首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Cystic lesions of the liver consist of a heterogeneous group of disorders that can present diagnostic and therapeutic challenges.

Methods

A retrospective review of all medical records of adult patients diagnosed with large (>7 cm) cystic lesions of the liver between January 2000 and December 2011, at Kurume University Hospital. Cases with polycystic disease were excluded.

Results

Twenty three patients were identified. The mean size was 13.9 cm (range, 7-22cm). The majority of simple cysts were found in women (females: males, 2: 21). In 19 patients, the cyst was removed surgically by wide deroofing (laparoscopically in 16 cases, combined with ethanol sclerotherapy in 13 cases). Infection of the liver cyst occurred in one patient, who later underwent central bi-segmentectomy.

Conclusion

Simple large cysts of the liver can be successfully treated by laparoscopic deroofing and alcohol sclerotherapy. Large hepatic cyst considered to need drainage should be removed surgically to avoid possible infection.  相似文献   

2.
3.

Background

Pancreatic cysts are being increasingly identified in patients. Mucinous cysts have malignant potential whereas non-mucinous cysts do not. Distinguishing potentially malignant cysts from harmless ones by the characterization of cyst fluid contents remains a difficult problem. This study was undertaken to determine whether cyst fluid mucin glycoprotein analysis could differentiate mucinous from non-mucinous pancreatic cysts.

Methods

Cyst fluid from 28 patients who underwent resection of a pancreatic cyst was used for the study. In each case the type of cyst was histologically identified. One dimensional SDS polyacrylamide gel electrophoresis (1D-SDS PAGE) was performed on cyst fluid samples. For the detection of the separated proteins, we employed a novel dual staining technique. The gel was first stained with periodic acid Schiff (PAS), a mucin histochemical stain followed by a secondary protein staining with Simply Blue Safestain (Invitrogen).

Results

Visual scoring (based on the presence of mucins) gave a sensitivity of 95%, a specificity of 100%, a positive predictive value of 100%, and a negative predictive value of 88% for prediction of mucinous histology.

Conclusions

One dimensional SDS polyacrylamide gel electrophoresis of pancreatic cyst fluid, followed by mucin (PAS) and protein (Simply Blue Safestain) staining, provides a means of concentrating and visualizing mucins, which allows the accurate differentiation of mucinous from non-mucinous histology in pancreatic cysts.  相似文献   

4.
Yang CC  Shih YH  Ko MH  Hsu SY  Cheng H  Fu YS 《PloS one》2008,3(10):e3336

Background

Human umbilical mesenchymal stem cells (HUMSCs) isolated from Wharton''s jelly of the umbilical cord can be easily obtained and processed compared with embryonic or bone marrow stem cells. These cells may be a valuable source in the repair of spinal cord injury.

Methodology/Principal Findings

We examine the effects of HUMSC transplantation after complete spinal cord transection in rats. Approximately 5×105 HUMSCs were transplanted into the lesion site. Three groups of rats were implanted with either untreated HUMSCs (referred to as the stem cell group), or HUMSCs treated with neuronal conditioned medium (NCM) for either three days or six days (referred to as NCM-3 and NCM-6 days, respectively). The control group received no HUMSCs in the transected spinal cord. Three weeks after transplantation, significant improvements in locomotion were observed in all the three groups receiving HUMSCs (stem cell, NCM-3 and NCM-6 days groups). This recovery was accompanied by increased numbers of regenerated axons in the corticospinal tract and neurofilament-positive fibers around the lesion site. There were fewer microglia and reactive astrocytes in both the rostral and caudal stumps of the spinal cord in the stem cell group than in the control group. Transplanted HUMSCs survived for 16 weeks and produced large amounts of human neutrophil-activating protein-2, neurotrophin-3, basic fibroblast growth factor, glucocorticoid induced tumor necrosis factor receptor, and vascular endothelial growth factor receptor 3 in the host spinal cord, which may help spinal cord repair.

