首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Multiple splicing defects in an intronic false exon   总被引:18,自引:0,他引:18       下载免费PDF全文
  相似文献   

3.
Fas exon 6 can be included or skipped to generate mRNAs encoding, respectively, a membrane bound form of the receptor that promotes apoptosis or a soluble isoform that prevents programmed cell death. We report that the apoptosis-inducing protein TIA-1 promotes U1 snRNP binding to the 5' splice site of intron 6, which in turn facilitates exon definition by enhancing U2AF binding to the 3' splice site of intron 5. The polypyrimidine tract binding protein (PTB) promotes exon skipping by binding to an exonic splicing silencer and inhibiting the association of U2AF and U2 snRNP with the upstream 3' splice site, without affecting recognition of the downstream 5' splice site by U1. Remarkably, U1 snRNP-mediated recognition of the 5' splice site is required both for efficient U2AF binding and for U2AF inhibition by PTB. We propose that TIA-1 and PTB regulate Fas splicing and possibly Fas-mediated apoptosis by targeting molecular events that lead to exon definition.  相似文献   

4.
5.
6.
The 240-bp alpha exon of the tight junction (TJ) protein ZO-1 pre-mRNA is alternatively spliced. Expression of both ZO-1alpha+/ZO-1alpha- isoforms results in hermetic TJs, and these become leaky when ZO-1alpha- expression prevails. The alpha exon inclusion/skipping mechanism was studied by in vivo RT-PCR splicing assays in neural and epithelial cells, utilizing a canine minigene construct containing the alpha exon, and the flanking introns and exons. Inclusion of the alpha exon always occurs in wild-type MDCK cells and it is detectable in transfected HeLa cells. However, the alpha exon is skipped in transfected neural cells. Accordingly, both 5' and 3' splice sites surrounding the alpha exon appear to be suboptimal and no cis-acting splicing control elements were found in this exon. Deletion analysis revealed an 83-bp splicing enhancer in the downstream exon and a 35-bp splicing silencer at the beginning of the upstream exon. In epithelial cells all constructs rendered alpha exon inclusion. We conclude that, in neural cells, skipping of the alpha exon depends on two antagonistic exonic elements located in the flanking constitutive exons.  相似文献   

7.
8.
The rat beta-tropomyosin gene encodes two tissue-specific isoforms that contain the internal, mutually exclusive exons 6 (nonmuscle/smooth muscle) and 7 (skeletal muscle). We previously demonstrated that the 3' splice site of exon 6 can be activated by introducing a 9-nt polyuridine tract at its 3' splice site, or by strengthening the 5' splice site to a U1 consensus binding site, or by joining exon 6 to the downstream common exon 8. Examination of sequences within exons 6 and 8 revealed the presence of two purine-rich motifs in exon 6 and three purine-rich motifs in exon 8 that could potentially represent exonic splicing enhancers (ESEs). In this report we carried out substitution mutagenesis of these elements and show that some of them play a critical role in the splice site usage of exon 6 in vitro and in vivo. Using UV crosslinking, we have identified SF2/ASF as one of the cellular factors that binds to these motifs. Furthermore, we show that substrates that have mutated ESEs are blocked prior to A-complex formation, supporting a role for SF2/ASF binding to the ESEs during the commitment step in splicing. Using pre-mRNA substrates containing exons 5 through 8, we show that the ESEs within exon 6 also play a role in cooperation between the 3' and 5' splice sites flanking this exon. The splicing of exon 6 to 8 (i.e., 5' splice site usage of exon 6) was enhanced with pre-mRNAs containing either the polyuridine tract in the 3' splice site or consensus sequence in the 5' splice site around exon 6. We show that the ESEs in exon 6 are required for this effect. However, the ESEs are not required when both the polyuridine and consensus splice site sequences around exon 6 were present in the same pre-mRNA. These results support and extend the exon-definition hypothesis and demonstrate that sequences at the 3' splice site can facilitate use of a downstream 5' splice site. In addition, the data support the hypothesis that ESEs can compensate for weak splice sites, such as those found in alternatively spliced exons, thereby providing a target for regulation.  相似文献   

9.
We have been using the caspase-2 pre-mRNA as a model system to study the importance of alternative splicing in the regulation of programmed cell death. Inclusion or skipping of a cassette-type exon in the 3' portion of this pre-mRNA leads to the production of isoforms with antagonistic activity in apoptosis. We previously identified a negative regulatory element (In100) located in the intron downstream of alternative exon 9. The upstream portion of this element harbors a decoy 3' acceptor site that engages in nonproductive commitment complex interactions with the 5' splice site of exon 9. This in turn confers a competitive advantage to the exon-skipping splicing pattern. Further characterization of the In100 element reveals a second, functionally distinct, domain located downstream from the decoy 3' acceptor site. This downstream domain harbors several polypyrimidine track-binding protein (PTB)-binding sites. We show that PTB binding to these sites correlates with the negative effect on exon 9 inclusion. Finally, we show that both domains of the In100 element can function independently to repress exon 9 inclusion, although PTB binding in the vicinity of the decoy 3' splice site can modulate its activity. Our results thus reveal a complex composite element that regulates caspase-2 exon 9 alternative splicing through a novel mechanism.  相似文献   

