecal cellulolytic bacteria (P<0.05) but had no effect on their concentration in the rumen. An inverse linear relationship (P<0.01) was observed between total bacterial concentrations in the feces and diet intake. Although relationships were observed between the rumen and feces for total and cellulolytic bacterial concentrations, they were dependent on diet, particle size, and level of intake. Thus, fecal bacterial concentrations cannot be used to reliably predict rumen bacterial concentrations. Zoo Biol 27:100–108, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

7.
We assessed the effects of vitreousness and particle size of maize grain on ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen. Six maize grain (Zea mays) genotypes characterized by differing vitreousness (proportion of vitreous in total endosperm) were ground (3-mm screen; Gr, ground particles, mean particle size (MPS): 526 μm) and cracked with a roller mill using two gap width settings (CS, cracked small particles, MPS: 1360 μm; CL, cracked large particles, MPS: 2380 μm). The ruminal and intestinal in sacco degradation of dry matter, starch and nitrogen was measured on three dry Holstein cows, fitted with rumen, proximal duodenum and terminal ileum cannulas, fed maize silage ad libitum twice daily. The ruminal starch degradability and intestinal digestibility differed among genotypes (P<0.001) and decreased as particle size increased (P<0.001). For the same particle size, starch ruminal degradability decreased (P<0.05) and intestinal digestibility decreased (P<0.002) with vitreousness. Particle size and vitreousness of maize grain are efficient factors for manipulating the amount of starch escaping rumen degradation, but may be limiting for the amount of starch digested in the small intestine.  相似文献   

8.
This study was carried out to evaluate intake, digestibility, ruminal fermentation, nitrogen (N) retention and ruminal microbial protein synthesis in lambs fed dwarf elephant grass (Pennisetum purpureum Schum. cv. Mott) hay or hay supplemented with urea and 0, 5, 10 or 15 g/kg of live weight (LW) of cracked corn grain. Ten lambs (mean LW of 28 ± 0.9 kg), housed in metabolic cages, were used in a double 5 × 5 Latin Square experiment. Except fibre intake and digestibility, which was higher, the intake and digestibility of the others feed components, as well as ruminal microbial protein synthesis and N retention were lower in non-supplemented lambs. Corn supplementation increased total dry matter (DM) (P<0.05), organic matter (OM), non-structural carbohydrate (NSC) and energy intake (P<0.01) but decreased total neutral detergent fibre (aNDFom) (P<0.01) intake, as well as OM and aNDFom intake from the hay (P<0.01). Apparent DM, OM and energy digestibility, as well as OM true digestibility (OMTD) increased (P<0.01), and aNDFom digestibility decreased linearly (P<0.01) as corn supplementation increased. Total N intake was not influenced but, apparent and true N digestibility, as well as urinary N excretion decreased (P<0.01), and ruminal microbial N entering the small intestine increased linearly (P<0.01) as corn supplementation increased. However, the efficiency of ruminal microbial protein synthesis was similar for all treatments. Mean ruminal pH values and ammonia N concentrations decreased linearly (P<0.01) with level of corn supplementation. Ammonia N and amino acid, as well as peptide concentrations in ruminal fluid were quadratically related (P<0.01) with the time after feeding. Corn supplementation had a linear additive effect on total dry matter and digestible energy intake, as well as on N retention, but a linear negative effect on hay intake and on fibre digestibility. However, decreased forage digestibility by animals was probably neither related to lower ruminal pH, which values were always higher than 7.0, nor related to ruminal sugar concentrations, which were similar for all treatments.  相似文献   