Conclusions/Significance

Transplantation of HUMSCs is beneficial to wound healing after spinal cord injury in rats.  相似文献   

5.

Introduction

Morphine is the most effective pain-relieving drug, but it can cause unwanted side effects. Direct neuraxial administration of morphine to spinal cord not only can provide effective, reliable pain relief but also can prevent the development of supraspinal side effects. However, repeated neuraxial administration of morphine may still lead to morphine tolerance.

Methods

To better understand the mechanism that causes morphine tolerance, we induced tolerance in rats at the spinal cord level by giving them twice-daily injections of morphine (20 µg/10 µL) for 4 days. We confirmed tolerance by measuring paw withdrawal latencies and maximal possible analgesic effect of morphine on day 5. We then carried out phosphoproteomic analysis to investigate the global phosphorylation of spinal proteins associated with morphine tolerance. Finally, pull-down assays were used to identify phosphorylated types and sites of 14-3-3 proteins, and bioinformatics was applied to predict biological networks impacted by the morphine-regulated proteins.

Results

Our proteomics data showed that repeated morphine treatment altered phosphorylation of 10 proteins in the spinal cord. Pull-down assays identified 2 serine/threonine phosphorylated sites in 14-3-3 proteins. Bioinformatics further revealed that morphine impacted on cytoskeletal reorganization, neuroplasticity, protein folding and modulation, signal transduction and biomolecular metabolism.

Conclusions

Repeated morphine administration may affect multiple biological networks by altering protein phosphorylation. These data may provide insight into the mechanism that underlies the development of morphine tolerance.  相似文献   

6.

Background

The category B agent of bioterrorism, Entamoeba histolytica has a two-stage life cycle: an infective cyst stage, and an invasive trophozoite stage. Due to our inability to effectively induce encystation in vitro, our knowledge about the cyst form remains limited. This also hampers our ability to develop cyst-specific diagnostic tools.

Aims

Three main aims were (i) to identify E. histolytica proteins in cyst samples, (ii) to enrich our knowledge about the cyst stage, and (iii) to identify candidate proteins to develop cyst-specific diagnostic tools.

Methods

Cysts were purified from the stool of infected individuals using Percoll (gradient) purification. A highly sensitive LC-MS/MS mass spectrometer (Orbitrap) was used to identify cyst proteins.

Results

A total of 417 non-redundant E. histolytica proteins were identified including 195 proteins that were never detected in trophozoite-derived proteomes or expressed sequence tag (EST) datasets, consistent with cyst specificity. Cyst-wall specific glycoproteins Jacob, Jessie and chitinase were positively identified. Antibodies produced against Jacob identified cysts in fecal specimens and have potential utility as a diagnostic reagent. Several protein kinases, small GTPase signaling molecules, DNA repair proteins, epigenetic regulators, and surface associated proteins were also identified. Proteins we identified are likely to be among the most abundant in excreted cysts, and therefore show promise as diagnostic targets.

Major Conclusions

The proteome data generated here are a first for naturally-occurring E. histolytica cysts, and they provide important insights into the infectious cyst form. Additionally, numerous unique candidate proteins were identified which will aid the development of new diagnostic tools for identification of E. histolytica cysts.  相似文献   

7.

Objective

Individuals with the neurofibromatosis type 2 (NF2) cancer predisposition syndrome develop spinal cord glial tumors (ependymomas) that likely originate from neural progenitor cells. Whereas many spinal ependymomas exhibit indolent behavior, the only treatment option for clinically symptomatic tumors is surgery. In this regard, medical therapies are unfortunately lacking due to an incomplete understanding of the critical growth control pathways that govern the function of spinal cord (SC) neural progenitor cells (NPCs).

Methods

To identify potential therapeutic targets for these tumors, we leveraged primary mouse Nf2-deficient spinal cord neural progenitor cells.