10.
11.
12.
The essential splicing factor SF2/ASF and the heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) modulate alternative splicing in vitro of pre-mRNAs that contain 5' splice sites of comparable strengths competing for a common 3' splice site. Using natural and model pre-mRNAs, we have examined whether the ratio of SF2/ASF to hnRNP A1 also regulates other modes of alternative splicing in vitro. We found that an excess of SF2/ASF effectively prevents inappropriate exon skipping and also influences the selection of mutually exclusive tissue-specific exons in natural beta-tropomyosin pre-mRNA. In contrast, an excess of hnRNP A1 does not cause inappropriate exon skipping in natural constitutively or alternatively spliced pre-mRNAs. Although hnRNP A1 can promote alternative exon skipping, this effect is not universal and is dependent, e.g., on the size of the internal alternative exon and on the strength of the polypyrimidine tract in the preceding intron. With appropriate alternative exons, an excess of SF2/ASF promotes exon inclusion, whereas an excess of hnRNP A1 causes exon skipping. We propose that in some cases the ratio of SF2/ASF to hnRNP A1 may play a role in regulating alternative splicing by exon inclusion or skipping through the antagonistic effects of these proteins on alternative splice site selection.  相似文献   

13.
Q Zhao  A Gersappe    D J Pintel 《Journal of virology》1995,69(10):6170-6179
We have previously shown that efficient excision of the upstream large intron from P4-generated pre-mRNA of the autonomous parvovirus minute virus of mice depends upon at least the initial presence of sequences within the downstream small intron (Q. Zhao, R. V. Schoborg, and D. J. Pintel, J. Virol. 68:2849-2859, 1994). In this report, we show that the requirement of downstream small intron sequences is complex and that efficient excision of the upstream intron requires at least one small intron donor and the 3' splice site. In the absence of both small intron donors, a new spliced product is produced in which the intervening exon is skipped and the large intron donor at nucleotide 514 is joined to a small intron acceptor. Exon skipping caused by the loss of the two small intron donors can be overcome, and the excision of the large intron can be regained by mutations that improve the large intron polypyrimidine tract. These results are consistent with a model in which the binding of multiple splicing factors that assemble at both a downstream donor and acceptor facilitates the binding of splicing factors to the weak polypyrimidine tract of the upstream large intron, thereby defining the intervening exon and promoting excision of the upstream intron.  相似文献   

14.
The chicken beta-tropomyosin gene contains an internal pair of mutually exclusive exons (6A and 6B) that are selected in a tissue-specific manner. Exon 6A is incorporated in fibroblasts and smooth muscle cells, whereas exon 6B is skeletal muscle specific. In this study we show that two different regions in the intron between the two mutually exclusive exons are important for this specific selection in nonmuscle cells. Sequences in the 3' end of the intron have a negative effect in the recognition of the 3' splice site, while sequences in the 5' end of the intron have a positive effect in the recognition of the 5' splice site. First, sequences in exon 6B as well as in the intron upstream of exon 6B are both able to inhibit splicing when placed in a heterologous gene. The sequences in the polypyrimidine stretch region contribute to splicing inhibition of exons 5 or 6A to 6B through a mechanism independent of their implication in the previously described secondary structure around exon 6B. Second, we have identified a sequence of 30 nucleotides in the intron just downstream of exon 6A that is essential for the recognition of the 5' splice site of exon 6A. This is so even after introduction of a consensus sequence into the 5' splice site of this exon. Deletion of this sequence blocks splicing of exon 6A to 6B after formation of the presplicing complex. Taken together, these results suggest that both the mutually exclusive behavior and the choice between exons 6A and 6B of the chicken beta-tropomyosin gene are trans regulated.  相似文献   

15.
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions to recognize and define the downstream exon and its resident 5' splice site. Splicing precursor RNAs constructed to have elongated second exons lacking 5' splice sites were deficient in spliceosome assembly and splicing activity in vitro. Similar substrates including a 5' splice site at the end of exon 2 assembled and spliced normally as long as the second exon was less than 300 nucleotides long. U2 snRNPs were required for protection of the 5' splice site terminating exon 2, suggesting direct communication during early assembly between factors binding the 3' and 5' splice sites bordering an exon. We suggest that exons are recognized and defined as units during early assembly by binding of factors to the 3' end of the intron, followed by a search for a downstream 5' splice site. In this view, only the presence of both a 3' and a 5' splice site in the correct orientation and within 300 nucleotides of one another will stable exon complexes be formed. Concerted recognition of exons may help explain the 300-nucleotide-length maximum of vertebrate internal exons, the mechanism whereby the splicing machinery ignores cryptic sites within introns, the mechanism whereby exon skipping is normally avoided, and the phenotypes of 5' splice site mutations that inhibit splicing of neighboring introns.  相似文献   