9.
A study was conducted to evaluate the main effects of dietary nitrate adaptation by cattle and alfalfa cell wall to starch ratio in in vitro substrates on nitrate disappearance and nitrite and volatile fatty acid (VFA) concentrations, as well as hydrogen (H2) and methane (CH4) accumulations. Rumen fluid from steers fed diets containing urea or nitrate was added into in vitro incubations containing sodium nitrate as the sole nitrogen source and 20 cell wall : 80 starch or 80 cell wall : 20 starch as the carbohydrate source. The results showed that during 24 h incubation, rumen fluid inoculums from steers adapted to dietary nitrate resulted in more rapid nitrate disappearance by 6 h of incubation (P < 0.01), no significant effect on nitrite concentration and diminished CH4 accumulation (P < 0.05). Cell wall to starch ratio did not affect nitrate disappearance, CH4 accumulation and total VFA concentration. The higher cell wall ratio had the lower total gas production and H2 concentration (P < 0.05). Ammonia-N (NH3-N) concentration increased because of adaptation of donors to nitrate feeding (P < 0.05). Nitrate adaptation did not alter total VFA concentration, but increased acetate, and decreased propionate and butyrate molar proportions (P < 0.01).  相似文献   

10.
Experimental comparisons of the nutritional value of different wheat cultivars commonly use feeds in meal form even though the large-scale broiler producers use steam pelleted feeds. The aim of this experiment was to examine the effect of steam pelleting on the performance, dietary N-corrected apparent metabolisable energy (AMEn), total tract dry matter retention (DMR), nitrogen retention (NR) and fat digestibility (FD) coefficients, and digestive tract development of broilers fed four different wheat samples in complete diets. Four European wheat samples, with different chemical composition and endosperm characteristics, were used in a broiler experiment. The wheat samples were milled through a 5 mm screen and four basal feeds containing 670 g/kg of each selected wheat sample were mixed. The basal feeds were then split into two batches and one of them was steam pelleted resulting in eight experimental diets. Each diet was fed ad libitum to eight pens of two male Ross 308 broilers from 10 to 24 days of age. Feeding pelleted diets improved (P<0.001) feed intake and weight gain, and daily water intake of the birds. Pelleting also improved dietary AMEn and FD (P<0.001) and DMR (P<0.05). An interaction (P<0.05) was observed between wheat samples and steam pelleting for NR. Steam pelleting improved (P<0.05) NR in the wheat sample with high starch and protein and hard endosperm but not in the rest of the wheat samples. Similar interactions (P<0.05) were also observed between wheat sample and steam pelleting for gain to feed (G : F) and water to feed (W : F) ratios. Pelleting improved G : F ratio the greatest in the wheat sample with high starch and protein and hard endosperm. Feeding the same wheat sample also decreased (P<0.05) W : F but only in the mash diets. Regardless of the wheat sample the values of dietary AMEn did not differ (P>0.05). Feeding different wheat types and pelleting did not (P>0.05) change the development of the gastrointestinal tract of the birds. The study showed that there were differences between four wheat samples when they were fed in pelleted complete feed, but no differences were observed when fed in mash form complete diets. Research on the interaction between pelleting and wheat chemical and quality characteristics is warranted.  相似文献   

11.
Four Slovakian Black‐and‐white bulls (LW 410 ± 12 kg; Exp. 1) and four Slovakian Black‐and‐white non lactating dairy cows (LW 475 ± 14 kg; Exp. 2) with permanent ruminal cannulas, duodenal T‐cannulas and ileal re‐entrant cannulas were used in a 4 × 4 Latin square design to determine the postruminal capacity of starch digestion.

In Exp. 1 bulls received 5.4 kg DM from corn silage and 3.6 kg DM from alfalfa hay, in Exp. 2 cows consumed only 2.1 kg DM corn silage and 1.9 kg DM alfalfa hay. Additionally, either 750 or 1500 g (Exp. 1) or resp. 1000 or 2000 g (Exp. 2) gelatinized corn or wheat starch per animal and day were applied as pulse doses or as infusion into the proximal duodenum.

In both experiments the duodenal and ileal nutrient flow, as well as the faecal excretion without starch application, were measured in a pre‐period. After starting starch application ileal digesta and faeces were sampled over 120 h after 9 or 23 days of adaptation respectively. Cr2O3 was used as a flow marker.

It was shown, that the capacity of starch utilisation in the small intestine was limited. The effect of different doses of bypass‐starch was more pronounced than the effect of different starch sources. Starch digestibility decreased with increasing amounts of starch in the intestine (Exp. 1: corn starch: from 74.3 to 68.0%, P < 0.001; wheat starch: from 76.7 to 67.4%, P <0.001; Exp. 2: corn starch: from 71.4 to 50.3%, P <0.001; wheat starch: from 73.8 to 53.1%, P <0.001). Corn starch was 0.6 to 2.4% units (P <0.05) and 2.4 to 2.8% units (P < 0.001) less digested than wheat starch in Exp. 1 and Exp. 2, respectively.