Results

We demonstrate that the Nf2 protein, merlin, negatively regulates spinal neural progenitor cell survival and glial differentiation in an ErbB2-dependent manner, and that NF2-associated spinal ependymomas exhibit increased ErbB2 activation. Moreover, we show that Nf2-deficient SC NPC ErbB2 activation results from Rac1-mediated ErbB2 retention at the plasma membrane.

Significance

Collectively, these findings establish ErbB2 as a potential rational therapeutic target for NF2-associated spinal ependymoma.  相似文献   

8.

Background

Traumatic spinal cord injury (SCI) leads to disruption of axons and macroscopic tissue loss. Using diffusion tensor imaging (DTI), we assessed degeneration of the corticospinal tract (CST) in the cervical cord above a traumatic lesion and explored its relationship with cervical atrophy, remote axonal changes within the cranial CST and upper limb function.

Methods

Nine cervical injured volunteers with bilateral motor and sensory impairment and ten controls were studied. DTI of the cervical cord and brain provided measurements of fractional anisotropy (FA), while anatomical MRI assessed cross-sectional spinal cord area (i.e. cord atrophy). Spinal and central regions of interest (ROI) included the bilateral CST in the cervical cord and brain. Regression analysis identified correlations between spinal FA and cranial FA in the CST and disability.

Results

In individuals with SCI, FA was significantly lower in both CSTs throughout the cervical cord and brain when compared with controls (p≤0.05). Reduced FA of the cervical cord in patients with SCI was associated with smaller cord area (p = 0.002) and a lower FA of the cranial CST at the internal capsule level (p = 0.001). Lower FA in the cervical CST also correlated with impaired upper limb function, independent of cord area (p = 0.03).

Conclusion

Axonal degeneration of the CST in the atrophic cervical cord, proximal to the site of injury, parallels cranial CST degeneration and is associated with disability. This DTI protocol can be used in longitudinal assessment of microstructural changes immediately following injury and may be utilised to predict progression and monitor interventions aimed at promoting spinal cord repair.  相似文献   

9.

Study Design

A retrospective clinical study.

Objective

To evaluate the efficacy and safety of transforaminal decompression and interbody fusion in the treatment of thoracolumbar fracture and dislocation with spinal cord injury.

Methods

Twenty-six spinal cord injured patients with thoracolumbar fracture and dislocation were treated by transforaminal decompression and interbody fusion. The operation time, intraoperative blood loss, and complications were recorded; the Cobb angle and compressive rate (CR) of the anterior height of two adjacent vertebrae were measured; and the nerve injury was assessed according to sensory scores and motor scores of the American Spinal Injury Association (ASIA) standards for neurological classification of spinal cord injury.

Results

The operative time was 250±57 min, and intraoperative blood loss was 440±168 ml. Cerebrospinal leakage was detected and repaired during the operation in two patients. A total of 24 of 26 patients were followed up for more than 2 years. ASIA sensory scores and motor scores were improved significantly at 3 months and 6 months after operation; the Cobb angle and CR of the anterior height of two adjacent vertebrae were corrected and showed a significant difference at post-operation; and the values were maintained at 3 months after operation and the last follow-up.

Conclusion

We showed that transforaminal decompression together with interbody fusion is an alternative method to treat thoracolumbar fracture and dislocation.  相似文献   

10.

Background

After spinal cord injury (SCI), the formation of glial scar contributes to the failure of injured adult axons to regenerate past the lesion. Increasing evidence indicates that olfactory ensheathing cells (OECs) implanted into spinal cord are found to migrate into the lesion site and induce axons regeneration beyond glial scar and resumption of functions. However, little is known about the mechanisms of OECs migrating from injection site to glial scar/lesion site.

