首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The first microtubules which appear in the prophase micronucleus of Colpoda steinii are located beneath the nuclear envelope and not connected to the chromosomes. Most microtubules of the metaphase spindle are connected to the tapered tips of the micronucleus and terminate singly at the chromosomes surrounded by a conical, RNA-containing kinetochore which disappears upon cold treatment. During anaphase, an interzonal stembody is formed which is maximally stretched at telophase before the daughter micronuclei are pinched off from its ends. The macronucleus, which also stretches parallel to the micronuclear stembody, has fewer microtubules which insert at the inner nuclear envelope but are not attached to the chromatin. Based upon the effects of depolymerizing factors different classes of microtubules can be distinguished. Kinetochore microtubules are sensitive to cold and vinblastine (VLB). In 2.5×10–5 M VLB their number is drastically reduced and the interzonal microtubules of early anaphase, which are also highly sensitive to nocodazole, become completely disassembled. The cross-bridged microtubules of the fully formed stembody of late anaphase display the highest resistance to depolymerization. They show signs of partial disassembly only after prolonged cold exposure and withstand higher concentrations of VLB or nocodazole than other micronuclear microtubules. Microtubules in the elongating macronucleus are fairly insensitive to cold but are depolymerized by 5×10–5 M VLB while 1.66×10–5 M nocodazole, which leaves only traces of stembody microtubules, merely reduces their number and length. All microtubules are fairly resistant to colchicine since high concentrations (5×10–2 M) are required to prevent assembly while fully formed stembodies are unaffected. Macronuclear microtubules are depolymerized at this concentration. Nocodazole, which depolymerizes all premetaphase microtubules at 6.6×10–6 M, leads to multipolar metaphase spindles with numerous microtubules, even at 1.66×10–5 M, an effect ascribed to the activity of the nuclear envelope as a microtubule organizing centre. At twice this concentration multipolar spindles are no longer found and the remaining microtubules show no apparent order. A stabilizing influence of the micronuclear envelope is indicated by the fact that whenever remnants of microtubules are found after depolymerizing treatments, they are located in its vicinity.  相似文献   

2.
Micronuclear elongation is the first major event in a series of nuclear changes occurring during the sexual stage of the life cycle of Tetrahymena. Beginning at about one hour after cells of complementary mating types have conjugated, the micronucleus leaves its recess in the macronucleus and swells slightly. This is accompanied by a reorganization of its chromatin from a reticular to a solid body. In the next stage the micronucleus assumes an egg shape, a development concomitant with the appearance of microtubules. While the chromatin spins out from the dense body, and microtubules increase in number, the nucleus assumes a spindle shape. During the elongation, which increases the length of the nucleus some fifty fold, microtubules are prominent in clusters just internal to the nuclear membrane, and parallel to the longitudinal axis of the nucleus. When elongation is completed the nucleus is curved around the macronucleus. Internally, partially condensed strands of chromatin are located off-center, towards the macronuclear side, and the density of the microtubules is diminished. At all the stages, DNA is located throughout the nucleus; neither discrete chromosomes nor synaptonemal complexes are seen. Occasionally cytoplasmic membrane systems are seen fused to the nuclear envelope which retains the typical appearance of a double membrane with pores.  相似文献   

3.
This report describes a rapid, efficient method for isolating macronuclei from Tetrahymena. The macronuclear fraction contains only small amounts of micronuclear material and little detectable whole cell or cytoplasmic contamination. A method is also described for preparing a "micronuclear fraction" which contains 20–40 micronuclei for every macronucleus present. Electron microscope observations indicate that the ultrastructure of the nuclei in the macronuclear fraction closely resembles that of nuclei in situ. The presence of ribosomes on the outer membrane of micronuclei and of pores in the micronuclear envelope is also described.  相似文献   

4.
SYNOPSIS. From the interphase to the early stage of binary fission in Paramecium multimicronucleatum , when the micro-nuclei are situated close to the macronucleus, the microtubules in the cytoplasm seem to connect the nuclear pores of macro- and micronuclei. During the 1st half of macronuclear division, the microtubules are formed outside the macronucleus, while during the latter half of division, numerous microtubules appear inside it. Chromatin bodies and nucleoli remain unchanged during macro-nuclear division, but the latter show temporory irregularity in shape. In late prophase of micronuclear division, spindle micro-tubules are formed, and a polar structure, composed of randomly dispersed twisting filaments, is formed at each pole of the micro-nucleus at anaphase. Spindle microtubules terminate on the surface of this structure. The nuclear envolope of the macro-and micronuclei remains intact thruout division. The envelope of the daughter micronuclei is derived from the pre-existing one.  相似文献   