The decreased starch digestibility in the small intestine with increasing amounts of starch at the duodenum was not totally compensated in the large intestine. The starch digestibility in the total intestine for the low and high amounts of applied starch was: 83.7 and 81.0% (P < 0.001, corn starch, Exp. 1), 86.0 and 81.7% (P < 0.001, wheat starch, Exp. 1), 95.5 and 79.1% (P < 0.001, corn starch, Exp. 2), 99.8 and 81.7% (P < 0.001, wheat starch, Exp. 2).

Corn starch was 0.7 to 2.3% units (P <0.001) and 2.6 to 4.3% units (P <0.001) less digested than wheat starch in Exp. 1 and Exp. 2, respectively.

Model calculations were used to quantify the efficiency of starch utilisation. The recommended maximal amount of bypass‐starch is supposed to be 1.3 to 1.8 kg per animal and day.  相似文献   

12.
The responses of dairy cows to the substitution of beet pulp (BP) for grain or forage are not consistent, and heat stress may affect the response of dairy cows to this substitution. The effects of substituted BP for corn silage and barley grain on feed intake, performance, and ruminal parameters were evaluated using eight multiparous Holstein cows in a duplicated 4 × 4 Latin square design with 21-day periods. Cows were in mid-lactation (45.4 ± 3.6 kg/day milk production and 116 ± 10 days in milk) with an average BW of 664 ± 41.2 kg. Dietary treatments were as follows: 1) 0% BP (0BP, control, 38.5% barley grain, and 20.3% corn silage); 2) 12% BP (12BP, 32.5% barley grain, and 14.3% corn silage); 3) 18% BP (18BP, 29.5% barley grain, and 11.3% corn silage); and 4) 24% BP (24BP, 26.5% barley grain, and 8.3% corn silage). Cows were under mild heat stress and the average temperature–humidity index was 70.5; increasing BP caused a linear decrease in respiration rate (P < 0.01). Higher BP in the diet caused a linear increase in DM intake (P = 0.01) and NDF digestibility (P = 0.03). Dry and organic matter (OM) digestibilities tended to increase linearly with higher BP (P < 0.10). Milk yield, energy-corrected milk, protein, lactose, and fat production and content were not affected by the treatments. Increasing BP in the diet caused a linear decrease in feed efficiency and rumen ammonia (P < 0.05) and a tendency to a linear decrease in milk urea nitrogen (P < 0.10). Rumen pH and acetate to propionate ratio were not affected by the replacement. Total volatile fatty acid concentration in the rumen increased linearly with increasing the BP inclusion (P = 0.04). Acetate and butyrate (P = 0.07) proportion tended to increase, whereas propionate (P = 0.06) and isovalerate (P = 0.08) proportion tended to decrease linearly as BP was substituted for corn silage and barley grain. The results indicated that under mild heat stress condition, BP can be successfully substituted for barley grain and corn silage up to 24% of the diet without any negative effect on production and ruminal pH.  相似文献   

13.
Studies were done on blood biochemical constituents and rumen fermentation pattern of growing buffalo calves fed ammoniated wheat straw (UAS)-based rations supplemented with three different protein supplements. Eighteen buffalo calves (140 kg) were divided into three groups of six calves each and were fed on UAS supplemented with a concentrate mixture (roughage:concentrate ratio 58:42) containing 8% (or 3.5% of total ration) untreated groundnut cake (GNC) (group I), 8% formaldehyde treated GNC (group II) and 8% fish meal (group III), respectively, for 19 weeks. During this growth study, blood biochemistry was studied. Rumen fermentation study was done on three fistulated growing buffalo calves using a 3×3 Latin square switch over design. Blood glucose and ammonia-N did not differ significantly among the treatments. However, blood urea-N of calves in group III was higher (P<0.05) than in groups I and II, but the latter two did not differ from each other in this respect. Total protein in group I was comparable to group II and group III which were significantly different from each other. The rumen pH, total volatile fatty acids, ammonia-N and total protozoal count were similar, however, total N and TCA insoluble N in group II and group III were higher (P<0.01) than in group I. Fish meal containing diet favoured holotrichs, whereas, protected GNC containing diet favoured spirotrichs as indicated by significantly higher count. It was concluded that the beneficial effects of supplementing formaldehyde protected GNC at 8% in the concentrate mixture to the UAS-based diets were greater than supplementation of unprotected GNC or low quality fish meal in ration of buffalo calves growing at 400 g because of improved rumen fermentation, absorption and metabolism of nutrients as observed in blood biochemistry.  相似文献   

