首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacillus subtilis possesses two glutamate racemase isozymes, RacE and YrpC. For the first time, we succeeded in constructing glutamate racemase-gene disruptants of B. subtilis. Phenotypic analysis of their D-glutamate auxotrophy indicated that the RacE-type glutamate racemase is important for ensuring maximum growth rate but dispensable. The YrpC-type glutamate racemase probably operates as an anaplerotic enzyme for RacE, especially under liquid culture conditions. We found novel applicability of RacE-less mutants inheriting only a marginal activity for endogenous D-glutamate supply, viz. the employment for the in vivo identification of D-glutamate-consuming systems. In fact, the genetic induction of a poly-gamma-glutamate synthetic system led a RacE-less mutant to severe growth suppression, which was overcome in the presence of a high concentration of exogenous D-glutamate. The results indicate that a significant amount of D-glutamate is consumed during poly-glutamate biosynthesis. To our knowledge, this is the first report of conditional D-glutamate auxotrophy for B. subtilis.  相似文献   

2.
Glutamate racemase activity in Bacillus anthracis is of significant interest with respect to chemotherapeutic drug design, because L-glutamate stereoisomerization to D-glutamate is predicted to be closely associated with peptidoglycan and capsule biosynthesis, which are important for growth and virulence, respectively. In contrast to most bacteria, which harbor a single glutamate racemase gene, the genomic sequence of B. anthracis predicts two genes encoding glutamate racemases, racE1 and racE2. To evaluate whether racE1 and racE2 encode functional glutamate racemases, we cloned and expressed racE1 and racE2 in Escherichia coli. Size exclusion chromatography of the two purified recombinant proteins suggested differences in their quaternary structures, as RacE1 eluted primarily as a monomer, while RacE2 demonstrated characteristics of a higher-order species. Analysis of purified recombinant RacE1 and RacE2 revealed that the two proteins catalyze the reversible stereoisomerization of L-glutamate and D-glutamate with similar, but not identical, steady-state kinetic properties. Analysis of the pH dependence of L-glutamate stereoisomerization suggested that RacE1 and RacE2 both possess two titratable active site residues important for catalysis. Moreover, directed mutagenesis of predicted active site residues resulted in complete attenuation of the enzymatic activities of both RacE1 and RacE2. Homology modeling of RacE1 and RacE2 revealed potential differences within the active site pocket that might affect the design of inhibitory pharmacophores. These results suggest that racE1 and racE2 encode functional glutamate racemases with similar, but not identical, active site features.  相似文献   

3.
Glutamate racemase (MurI) is responsible for the synthesis of D-glutamate, an essential building block of the peptidoglycan layer in bacterial cell walls. The crystal structure of glutamate racemase from Aquifex pyrophilus, determined at 2.3 A resolution, reveals that the enzyme forms a dimer and each monomer consists of two alpha/beta fold domains, a unique structure that has not been observed in other racemases or members of an enolase superfamily. A substrate analog, D-glutamine, binds to the deep pocket formed by conserved residues from two monomers. The structural and mutational analyses allow us to propose a mechanism of metal cofactor-independent glutamate racemase in which two cysteine residues are involved in catalysis.  相似文献   