Methods and Findings

In the present study, we identified a link between OECs migration and reactive astrocytes in glial scar that was mediated by the tumor necrosis factor-α (TNF-α). Initially, the Boyden chamber migration assay showed that both glial scar tissue and reactive astrocyte-conditioned medium promoted OECs migration in vitro. Reactive astrocyte-derived TNF-α and its type 1 receptor TNFR1 expressed on OECs were identified to be responsible for the promoting effect on OECs migration. TNF-α-induced OECs migration was demonstrated depending on activation of the extracellular signal-regulated kinase (ERK) signaling cascades. Furthermore, TNF-α secreted by reactive astrocytes in glial scar was also showed to attract OECs migration in a spinal cord hemisection injury model of rat.

Conclusions

These findings showed that TNF-α was released by reactive astrocytes in glial scar and attracted OECs migration by interacting with TNFR1 expressed on OECs via regulation of ERK signaling. This migration-attracting effect of reactive astrocytes on OECs may suggest a mechanism for guiding OECs migration into glial scar, which is crucial for OECs-mediated axons regrowth beyond the spinal cord lesion site.  相似文献   

11.

Background

Reactive oxygen and nitrogen species are key molecules that mediate neuropathic pain. Although hydrogen is an established antioxidant, its effect on chronic pain has not been characterized. This study was to investigate the efficacy and mechanisms of hydrogen-rich normal saline induced analgesia.

Methodology/Principal findings

In a rat model of neuropathic pain induced by L5 spinal nerve ligation (L5 SNL), intrathecal injection of hydrogen-rich normal saline relieved L5 SNL-induced mechanical allodynia and thermal hyperalgesia. Importantly, repeated administration of hydrogen-rich normal saline did not lead to tolerance. Preemptive treatment with hydrogen-rich normal saline prevented development of neuropathic pain behavior. Immunofluorochrome analysis revealed that hydrogen-rich normal saline treatment significantly attenuated L5 SNL-induced increase of 8-hydroxyguanosine immunoreactive cells in the ipsilateral spinal dorsal horn. Western blot analysis of SDS/PAGE-fractionated tyrosine-nitrated proteins showed that L5 SNL led to increased expression of tyrosine-nitrated Mn-containing superoxide dismutase (MnSOD) in the spinal cord, and hydrogen-rich normal saline administration reversed the tyrosine-nitrated MnSOD overexpression. We also showed that the analgesic effect of hydrogen-rich normal saline was associated with decreased activation of astrocytes and microglia, attenuated expression of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in the spinal cord.

Conclusion/Significance

Intrathecal injection of hydrogen-rich normal saline produced analgesic effect in neuropathic rat. Hydrogen-rich normal saline-induced analgesia in neuropathic rats is mediated by reducing the activation of spinal astrocytes and microglia, which is induced by overproduction of hydroxyl and peroxynitrite.  相似文献   

12.

Background

Spinal cord injury (SCI) often results in permanent functional loss. This physical trauma leads to secondary events, such as the deposition of inhibitory chondroitin sulfate proteoglycan (CSPG) within astroglial scar tissue at the lesion.

Methodology/Principal Findings

We examined whether local delivery of constitutively active (CA) Rho GTPases, Cdc42 and Rac1 to the lesion site alleviated CSPG-mediated inhibition of regenerating axons. A dorsal over-hemisection lesion was created in the rat spinal cord and the resulting cavity was conformally filled with an in situ gelling hydrogel combined with lipid microtubes that slowly released constitutively active (CA) Cdc42, Rac1, or Brain-derived neurotrophic factor (BDNF). Treatment with BDNF, CA-Cdc42, or CA-Rac1 reduced the number of GFAP-positive astrocytes, as well as CSPG deposition, at the interface of the implanted hydrogel and host tissue. Neurofilament 160kDa positively stained axons traversed the glial scar extensively, entering the hydrogel-filled cavity in the treatments with BDNF and CA-Rho GTPases. The treated animals had a higher percentage of axons from the corticospinal tract that traversed the CSPG-rich regions located proximal to the lesion site.

Conclusion

Local delivery of CA-Cdc42, CA-Rac1, and BDNF may have a significant therapeutic role in overcoming CSPG-mediated regenerative failure after SCI.  相似文献   

13.