14.
Chemical and physical treatments of barley grain increase ruminally resistant starch and can improve the rumen fermentation pattern. The objective of the present study was to evaluate the effects of chemical (addition of citric acid, CA) and physical (grinding to two different particle sizes, PS) treatment of barley grain on performance, rumen fermentation, microbial protein yield in the rumen and selected blood metabolites in growing calves. In all, 28 male Holstein calves (172±5.1 kg initial BW) were used in a complete randomised design with a factorial arrangement of 2 barley grain particle sizes×2 levels of citric acid. The diets were as follows: (i) small PS (average 1200 µm) barley grain soaked in water (no CA addition); (ii) small PS barley grain soaked in a CA solution (adding 20 g CA/kg barley); (iii) large PS (average 2400 µm) barley grain soaked in water (no citric acid addition) and (iv) large PS barley grain soaked in a citric acid solution (adding 20 g CA/kg barley). Barley grain was then incorporated at 35% in a total mixed ration and fed to the calves for 11 weeks. Feeding small PS barley decreased feed intake (P=0.02) and average daily weight gain (P=0.01). The addition of CA to barley grain did not affect intake but increased weight gain (P<0.01) and improved feed to gain ratio (P=0.03). Digestibility of organic matter and NDF tended (P<0.10) to increase, whereas faecal scoring was improved (P=0.03) and the presence of undigested grain particles in faeces was reduced (P<0.01) with CA-treated barley grain. Glucose and urea concentrations were increased (P<0.01) in the blood of calves fed the CA-treated barley grain. Ruminal pH tended (P=0.08) to be decreased with more finely ground barley and was increased when barley grain was treated with CA. Total volatile fatty acid concentrations in the rumen did not differ among treatments (P>0.05). However, the molar proportion of propionate was increased (P=0.03) when barley was more finely ground, and that of acetate was increased (P=0.04) when CA was added to barley grain. The ruminal concentration of ammonia nitrogen was increased (P<0.01) and microbial nitrogen synthesis in the rumen tended to decrease by adding CA to barley. Treating barley grain with citric acid increased fibre digestibility of total mixed rations, attenuated the decrease in ruminal pH, and improved weight gain and feed efficiency in male Holstein growing calves fed a high-cereal diet (550 g cereal grain/kg diet).  相似文献   

15.
Four silages were harvested at approximately one-week intervals from the same timothymeadow fescue sward. Advanced maturity of the herbage was evidenced by increased neutral detergent fibre [409, 497, 579 and 623 g in 1 kg dry matter (DM)] and decreased nitrogen (N; 29.9, using four ruminally and duodenally cannulated young cattle in a 4 × 4 Latin square experiment. On DM basis (g kg−1), the diet comprised grass silage (700), rolled barley (240) and rapeseed meal (60) and it was given at a rate of 70 g DM (kg live weight)−0.75 per day.Organic matter digestibility decreased in a curvilinear manner (PLINEAR (L) < 0.001, PCUBIC (C) < 0.01) the values being 0.821, 0.816, 0.758 and 0.747 for the diets based on the four silages in the order of harvest date. Rumen pH increased linearly (PL < 0.05) and ammonia N concentration decreased curvilinearly (PL < 0.01, PC < 0.05) as the grass matured. The molar proportion of acetate in the rumen VFA increased (PL < 0.001) and the proportion of butyrate decreased (PL < 0.001) with increased grass maturity. The silage harvest date did not affect the proportion of propionate. The changes in rumen fermentation pattern were associated with a decrease (PL < 0.05) in rumen protozoal number with increasing maturity of grass.N intake decreased significantly (PL < 0.001, PC < 0.01) with the maturity of grass from 167.5 to 118.0 g per day, but duodenal non-ammonia N decreased only from 111.3 to 97.3 g per day indicating greater N losses from the rumen with early-cut silages. The efficiency of microbial protein synthesis in the rumen was not affected by the maturity of grass ensiled. Apparent digestibility of N decreased (PL < 0.001, PC < 0.01) and the degradability of N in the rumen decreased (PL < 0.05) as the grass matured.  相似文献   