4.
Glutamate racemase (RacE) is responsible for converting l-glutamate to d-glutamate, which is an essential component of peptidoglycan biosynthesis, and the primary constituent of the poly-gamma-d-glutamate capsule of the pathogen Bacillus anthracis. RacE enzymes are essential for bacterial growth and lack a human homolog, making them attractive targets for the design and development of antibacterial therapeutics. We have cloned, expressed and purified the two glutamate racemase isozymes, RacE1 and RacE2, from the B. anthracis genome. Through a series of steady-state kinetic studies, and based upon the ability of both RacE1 and RacE2 to catalyze the rapid formation of d-glutamate, we have determined that RacE1 and RacE2 are bona fide isozymes. The X-ray structures of B. anthracis RacE1 and RacE2, in complex with d-glutamate, were determined to resolutions of 1.75 A and 2.0 A. Both enzymes are dimers with monomers arranged in a "tail-to-tail" orientation, similar to the B. subtilis RacE structure, but differing substantially from the Aquifex pyrophilus RacE structure. The differences in quaternary structures produce differences in the active sites of racemases among the various species, which has important implications for structure-based, inhibitor design efforts within this class of enzymes. We found a Val to Ala variance at the entrance of the active site between RacE1 and RacE2, which results in the active site entrance being less sterically hindered for RacE1. Using a series of inhibitors, we show that this variance results in differences in the inhibitory activity against the two isozymes and suggest a strategy for structure-based inhibitor design to obtain broad-spectrum inhibitors for glutamate racemases.  相似文献   

5.
The Pediococcus pentosaceus glutamate racemase gene product complemented the D-glutamate auxotrophy of Escherichia coli WM335. Amino acid sequence analysis of the two proteins revealed 28% identity, primarily in six clusters scattered throughout the sequence. Further analyses indicated secondary structure similarities between the two proteins. These data support a recent report that the dga (murI) gene product is a glutamate racemase.  相似文献   

6.
Glr, the glutamate racemase of Bacillus subtilis (formerly Bacillus natto) IFO 3336 encoded by the glr gene, and YrpC, a protein encoded by the yrpC gene, which is located at a different locus from that of the glr gene in the B. subtilis genome, share a high sequence similarity. The yrpC gene complemented the D-glutamate auxotrophy of Escherichia coli WM335 cells defective in the glutamate racemase gene. Glutamate racemase activity was found in the extracts of E. coli WM335 clone cells harboring a plasmid, pYRPC1, carrying its gene. Thus, the yrpC gene encodes an isozyme of glutamate racemase of B. subtilis IFO 3336. YrpC is mostly found in an inactive inclusion body in E. coli JM109/pYRPC1 cells. YrpC was solubilized readily, but glutamate racemase activity was only slightly restored. We purified YrpC from the extracts of E. coli JM109/pYRPC2 cells using a Glutathione S-transferase Gene Fusion System to characterize it. YrpC is a monomeric protein and contains no cofactors, like Glr. Enzymological properties of YrpC, such as the substrate specificity and optimum pH, are also similar to those of Glr. The thermostability of YrpC, however, is considerably lower than that of Glr. In addition, YrpC showed higher affinity and lower catalytic efficiency for L-glutamate than Glr. This is the first example showing the occurrence and properties of a glutamate racemase isozyme.  相似文献   

7.
We have developed an effective method for the synthesis of various D-amino acids from the corresponding α-keto acids and ammonia by coupling four enzyme reactions catalyzed by D-amino acid aminotransferase, glutamate racemase, glutamate dehydrogenase, and formate dehydrogenase. In this system, D-glutamate is continuously regenerated from α-ketoglutarate, ammonia and NADH by the coupled reaction of glutamate dehydrogenase and glutamate racemase, and used as an amino donor for the enantioselective D-amino acid synthesis by the D-amino acid aminotransferase reaction. The unidirectional formate dehydrogenase reaction is also coupled to regenerate NADH consumed. Under the optimum conditions, D-enantiomers of valine, alanine, α-keto analogues with a molar yield higher than 80%.  相似文献   