Background

Bone destruction is a feature of multiple myeloma, characterised by osteolytic bone destruction due to increased osteoclast activity and suppressed or absent osteoblast activity. Almost all multiple myeloma patients develop osteolytic bone lesions associated with severe and debilitating bone pain, pathologic fractures, hypercalcemia, and spinal cord compression, as well as increased mortality. Biomarkers of bone remodelling are used to identify disease characteristics that can help select the optimal management of patients. However, more accurate biomarkers are needed to effectively mirror the dynamics of bone disease activity.

Results

A label-free mass spectrometry-based strategy was employed for discovery phase analysis of fractionated patient serum samples associated with no or high bone disease. A number of proteins were identified which were statistically significantly correlated with bone disease, including enzymes, extracellular matrix glycoproteins, and components of the complement system.

Conclusions

Enzyme-linked immunosorbent assay of complement C4 and serum paraoxonase/arylesterase 1 indicated that these proteins were associated with high bone disease in a larger independent cohort of patient samples. These biomolecules may therefore be clinically useful in assessing the extent of bone disease.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-904) contains supplementary material, which is available to authorized users.  相似文献   

14.

Background

Opioids are the cornerstone of treatment for moderate to severe pain, but chronic use leads to maladaptations that include: tolerance, dependence and opioid-induced hyperalgesia (OIH). These responses limit the utility of opioids, as well as our ability to control chronic pain. Despite decades of research, we have no therapies or proven strategies to overcome this problem. However, murine haplotype based computational genetic mapping and a SNP data base generated from analysis of whole-genome sequence data (whole-genome HBCGM), provides a hypothesis-free method for discovering novel genes affecting opioid maladaptive responses.

Results

Whole genome-HBCGM was used to analyze phenotypic data on morphine-induced tolerance, dependence and hyperalgesia obtained from 23 inbred strains. The robustness of the genetic mapping results was analyzed using strain subsets. In addition, the results of analyzing all of the opioid-related traits together were examined. To characterize the functional role of the leading candidate gene, we analyzed transgenic animals, mRNA and protein expression in behaviorally divergent mouse strains, and immunohistochemistry in spinal cord tissue. Our mapping procedure identified the allelic pattern within the netrin-1 receptor gene (Dcc) as most robustly associated with OIH, and it was also strongly associated with the combination of the other maladaptive opioid traits analyzed. Adult mice heterozygous for the Dcc gene had significantly less tendency to develop OIH, become tolerant or show evidence of dependence after chronic exposure to morphine. The difference in opiate responses was shown not to be due to basal or morphine-stimulated differences in the level of Dcc expression in spinal cord tissue, and was not associated with nociceptive neurochemical or anatomical alterations in the spinal cord or dorsal root ganglia in adult animals.

Conclusions

Whole-genome HBCGM is a powerful tool for identifying genes affecting biomedical traits such as opioid maladaptations. We demonstrate that Dcc affects tolerance, dependence and OIH after chronic opioid exposure, though not through simple differences in expression in the adult spinal cord.

Electronic supplementary material

The online version of this article (doi: 10.1186/1471-2164-15-345) contains supplementary material, which is available to authorized users.  相似文献   

15.

Background

The high mortality rate associated with epithelial ovarian carcinoma (EOC) reflects diagnosis commonly at an advanced stage, but improved early detection is hindered by uncertainty as to the histologic origin and early natural history of this malignancy.