16.
《Small Ruminant Research》2007,72(1-3):21-30
This experiment assayed the influence of the inclusion of dried Azardirachta indica, Albizzia lebbek or Ailanthus excelsa leaves in pearl millet stover-based complete feed block diets on feed intake, nutrient utilization, rumen fermentation characteristics, ciliate protozoa population and blood biochemical constituents in adult Malpura sheep. Complete feed blocks were formulated to have roughage-to-concentrate ratio of 70:30. Pearl millet stover (PMS) was used as basal roughage; 30 parts of pearl millet stover was replaced with dried leaves either of Azardirachta indica (NL), Albizzia lebbek (SL) or Ailanthus excelsa (AL). Twelve hogget Malpura rams, divided into four equal groups, were offered one of the four dietary treatments. A feeding-cum-metabolic trial was conducted to assess nutrient utilization. Rumen liquor samples were collected at 0, 3, 6, 12, 18 and 24 h post-feeding to assess rumen fermentation pattern and ciliate protozoa population. Inclusion of dried leaves in PMS-based diets improved CP and DCP content. Dietary DCP was low (P < 0.01) in PMS (8.52%) compared to tree leaves (9.77–11.59%) diets. AL and NL diets had higher (P < 0.05) DCP than the SL diet. The inclusion of tree leaves did not influence organic matter, crude protein or cellulose digestibility, but depressed dry matter, NDF, ADF and energy digestibility. DE content was also lower in tree leave diets. Inclusion of tree leaves improved CP and DCP intake, but DE intake and nitrogen utilization did not change. The pH of rumen liquor (SRL) was low (6.99, P < 0.05), but total nitrogen (52.9 mg/dl SRL) and NH3-nitrogen (9.34 mg/dl SRL) concentrations were higher (P < 0.01) in the AL diet. TVFA concentrations and ciliate protozoa population were similar on the four diets. Animals in the four groups had the desired concentration of rumen metabolites required for fibrous diets. Complete feed-block feeding provided a constant nutrient supply to rumen microbes that optimise rumen fermentation. Blood biochemical constituents did not change due to the inclusion of tree leaves. Therefore, tree leaves can be included with roughage-based feeding to improve the protein nutrition status of ruminants. Further studies are required to assess the negative influence of tree leaves on digestibility.  相似文献   

17.
Hydrogen is an important intermediate that is produced during carbohydrate fermentation to volatile fatty acid and utilized by methanogens to produce methane in the rumen. Ruminal volatile fatty acid and dissolved methane concentrations are more than 500 times greater than dissolved hydrogen concentration. Therefore, we hypothesized that dissolved hydrogen might have a higher sensitivity in response to dietary changes compared with volatile fatty acid and dissolved methane. Using goats, we investigated the effects of increasing dietary starch content (maize replaced with wheat bran) and supplementing with rhubarb rhizomes and roots on the relationships among dissolved hydrogen, dissolved methane and other fermentation end products. The study was conducted in a replicated 4×4 Latin square with a 2×2 factorial arrangement of four treatments: two starch levels (220 v. 320 g/kg dry matter (DM)), without and with rhubarb supplement (0% v. 2.8% of total mixed ration). Increased dietary starch and rhubarb supplementation did not alter volatile fatty acid concentrations or methane emissions in terms of g/day, g/g DM intake and g/g organic matter digested. However, goats fed the high-starch diet had greater dissolved hydrogen (P=0.005) and relative abundance of Selenomonas ruminantium (P<0.01), and lower (P=0.02) copy number of protozoa than those fed the low-starch diet. Rhubarb increased ruminal dissolved H2 (P=0.03) and total volatile fatty acid concentration (P<0.001), but decreased copies of bacteria (P=0.002). In conclusion, dissolved hydrogen appears to be more sensitive to dietary changes with starch content and rhubarb supplementation, when compared with volatile fatty acid concentrations and methane production.  相似文献   