8.
There exists a d-enantiomer of aspartic acid in lactic acid bacteria and several hyperthermophilic archaea, which is biosynthesized from the l-enantiomer by aspartate racemase. Aspartate racemase is a representative pyridoxal 5'-phosphate (PLP)-independent amino acid racemase. The "two-base" catalytic mechanism has been proposed for this type of racemase, in which a pair of cysteine residues are utilized as the conjugated catalytic acid and base. We have determined the three-dimensional structure of aspartate racemase from the hyperthermophilic archaeum Pyrococcus horikoshii OT3 at 1.9 A resolution by X-ray crystallography and refined it to a crystallographic R factor of 19.4% (R(free) of 22.2%). This is the first structure reported for aspartate racemase, indeed for any amino acid racemase from archaea. The crystal structure revealed that this enzyme forms a stable dimeric structure with a strong three-layered inter-subunit interaction, and that its subunit consists of two structurally homologous alpha/beta domains, each containing a four-stranded parallel beta-sheet flanked by six alpha-helices. Two strictly conserved cysteine residues (Cys82 and Cys194), which have been shown biochemically to act as catalytic acid and base, are located on both sides of a cleft between the two domains. The spatial arrangement of these two cysteine residues supports the "two-base" mechanism but disproves the previous hypothesis that the active site of aspartate racemase is located at the dimeric interface. The structure revealed a unique pseudo mirror-symmetry in the spatial arrangement of the residues around the active site, which may explain the molecular recognition mechanism of the mirror-symmetric aspartate enantiomers by the non-mirror-symmetric aspartate racemase.  相似文献   

9.
Poly-gamma-glutamate (gamma-PGA)-producing Bacillus subtilis contains two glutamate racemase genes, glr and yrpC, as does gamma-PGA-nonproducing B. subtilis strain 168. glr and yrpC on the chromosome of gamma-PGA-producing strain r22 were separately disrupted by means of gene replacement with an erythromycin resistance determinant. yrpC-disruption caused no effects on growth or gamma-PGA-production, whereas glr was disrupted only when an exogenous glr copy was present on a plasmid. In addition, the D-glutamate content of gamma-PGA produced by the yrpC-disruptant was the same as that produced by the parental strain r22. Glr in strain r22 is therefore responsible for the supply of D-glutamate to the synthesis of both peptidoglycan and gamma-PGA. Consistent with this idea, glr was transcribed actively during the exponential growth phase for peptidoglycan synthesis and continuously at a low, but distinct, level during the stationary phase for gamma-PGA production, whereas yrpC was transcribed at a very low level throughout growth. Phylogenetic analysis of glutamate racemases from eubacteria showed that YrpC is distinct from other glutamate racemases.  相似文献   

10.
Glavas S  Tanner ME 《Biochemistry》1999,38(13):4106-4113
Glutamate racemase is a cofactor-independent enzyme that employs two active-site cysteine residues as acid/base catalysts during the interconversion of glutamate enantiomers. In a given reaction direction, a thiolate from one of the cysteines abstracts the alpha-proton, and the other cysteine thiol delivers a proton to the opposite face of the resulting carbanionic intermediate. This paper reports that the C73S and C184S mutants are still capable of racemizing glutamate with specificity constants about 10(3)-fold lower than those of the wild-type enzyme. A "one-base requiring" reaction, the elimination of water from N-hydroxyglutamate, has been used to deduce which thiol acts as the base for a given enantiomer. With D-N-hydroxyglutamate the C73S mutant is a much poorer catalyst than wild-type enzyme, whereas the C184S mutant is a somewhat better catalyst. This trend was reversed with L-N-hydroxyglutamate, suggesting that Cys73 is responsible for the deprotonation of D-glutamate and Cys184 is responsible for the deprotonation of L-glutamate. In addition, with C73S the Vmax/KM isotope effect on D-glutamate racemization was greater than that seen with wild-type enzyme, whereas the isotope effect with L-glutamate had decreased. The results were reversed with the C184S mutant. This is interpreted as being due to an asymmetry in the free energy profiles that is induced upon mutation, with the deprotonation step involving a serine becoming the more cleanly rate-determining of the two. These results support the above assignment and the notion that a carbanionic intermediate is formed during catalysis.  相似文献   