Methodology/Principal Findings

Here we report combined molecular genetic and morphologic analyses of normal human ovarian tissues and early stage cancers, from both BRCA mutation carriers and the general population, indicating that EOCs frequently arise from dysplastic precursor lesions within epithelial inclusion cysts. In pathologically normal ovaries, molecular evidence of oncogenic stress was observed specifically within epithelial inclusion cysts. To further explore potential very early events in ovarian tumorigenesis, ovarian tissues from women not known to be at high risk for ovarian cancer were subjected to laser catapult microdissection and gene expression profiling. These studies revealed a quasi-neoplastic expression signature in benign ovarian cystic inclusion epithelium compared to surface epithelium, specifically with respect to genes affecting signal transduction, cell cycle control, and mitotic spindle formation. Consistent with this gene expression profile, a significantly higher cell proliferation index (increased cell proliferation and decreased apoptosis) was observed in histopathologically normal ovarian cystic compared to surface epithelium. Furthermore, aneuploidy was frequently identified in normal ovarian cystic epithelium but not in surface epithelium.

Conclusions/Significance

Together, these data indicate that EOC frequently arises in ovarian cystic inclusions, is preceded by an identifiable dysplastic precursor lesion, and that increased cell proliferation, decreased apoptosis, and aneuploidy are likely to represent very early aberrations in ovarian tumorigenesis.  相似文献   

16.

Background

Hydrogen sulfide (H2S), a novel gaseous mediator, has been recognized as an important neuromodulator and neuroprotective agent in the nervous system. The present study was undertaken to study the effects of exogenous H2S on ischemia/reperfusion (I/R) injury of spinal cord and the underlying mechanisms.

Methods

The effects of exogenous H2S on I/R injury were examined by using assessment of hind motor function, spinal cord infarct zone by Triphenyltetrazolium chloride (TTC) staining. Autophagy was evaluated by expressions of Microtubule associated protein 1 light chain 3 (LC3) and Beclin-1 which were determined by using Quantitative Real-Time PCR and Western blotting, respectively.

Results

Compared to I/R injury groups, H2S pretreatment had reduced spinal cord infarct zone, improved hind motor function in rats. Quantitative Real-Time PCR or Western blotting results showed that H2S pretreatment also downregulated miR-30c expression and upregulated Beclin-1 and LC3II expression in spinal cord. In vitro, miR-30c was showed to exert negative effect on Beclin-1 expression by targeting its 3’UTR in SY-SH-5Y cells treated with Oxygen, Glucose Deprivation (OGD). In rat model of I/R injury, pretreatment of pre-miR-30c or 3-MA (an inhibitor for autophagy) can abrogated spinal cord protective effect of H2S.

Conclusion

H2S protects spinal cord and induces autophagy via miR-30c in a rat model of spinal cord hemia-reperfusion injury.  相似文献   

17.

Aim

To explore the roles of C-X-C chemokine receptor type 4 (CXCR4) in spinal processing of neuropathic pain at the central nervous system (CNS).

Methods

Peripheral neuropathic pain (PNP) induced by partial sciatic nerve ligation (pSNL) model was assessed in mice. Effects of a single intrathecal (central) administration of AMD3100 (intrathecal AMD3100), a CXCR4 antagonist, on pain behavior and pain-related spinal pathways and molecules in the L3-L5 spinal cord segment was studied compare to saline treatment.

Results

Rotarod test showed that intrathecal AMD3100 did not impair mice motor function. In pSNL-induced mice, intrathecal AMD3100 delayed the development of mechanical allodynia and reversed the established mechanical allodynia in a dose-dependent way. Moreover, intrathecal AMD3100 downregulated the activation of JNK1 and p38 pathways and the protein expression of p65 as assessed by western blotting. Real-time PCR test also demonstrated that substance P mRNA was decreased, while adrenomedullin and intercellular adhesion molecule mRNA was increased following AMD3100 treatment.

Conclusion

Our results suggest that central (spinal) CXCR4 is involved in the development and maintenance of PNP and the regulation of multiple spinal molecular events under pain condition, implicating that CXCR4 would potentially be a therapeutic target for chronic neuropathic pain.  相似文献   

18.

Background

A sudden mechanical insult to the spinal cord is usually caused by changing pressure on the surface of the spinal cord. Most of these insults are mechanical force injuries, and their mechanism of injury to the spinal cord is largely unknown.