5.
We developed a modified immunofluorescence protocol that permitted visualization of microtubules inside the macronucleus of the ciliate Tetrahymena. Although the amitotically dividing macronucleus lacks a spindle, an elaborate system of microtubules is assembled inside the macronucleus and between the macronucleus and the cortex. Microtubules could not be detected inside the interphase macronuclei. The early stage of macronuclear division was associated with the assembly of short macronuclear microtubules that localized randomly. The intramacronuclear microtubules were subsequently organized in a radial manner. During elongation of the macronucleus, the distribution of macronuclear microtubules changed from radial to parallel. During constriction of the macronucleus, dense and tangled macronuclear microtubules were detected at the region of nuclear constriction. In the cytosol, microtubules were linking the macronucleus and cell cortex. During recovery after drug-induced depolymerization, microtubules reassembled at multiple foci inside the macronucleus in close proximity to the chromatin. We propose that these microtubules play roles in chromatin partitioning, macronuclear constriction, and positioning of the macronucleus in relation to the cell cortex.  相似文献   

6.
Programmed nuclear death (PND) in Tetrahymena is a unique process during conjugation, in which only the parental macronucleus is degraded and then eliminated from the progeny cytoplasm, but other co-existing nuclei such as new micro- and macronuclei are unaffected. PND through autophagic elimination is expected to be strictly controlled, considering the significant roles in ciliates such as turnover of disused organelles and production of the next generation. Here we demonstrate that PND in Tetrahymena involves peculiar aspects of autophagy, which differ from mammalian or yeast macroautophagy. Drastic change of the parental macronucleus occurs when differentiation of new macronuclei is initiated. Combined use of monodansylcadaverine and a lysosome indicator LysoTracker Red showed that prior to nuclear condensation, the envelope of the parental macronucleus changed its nature as if it is an autophagic membrane, without the accumulation of a pre-autophagosomal structure from the cytoplasm. Subsequently, lysosomes approached only to the parental macronucleus and localized at the envelope until a final resorption stage. In addition, we found that the parental macronucleus exhibits certain sugars and phosphatidylserine on the envelope, which are possible “attack me” signals, that are not found on other types of nuclei. These findings suggest that PND is a highly elaborated process, different from the typical macroautophagy seen in other systems, and is executed through interaction between specific molecular signals on the parental macronuclear envelope and autophagic/lysosomal machineries.Key words: Tetrahymena, conjugation, nuclear apoptosis, monodansylcadaverine, macroautophagy, phagocytosis marker, glycoconjugates, phosphatidylserine  相似文献   

7.
《Autophagy》2013,9(7):901-911
Programmed nuclear death (PND) in Tetrahymena is a unique process during conjugation, in which only the parental macronucleus is degraded and then eliminated from the progeny cytoplasm, but other co-existing nuclei such as new micro- and macronuclei are unaffected. PND through autophagic elimination is expected to be strictly controlled, considering the significant roles in ciliates such as turnover of disused organelles and production of the next generation. Here we demonstrate that PND in Tetrahymena involves peculiar aspects of autophagy, which differ from mammalian or yeast macroautophagy. Drastic change of the parental macronucleus occurs when differentiation of new macronuclei is initiated. Combined use of monodansylcadaverine and a lysosome indicator LysoTracker Red showed that prior to nuclear condensation, the envelope of the parental macronucleus changed its nature as if it is an autophagic membrane, without the accumulation of a pre-autophagosomal structure from the cytoplasm. Subsequently, lysosomes approached only to the parental macronucleus and localized at the envelope until a final resorption stage. In addition, we found that the parental macronucleus exhibits certain sugars and phosphatidylserine on the envelope, which are possible "attack me" signals, that are not found on other types of nuclei. These findings suggest that PND is a highly elaborated process, different from the typical macroautophagy seen in other systems, and is executed through interaction between specific molecular signals on the parental macronuclear envelope and autophagic/lysosomal machineries.  相似文献   

8.
The ciliated protozoa Tetrahymena contains two nuclei, a micronucleus and a macronucleus. In the vegetatively growing cell, the macronucleus divides amitotic while the micronucleus divides by mitosis. It has been indicated that microtubules are involved in macronuclear division and microtubules are observed to exist in the dividing macronucleus. To clarify the localization and the organization of microtubules in the amitotic dividing macronuclei, we used immunofluorescent staining technique. The microtubules were observed in the cytoplasm and macronucleus. The microtubules were organized and dynamically changed their distribution throughout the macronuclear division. We suggest a possibility that these microtubules are involved in 'amitotic' distribution of chromatin throughout the macronuclear division.  相似文献   