11.
The murI gene encoding D-glutamate racemase plays an important role in the biosynthesis of D-glutamic acid, an essential component of cell wall peptidoglycan of almost all eubacteria. A DNA fragment that could rescue the auxotrophy of D-glutamic acid in the Escherichia coli murI mutant strain WM335 was isolated from Brevibacterium lactofermentum ATCC 13869 belonging to the coryneform bacteria. DNA sequencing reveals that it encodes a protein of 284 amino acid residues, which shows a high level of homology with D-glutamate racemases from several other bacteria.  相似文献   

12.
Ramezani M  Resmer KL  White RL 《The FEBS journal》2011,278(14):2540-2551
The pathways of glutamate catabolism in the anaerobic bacterium Fusobacterium varium, grown on complex, undefined medium and chemically defined, minimal medium, were investigated using specifically labelled (13)C-glutamate. The metabolic end-products acetate and butyrate were isolated from culture fluids and derivatized for analysis by nuclear magnetic resonance and mass spectrometry. On complex medium, labels from L-[1-(13)C]glutamate and L-[4-(13)C]glutamate were incorporated into C1 of acetate and equally into C1/C3 of butyrate, while label derived from L-[5-(13)C]glutamate was not incorporated. The isotopic incorporation results and the detection of glutamate mutase and 3-methylaspartate ammonia lyase in cell extracts are most consistent with the methylaspartate pathway, the best known route of glutamate catabolism in Clostridium species. When F. varium was grown on defined medium, label from L-[4-(13)C]glutamate was incorporated mainly into C4 of butyrate, demonstrating a major role for the hydroxyglutarate pathway. Upon addition of coenzyme B(12) or cobalt ion to the defined medium in replicate experiments, isotope was located equally at C1/C3 of butyrate in accord with the methylaspartate pathway. Racemization of D-glutamate and subsequent degradation of L-glutamate via the methylaspartate pathway are supported by incorporation of label into C2 of acetate and equally into C2/C4 of butyrate from D-[3-(13)C]glutamate and the detection of a cofactor-independent glutamate racemase in cell extracts. Together the results demonstrate a major role for the methylaspartate pathway of glutamate catabolism in F. varium and substantial participation of the hydroxyglutarate pathway when coenzyme B(12) is not available.  相似文献   

13.
A bacterium with high poly-gamma-glutamate (PGA) productivity was isolated from the traditional Korean seasoning, Chung-Kook-Jang. This bacterium could be classified as a Bacillus subtilis, but sporulation in culture was infrequent in the absence of Mn2+. It was judged to be a variety of B. subtilis and designated B. subtilis (chungkookjang). L-Glutamate significantly induced PGA production, and highly elongated PGAs were synthesized. The volumetric yield reached 13.5 mg ml(-1) in the presence of 2% L-glutamate. The D-glutamate content was over 50% in every PGA produced under the conditions used. During PGA production, glutamate racemase activity was found in the cells, suggesting that the enzyme is involved in the D-glutamate supply. Molecular sizes of PGAs were changed by the salt concentration in the medium; PGAs with comparatively low molecular masses were produced in culture media containing high concentrations of NaCl. B. subtilis (chungkookjang) harbors no plasmid and is the first B. subtilis strain reported with both naturally high PGA productivity and high genetic competence.  相似文献   

14.
Almost all bacteria possess glutamate racemase to synthesize d-glutamate as an essential component of peptidoglycans in the cell walls. The enforced production of glutamate racemase, however, resulted in suppression of cell proliferation. In the Escherichia coli JM109/pGR3 clone, the overproducer of glutamate racemase, the copy number (i.e. replication efficiency) of plasmid DNA declined dramatically, whereas the E. coli WM335 mutant that is defective in the gene of glutamate racemase showed little genetic competency. The comparatively low and high activities for DNA supercoiling were contained in the E. coli JM109/pGR3 and WM335 cells, respectively. Furthermore, we found that the DNA gyrase of E. coli was modulated by the glutamate racemase of E. coli in the presence of UDP-N-acetylmuramyl-l-alanine, which is a peptidoglycan precursor and functions as an absolute activator for the racemase. This is the first finding of the enzyme protein participating in both d-amino acid metabolism and DNA processing.  相似文献   