Methods

Using a compression-driven instrument to simulate mechanical force, we applied mechanical pressure of 0.5 MPa to rat dorsal root ganglion (DRG) neurons for 10 min to investigate cytoskeletal alterations and calpain-induced apoptosis after the mechanical force injury.

Results

The results indicated that mechanical forces affect the structure of the cytoskeleton and cell viability, induce early apoptosis, and affect the cell cycle of DRG neurons. In addition, the calpain inhibitor PD150606 reduced cytoskeletal degradation and the rate of apoptosis after mechanical force injury.

Conclusion

Thus, calpain may play an important role in DRG neurons in the regulation of apoptosis and cytoskeletal alterations induced by mechanical force. Moreover, cytoskeletal alterations may be substantially involved in the mechanotransduction process in DRG neurons after mechanical injury and may be induced by activated calpain. To our knowledge, this is the first report to demonstrate a relationship between cytoskeletal degradation and apoptosis in DRG neurons.  相似文献   

19.

Background

Injuries to the spinal cord often result in severe functional deficits that, in case of incomplete injuries, can be partially compensated by axonal remodeling. The corticospinal tract (CST), for example, responds to a thoracic transection with the formation of an intraspinal detour circuit. The key step for the formation of the detour circuit is the sprouting of new CST collaterals in the cervical spinal cord that contact local interneurons. How individual collaterals are formed and refined over time is incompletely understood.

Methodology/Principal Findings

We traced the hindlimb corticospinal tract at different timepoints after lesion to show that cervical collateral formation is initiated in the first 10 days. These collaterals can then persist for at least 24 weeks. Interestingly, both major and minor CST components contribute to the formation of persistent CST collaterals. We then developed an approach to label single CST collaterals based on viral gene transfer of the Cre recombinase to a small number of cortical projection neurons in Thy1-STP-YFP or Thy1-Brainbow mice. Reconstruction and analysis of single collaterals for up to 12 weeks after lesion revealed that CST remodeling evolves in 3 phases. Collateral growth is initiated in the first 10 days after lesion. Between 10 days and 3–4 weeks after lesion elongated and highly branched collaterals form in the gray matter, the complexity of which depends on the CST component they originate from. Finally, between 3–4 weeks and 12 weeks after lesion the size of CST collaterals remains largely unchanged, while the pattern of their contacts onto interneurons matures.

Conclusions/Significance

This study provides a comprehensive anatomical analysis of CST reorganization after injury and reveals that CST remodeling occurs in distinct phases. Our results and techniques should facilitate future efforts to unravel the mechanisms that govern CST remodeling and to promote functional recovery after spinal cord injury.  相似文献   

20.

Background

Heavy-ion therapy has an advantage over conventional radiotherapy due to its superb biological effectiveness and dose conformity in cancer therapy. It could be a potential alternate approach for hydatid cyst treatment. However, there is no information currently available on the cellular and molecular basis for heavy-ion irradiation induced cell death in cystic echinococcosis.

Methododology/Principal Findings

LD50 was scored by protoscolex death. Cellular and ultrastructural changes within the parasite were studied by light and electron microscopy, mitochondrial DNA (mtDNA) damage and copy number were measured by QPCR, and apoptosis was determined by caspase 3 expression and caspase 3 activity. Ionizing radiation induced sparse cytoplasm, disorganized and clumped organelles, large vacuoles and devoid of villi. The initial mtDNA damage caused by ionizing radiation increased in a dose-dependent manner. The kinetic of DNA repair was slower after carbon-ion radiation than that after X-rays radiation. High dose carbon-ion radiation caused irreversible mtDNA degradation. Cysts apoptosis was pronounced after radiation. Carbon-ion radiation was more effective to suppress hydatid cysts than X-rays.

Conclusions

These studies provide a framework to the evaluation of attenuation effect of heavy-ion radiation on cystic echinococcosis in vitro. Carbon-ion radiation is more effective to suppress E. multilocularis than X-rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号