9.
For determination of the effect of K+ on macro- and micronuclear differentiation Paramecium caudatum exconjugants were transferred to medium with various concentrations of Valinomycin and/or K+ at the critical stage of nuclear differentiation. The differentiation was not disturbed by transfer to medium containing 1.5 mM to 50 mM KCl. Injection of KCl solution at the critical stage also did not affect differentiation of the macronucleus appreciably. But change of the KCl concentration in the medium at the critical stage interrupted of normal development of the macronucleus.
Macro- and micronuclear differentiations after conjugation are known to be determined by the antero-posterior localization of postzygotic micronuclei. This nuclear localization is achieved by elongation of mitotic spindles and marked shortening of the cell length at the time of micronuclear division. Successive measurements of cell length at 25°C showed that cells began to shorten 1.5 hr after mating-pair separation, reaching to half the initial length about 2.5 hr after the separation, and then returning to recover their initial length within about 50 min. In a solution of K+ (50 mM) plus Valinomycin (1μg/ml or more), cell shortening was inhibited. It is not known whether elongation of mitotic spindles at the time of critical nuclear division was disordered by this treatment, but the macronuclear anlagen developed in the treated cells. Thus shortening in the cell length is not indispensable for nuclear differentiation.  相似文献   

10.
Tetrahymena contains a micronucleus and a macronucleus. The micronucleus divides with typical mitosis, while the macronucleus divides amitotically. Although the mechanism responsible for macronuclear division was previously unknown, we clarified the organization of microtubules during macronuclear division. The macronuclear microtubules dynamically changed their distribution in an organized way throughout the macronuclear division. The macronuclear microtubules and the cytoplasmic microtubules cooperatively carried out the macronuclear division. When the micronuclear division was finished, p85 appeared at the presumptive division plane prior to the cytokinesis. The p85 directly interacted with calmodulin in a Ca(2+)-dependent manner, and p85 and CaM colocalized to the division furrow during cytokinesis. Moreover, the Ca(2+)/CaM inhibitor, W7, inhibited the direct interaction between p85 and CaM, the localization of both proteins to the division plane, and the formation of the division furrow. Thus, Ca(2+)/CaM and p85 have important roles in initiation and progression of cytokinesis in Tetrahymena.  相似文献   

11.
The mitotic, micronuclear division of the heterotrichous genus Blepharisma has been studied by electron microscopy. Dividing ciliates were selected from clone-derived mass cultures and fixed for electron microscopy by exposure to the vapor of 2% osmium tetroxide; individual Blepharisma were encapsulated and sectioned. Distinctive features of the mitosis are the presence of an intact nuclear envelope during the entire process and the absence of centrioles at the polar ends of the micronuclear figures. Spindle microtubules (SMT) first appear in advance of chromosome alignment, become more numerous and precisely aligned by metaphase, lengthen greatly in anaphase, and persist through telophase. Distinct chromosomal and continuous SMT are present. At telophase, daughter nuclei are separated by a spindle elongation of more than 40 µ, and a new nuclear envelope is formed in close apposition to the chromatin mass of each daughter nucleus and excludes the great amount of spindle material formed during division. The original nuclear envelope which has remained structurally intact then becomes discontinuous and releases the newly formed nucleus into the cytoplasm. The micronuclear envelope seems to lack the conspicuous pores that are typical of nuclear envelopes. The morphology, size, formation, and function of SMT and the nature of micronuclear division are discussed.  相似文献   

12.
Manfred Hauser 《Chromosoma》1972,36(2):158-175
Electron microscope studies on the premetaphase stages of micronuclear divisions of Paracineta limbata and Ichthyophtirius multifiliis showed that spindle material also exists during interphase. In the case of I. multifiliis scattered microtubule fragments persist in the nuclear space; in P. limbata the micronuclei contain a small paracrystalloid which is suggested to be microtubular protein. Wide microtubules, varying in diameter from 300 to 400 Å develop during intranuclear prophase near the nuclear envelope in both cases. There are good reasons to assume that they function as a kind of stem body during the enlargement of the surface area of the nuclear envelope. Later micronuclear prophase stages of both species show a some-what different development. In I. multifiliis, there are scattered groups of short microtubular segments, partly in parallel array, whereas in P. limbata the wide tubules are transformed into normal microtubules of 180–200 Å diameter. The nuclei of both species are similar at late prophase and prometaphase stages. Bundles of interpolar microtubules run between the chromosomes, and single microtubules, presumably induced by the chromosomes, cross them at different angles. The chromosome-induced microtubules appear a short time after the interpolars. At prometaphase stage all microtubules show a highly parallel arrangement and therefore it is suggested that chromosomal tubules reach their final polar orientation by the action of cross-bridges.  相似文献   