15.
Administration of a tracer dose of L-[14C] glutamate to rats led to rapid labeling of tissue 5-oxoproline, a finding in accord with the γ-glutamyl cycle. After giving the same dose of D-[14C] glutamate, the labeling of kidney 5-oxoproline was about 400 times greater than found after giving L-[14C] glutamate; this reflects the activity of D-glutamate cyclase, which catalyzes cyclization of D-glutamate to 5-oxo-D-proline. The mammalian pathway for detoxication of D-glutamate, which does not require energy or utilization of other metabolites, may have evolved to protect L-amino acid-specific systems against inhibition by D-glutamate; D-glutamate cyclase seems to account for the presence of 5-oxo-D-proline in normal blood plasma and urine. Administration of D-glutamate decreased the glutathione level in the kidney markedly, reflecting inhibition of γ-glutamylcysteine synthetase; D-glutamate may be useful in various studies as an inhibitor of glutathione synthesis.  相似文献   

16.
Glavas S  Tanner ME 《Biochemistry》2001,40(21):6199-6204
Glutamate racemase, MurI, catalyzes the interconversion of glutamate enantiomers in a cofactor-independent fashion and provides bacteria with a source of D-Glu for use in peptidoglycan biosynthesis. The enzyme uses a "two-base" mechanism involving a deprotonation of the substrate at the alpha-position to form an anionic intermediate, followed by a reprotonation in the opposite stereochemical sense. In the Lactobacillus fermenti enzyme, Cys73 is responsible for the deprotonation of D-glutamate, and Cys184 is responsible for the deprotonation of L-glutamate; however, very little is known about the roles of other active site residues. This work describes the preparation of four mutants in which strictly conserved residues containing ionizable side chains were modified (D10N, D36N, E152Q, and H186N). During the course of this research, the structural analysis of a crystallized glutamate racemase indicated that three of these residues (D10, E152, and H186) are in the active site of the enzyme [Hwang, K. Y., Cho, C.-S., Kim, S. S., Sung, H.-C., Yu, Y. G., and Cho, Y. (1999) Nat. Struct. Biol. 6, 422-426]. Two of the mutants, D10N and H186N, displayed a marked decrease in the values of k(cat), but not K(M), and are therefore implicated as important catalytic residues. Further analysis of the primary kinetic isotope effects observed with alpha-deuterated substrates showed that a significant asymmetry was introduced into the free energy profile by these two mutations. This is interpreted as evidence that the mutated residues normally assist the catalytic thiols in acting as bases (D10 with C73 and H186 with C184). An alternate possibility is that the residues may serve to stabilize the carbanionic intermediate in the racemization reaction.  相似文献   

17.
LeMagueres P  Im H  Dvorak A  Strych U  Benedik M  Krause KL 《Biochemistry》2003,42(50):14752-14761
The structure of the catabolic alanine racemase, DadX, from the pathogenic bacterium Pseudomonas aeruginosa, reported here at 1.45 A resolution, is a dimer in which each monomer is comprised of two domains, an eight-stranded alpha/beta barrel containing the PLP cofactor and a second domain primarily composed of beta-strands. The geometry of each domain is very similar to that of Bacillus stearothermophilus alanine racemase, but the rotation between domains differs by about 15 degrees. This change does not alter the structure of the active site in which almost all residues superimpose well with a low rms difference of 0.86 A. Unexpectedly, the active site of DadX contains a guest substrate that is located where acetate and propionate have been observed in the Bacillus structures. It is modeled as d-lysine and oriented such that its terminal NZ atom makes a covalent bond with C4' of PLP. Since the internal aldimine bond between the protein lysine, Lys33, and C4' of PLP is also unambiguously observed, there appears to be an equilibrium between both internally and externally reacted forms. The PLP cofactor adopts two partially occupied conformational states that resemble previously reported internal and external aldimine complexes.  相似文献   