16.
Branch point selection in alternative splicing of tropomyosin pre-mRNAs.   总被引:21,自引:7,他引:14  
The rat tropomyosin 1 gene gives rise to two mRNAs encoding rat fibroblast TM-1 and skeletal muscle beta-tropomyosin via an alternative splicing mechanism. The gene is comprised of 11 exons. Exons 1 through 5 and exons 8 and 9 are common to all mRNAs expressed from this gene. Exons 6 and 11 are used in fibroblasts as well as smooth muscle whereas exons 7 and 10 are used exclusively in skeletal muscle. In the present studies we have focused on the mutually exclusive internal alternative splice choice involving exon 6 (fibroblast-type splice) and exon 7 (skeletal muscle-type splice). To study the mechanism and regulation of alternative splice site selection we have characterized the branch points used in processing of the tropomyosin pre-mRNAs in vitro using nuclear extracts obtained from HeLa cells. Splicing of exon 5 to exon 6 (fibroblast-type splice) involves the use of three branch points located 25, 29, and 36 nucleotides upstream of the 3' splice site of exon 6. Splicing of exon 6 (fibroblast-type splice) or exon 7 (skeletal muscle type-splice) to exon 8 involves the use of the same branch point located 24 nucleotides upstream of this shared 3' splice site. In contrast, the splicing of exon 5 to exon 7 (skeletal muscle-type splice) involves the use of three branch sites located 144, 147 and 153 nucleotides, upstream of the 3' splice site of exon 7. In addition, the pyrimidine content of the region between these unusual branch points and the 3' splice site of exon 7 was found to be greater than 80%. These studies raise the possibility that the use of branch points located a long distance from a 3' splice site may be an essential feature of some alternatively spliced exons. The possible significance of these unusual branch points as well as a role for the polypyrimidine stretch in intron 6 in splice site selection are discussed.  相似文献   

17.
The rat beta-tropomyosin (beta-TM) gene encodes both skeletal muscle beta-TM mRNA and nonmuscle TM-1 mRNA via alternative RNA splicing. This gene contains eleven exons: exons 1-5, 8, and 9 are common to both mRNAs; exons 6 and 11 are used in fibroblasts as well as in smooth muscle, whereas exons 7 and 10 are used in skeletal muscle. Previously we demonstrated that utilization of the 3' splice site of exon 7 is blocked in nonmuscle cells. In this study, we use both in vitro and in vivo methods to investigate the regulation of the 5' splice site of exon 7 in nonmuscle cells. The 5' splice site of exon 7 is used efficiently in the absence of flanking sequences, but its utilization is suppressed almost completely when the upstream exon 6 and intron 6 are present. The suppression of the 5' splice site of exon 7 does not result from the sequences at the 3' end of intron 6 that block the use of the 3' splice site of exon 7. However, mutating two conserved nucleotides GU at the 5' splice site of exon 6 results in the efficient use of the 5' splice site of exon 7. In addition, a mutation that changes the 5' splice site of exon 7 to the consensus U1 snRNA binding site strongly stimulates the splicing of exon 7 to the downstream common exon 8. Collectively, these studies demonstrate that 5' splice site competition is responsible, in part, for the suppression of exon 7 usage in nonmuscle cells.  相似文献   

18.
19.
The neural cell-specific N1 exon of the c-src pre-mRNA is both negatively regulated in nonneural cells and positively regulated in neurons. We previously identified conserved intronic elements flanking N1 that direct the repression of N1 splicing in a nonneural HeLa cell extract. The upstream repressor elements are located within the polypyrimidine tract of the N1 exon 3' splice site. A short RNA containing this 3' splice site sequence can sequester trans-acting factors in the HeLa extract to allow splicing of N1. We now show that these upstream repressor elements specifically interact with the polypyrimidine tract binding protein (PTB). Mutations in the polypyrimidine tract reduce both PTB binding and the ability of the competitor RNA to derepress splicing. Moreover, purified PTB protein restores the repression of N1 splicing in an extract derepressed by a competitor RNA. In this system, the PTB protein is acting across the N1 exon to regulate the splicing of N1 to the downstream exon 4. This mechanism is in contrast to other cases of splicing regulation by PTB, in which the protein represses the splice site to which it binds.  相似文献   

20.
A large proportion of mutations at the human hprt locus result in aberrant splicing of the hprt mRNA. We have been able to relate the mutation to the splicing abnormality in 30 of these mutants. Mutations at the splice acceptor sites of introns 4, 6 and 7 result in splicing out of the whole of the downstream exons, whereas in introns 1, 7 or 8 a cryptic site in the downstream exon can be used. Mutations in the donor site of introns 1 and 5 result in the utilisation of cryptic sites further downstream, whereas in the other introns, the upstream exons are spliced out. Our most unexpected findings were mutations in the middle of exons 3 and 8 which resulted in splicing out of these exons in part of the mRNA populations. Our results have enabled us to assess current models of mRNA splicing. They emphasize the importance of the polypyrimidine tract in splice acceptor sites, they support the role of the exon as the unit of assembly for splicing, and they are consistent with a model proposing a stem-loop structure for exon 8 in the hprt mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号