13.
Dramatic DNA reorganization and elimination processes occur during macronuclear differentiation in ciliates. In this study we analyzed whether cytosine methylation of specific sequences plays a functional role during DNA rearrangement. Three classes of sequences, macronuclear-destined sequences (MDSs, pCE7), members from a large family of transposon-like elements and micronuclear-specific sequences (pLJ01), differing in their structure and future destiny during nuclear differentiation, were studied in the micronucleus, the developing macronucleus and, when present, in the mature macronucleus. While the MDSs become processed to a 1.1 and 1.3 kb gene-sized macronuclear DNA molecule, the family of transposon-like elements represented by MaA81 becomes removed late in the course of polytene chromosome formation. The micronuclear-specific sequence pLJ01 is eliminated together with bulk micronuclear DNA during degradation of polytene chromosomes. No methylated cytosine could be detected in the vegetative macronucleus and no difference in methylation pattern was observed either between micronucleus and developing macronucleus in MDSs or in a micronuclear-specific sequence. However, a significant percentage of the cytosines contained in the transposon-like element becomes methylated de novo in the course of macronuclear differentiation. This is the first demonstration that cytosine methylation in specific sequences occurs during macronuclear differentiation and may provide a first step towards understanding epigenetic factors involved in DNA processing.  相似文献   

14.
15.
16.
SYNOPSIS. A full account of the nuclear changes during binary fission and conjugation in a local race of Blepharisma is presented in this paper. The macronucleus consists of 2 nodes connected by a strand. Number of micronuclei varies from 6 to 18. During binary fission, condensation of macronucleus is followed by elongation and thinning of the middle region which finally breaks. Daughter nuclei later attain the typical vegetative form. Notably, during binary fission some micronuclei appear to complete their mitoses by the time the macronucleus attains the condensed form, while others lag behind and exhibit practically every stage of mitosis.
During conjugation, from 6 to 10 micronuclei undergo the first pregamic division, the same number through the second division, and two products of the second division take part in the third division. The rest degenerate. Division products of the nuclei in the paraoral region take part in synkaryon formation. The synkaryon undergoes either 2 or 3 divisions. In the former case, of the 4 products, 2 become the macronuclear anlagen, one the micronucleus and the fourth degenerates. In the latter case, of the 8 products, 3 to 4 become the macronuclear anlagen and the rest become micronuclei. Chromatin elimination has been observed during the division of the macronuclear anlage, followed by an extra metagamic fission of the cell.
Comparison with two other races from India and an American race indicates considerable diversity in the structure and behaviour of the nuclear apparatus in different races of Blepharisma undulans.  相似文献   

17.
18.
ABSTRACT. The nuclear apparatus of Homalozoon vermiculare consists of a single moniliform macronucleus and about 25 micronuclei. The number of macronuclear segments depends (i) on the number of divisions of individual segments during the interphase and (ii) on the number of segments that arise prior to cytokinesis from the (temporary) filiform macronucleus. Precytokinetic changes of the macronucleus involve the fusion of individual segments followed by contraction and subsequent elongation of the entire macronucleus. The chromatin bodies uncoil into fine fibrils during macronuclear contraction. At the time when the division furrow appears, the macronucleus starts to renodulate. The interphase segment contains a more or less reticulated chromatin body partly attached to the nuclear envelope and about 30 polymorphous nucleoli. The latter consist of the pars granulosa, the pars fibrosa, and an additional fibrillar component. The nucleoli undergo drastic changes prior to division and the granular component disappears completely during macronuclear condensation. On the average, the macronucleus contains a 3,400-fold amount of DNA compared with a haploid micronucleus, but the intraspecific differences in the DNA content of the entire macronucleus are extremely large. In contrast, DNA content and size of an individual segment of the macronucleus are precisely regulated during interphase.  相似文献   

19.
The 81-MAC family consists of three sizes of macronuclear chromosomes in Oxytricha fallax. Clones of these and of micronuclear homologs have been classified according to DNA sequence into three highly homologous (95.9-97.9%), but distinct versions. Version A is represented by a micronuclear clone and by clones of two different-sized macronuclear chromosomes, showing that alternate processing of micronuclear DNA is responsible for the variety of sizes of macronuclear chromosomes. Three Internal Eliminated Sequences (IES's) are demonstrated in Version A micronuclear DNA. Two have been sequenced and show short, flanking direct repeats but no inverted terminal repeats. Version C micronuclear DNA has interruptions in the macronuclear homology which correspond closely to the Version A IES's. Whether they are true IES's is unknown because no Version C macronuclear DNA has been demonstrated. Version C micronuclear DNA may be "macronuclear-homologous" but "micronucleus-limited" and not "macronucleus-destined." Version B is represented by macronuclear DNA clones, but no micronuclear clones. Vegetative micronuclear aneuploidy is suggested. The possible role of micronuclear defects in somatic karyonidal senescence is discussed in light of the precise macronuclear chromosome copy controls demonstrated within the 81-MAC family. These controls apparently operate throughout karyonidal life to maintain 1) a constant absolute amount of 81-MAC sequences in the macronucleus and 2) a constant stoichiometry within the family, both according to version and chromosome size.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号