18.
We have established a simple procedure for the in situ analysis of stereospecificity of an NAD(P)-dependent dehydrogenase for C-4 hydrogen transfer of NAD(P)H by means of glutamate racemase [EC 5.1.13] and glutamate dehydrogenase [EC 1.4.1.3]. Glutamate racemase inherently catalyzes the exchange of alpha-H of glutamate with 2H during racemization in 2H2O. When the reactions of glutamate racemase and glutamate dehydrogenase, which is pro-S specific for the C4-H transfer of NAD(P)H, are coupled in 2H2O, [4S-2H]-NAD(P)H is exclusively produced. Therefore, if 1H is fully retained at C-4 of NAD(P)+ after incubation of a reaction mixture containing both the enzymes and a dehydrogenase to be tested, the stereospecificity of the dehydrogenase is the same as that of glutamate dehydrogenase. When the C4-H of NAD(P)+ is exchanged with 2H, the enzyme to be examined is different from glutamate dehydrogenase in stereospecificity. Thus, we can readily determine the stereospecificity by 1H-NMR measurement of NAD(P)+ without isolation of the coenzymes and products.  相似文献   

19.
Lysine racemase, a pyridoxal 5′-phosphate (PLP)-dependent amino acid racemase that catalyzes the interconversion of lysine enantiomers, is valuable to serve as a novel non-antibiotic selectable marker in the generation of transgenic plants. Here, we have determined the first crystal structure of a lysine racemase (Lyr) from Proteus mirabilis BCRC10725, which shows the highest activity toward lysine and weaker activity towards arginine. In addition, we establish the first broad-specificity amino acid racemase (Bar) structure from Pseudomonas putida DSM84, which presents not only the highest activity toward lysine but also remarkably broad substrate specificity. A complex structure of Bar-lysine is also established here. These structures demonstrate the similar fold of alanine racemase, which is a head-to-tail homodimer with each protomer containing an N-terminal (α/β)8 barrel and a C-terminal β-stranded domain. The active-site residues are located at the protomer interface that is a funnel-like cavity with two catalytic bases, one from each protomer, and the PLP binding site is at the bottom of this cavity. Structural comparisons, site-directed mutagenesis, kinetic, and modeling studies identify a conserved arginine and an adjacent conserved asparagine that fix the orientation of the PLP O3 atom in both structures and assist in the enzyme activity. Furthermore, side chains of two residues in α-helix 10 have been discovered to point toward the cavity and define the substrate specificity. Our results provide a structural foundation for the design of racemases with pre-determined substrate specificity and for the development of the non-antibiotic selection system in transgenic plants.  相似文献   

20.
Several new antibacterial agents are currently being developed in response to the emergence of bacterial resistance to existing antibiotic substances. The new agents include compounds that interfere with bacterial membrane function. The peptidoglycan component of the bacterial cell wall is synthesized by glutamate racemase, and this enzyme is responsible for the biosynthesis of d-glutamate, which is an essential component of cell wall peptidoglycan. In this study, we screened a phage display library expressing random dodecapeptides on the surface of bacteriophage against an Escherichia coli glutamate racemase, and isolated specific peptide sequences that bind to the enzyme. Twenty-seven positive phage clones were analyzed, and seven different peptide sequences were obtained. Among them, the peptide sequence His-Pro-Trp-His-Lys-Lys-His-Pro-Asp-Arg-Lys-Thr was found most frequently, suggesting that this peptide might have the highest affinity to glutamate racemase. The positive phage clones and HPWHKKHPDRKT synthetic peptide were able to inhibit glutamate racemase activity in vitro, implying that our peptide inhibitors may be utilized for the molecular design of new potential antibacterial agents targeting cell wall synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号