18.
We isolated and identified functional groups of bacteria in the rumen of Creole goats involved in ruminal fermentation of native forage shrubs. The functional bacterial groups were evaluated by comparing the total viable, total anaerobic, cellulolytic, hemicellulolytic, and amylolytic bacterial counts in the samples taken from fistulated goats fed native forage diet (Atriplex lampa and Prosopis flexuosa). Alfalfa hay and corn were used as control diet. The roll tubes method increased the possibility of isolating and 16S rDNA gene sequencing allowed definitive identification of bacterial species involved in the ruminal fermentation. The starch and fiber contents of the diets influenced the number of total anaerobic bacteria and fibrolytic and amylolytic functional groups. Pseudobutyrivibrio ruminis and Pseudobutyrivibrio xylanivorans were the main species isolated and identified. The identification of bacterial strains involved in the rumen fermentation helps to explain the ability of these animals to digest fiber plant cell wall contained in native forage species.  相似文献   

19.
This study investigated the effects of disodium fumarate (DF) on methane emission, ruminal fermentation and microbial abundance in goats under different forage (F) : concentrate (C) ratios and fed according to maintenance requirements. Four ruminally fistulated, castrated male goats were used in a 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and the main factors being the F : C ratios (41 : 59 or 58 : 42) and DF supplementation (0 or 10 g/day). DF reduced methane production (P < 0.05) on average by 11.9%, irrespective of the F : C ratio. The concentrations of total volatile fatty acids, acetate and propionate were greater in the rumen of goats supplemented with DF (P < 0.05), whereas the abundance of methanogens was lower (P < 0.05). In high-forage diets, the abundance of Selenomonas ruminantium, a fumarate-reducing bacterium, was greater in the rumen of goats supplemented with DF. The abundance of fungi, protozoa, Ruminococus flavefaciens and Fibrobacter succinogenes were not affected by the addition of DF. Variable F : C ratios affected the abundance of methanogens, fungi and R. flavefaciens (P < 0.05), but did not affect methane emission. The result implied that DF had a beneficial effect on the in vivo rumen fermentation of the goats fed diets with different F : C ratios and that this effect were not a direct action on anaerobic fungi, protozoa and fibrolytic bacteria, the generally recognized fiber-degrading and hydrogen-producing microorganisms, but due to the stimulation of fumarate-reducing bacteria and the depression of methanogens.  相似文献   

20.
The amount and nature of dietary starch are known to influence the extent and site of feed digestion in ruminants. However, how starch degradability may affect methanogenesis and methanogens along the ruminant''s digestive tract is poorly understood. This study examined the diversity and metabolic activity of methanogens in the rumen and cecum of lambs receiving wheat or corn high-grain-content diets. Methane production in vivo and ex situ was also monitored. In vivo daily methane emissions (CH4 g/day) were 36% (P < 0.05) lower in corn-fed lambs than in wheat-fed lambs. Ex situ methane production (μmol/h) was 4-fold higher for ruminal contents than for cecal contents (P < 0.01), while methanogens were 10-fold higher in the rumen than in the cecum (mcrA copy numbers; P < 0.01). Clone library analysis indicated that Methanobrevibacter was the dominant genus in both sites. Diet induced changes at the species level, as the Methanobrevibacter millerae-M. gottschalkii-M. smithii clade represented 78% of the sequences from the rumen of wheat-fed lambs and just about 52% of the sequences from the rumen of the corn-fed lambs. Diet did not affect mcrA expression in the rumen. In the cecum, however, expression was 4-fold and 2-fold lower than in the rumen for wheat- and corn-fed lambs, respectively. Though we had no direct evidence for compensation of reduced rumen methane production with higher cecum methanogenesis, the ecology of methanogens in the cecum should be better considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号