首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Considerable evidence suggests that one genome duplication event preceded the divergence of teleost fishes and a second genome duplication event occurred before the radiation of teleosts of the family Salmonidae. Two Sox9 genes have been isolated from a number of teleosts and are called Sox9a and Sox9b. Two Sox9 gene copies have also been isolated from rainbow trout, a salmonid fish and are called Sox9 and Sox9α2. Previous evaluations of the evolutionary history of rainbow trout Sox9 gene copies using phylogenetic reconstructions of their coding regions indicated that they both belong to the Sox9b clade. In this study, we determine the true evolutionary history of Sox9 gene copies in rainbow trout. We show that the locus referred to as Sox9 in rainbow trout is itself duplicated. Mapping of the duplicated Sox9 gene copies indicates that they are co-orthologs of Sox9b while mapping of Sox9α2 indicates that it is an ortholog of Sox9a. This relationship is supported by phylogenetic reconstruction of Sox9 gene copies in teleosts using their 3′ untranslated regions. The conflicting phylogenetic topology of Sox9 genes in rainbow trout indicates the occurrence of gene conversion events between Sox9 and Sox9α2 which is supported by a number of recombination analyses.  相似文献   

2.
Recently, we cloned the adult α-globin genes from large yellow croaker Pseudosciaena crocea, cuneate drum Nibea miichthioides and red drum Sciaenops ocellatus. All these α-globins have a unique Gly insertion at the 47th residue. In this paper, the three sciaenid globin complexes were identified and compared in detail. Linkage analysis indicated that the sciaenid α- and β-globin genes were oriented head-to-head relative to each other. The sciaenid intergenic regions between the linked α- and β-globin genes were the smallest in reported fish globin gene complexes to date. Classical promoter elements were condensed and the CCAAT box unstable duplication was found in these regions. The promoter function of the intergenic region from large yellow croaker was tested by transient expression of EGFP in Vero cells. We also described a method for studying luciferase reporter gene transient expression in primary fish erythrocytes. We used the method to assess the promoter strength of the three intergenic regions between the sciaenid α- and β-globin genes.  相似文献   

3.
Two distinct skeletal muscle ryanodine receptors (RyR1s) are expressed in a fiber type-specific manner in fish skeletal muscle (11). In this study, we compare [(3)H]ryanodine binding and single channel activity of RyR1-slow from fish slow-twitch skeletal muscle with RyR1-fast and RyR3 isolated from fast-twitch skeletal muscle. Scatchard plots indicate that RyR1-slow has a lower affinity for [(3)H]ryanodine when compared with RyR1-fast. In single channel recordings, RyR1-slow and RyR1-fast had similar slope conductances. However, the maximum open probability (P(o)) of RyR1-slow was threefold less than the maximum P(o) of RyR1-fast. Single channel studies also revealed the presence of two populations of RyRs in tuna fast-twitch muscle (RyR1-fast and RyR3). RyR3 had the highest P(o) of all the RyR channels and displayed less inhibition at millimolar Ca(2+). The addition of 5 mM Mg-ATP or 2.5 mM beta, gamma-methyleneadenosine 5'-triphosphate (AMP-PCP) to the channels increased the P(o) and [(3)H]ryanodine binding of both RyR1s but also caused a shift in the Ca(2+) dependency curve of RyR1-slow such that Ca(2+)-dependent inactivation was attenuated. [(3)H]ryanodine binding data also showed that Mg(2+)-dependent inhibition of RyR1-slow was reduced in the presence of AMP-PCP. These results indicate differences in the physiological properties of RyRs in fish slow- and fast-twitch skeletal muscle, which may contribute to differences in the way intracellular Ca(2+) is regulated in these muscle types.  相似文献   

4.
The skeletal isoform of Ca2+ release channel, RyR1, plays a central role in activation of skeletal muscle contraction. Another isoform, RyR3, has been observed recently in some mammalian skeletal muscles, but whether it participates in regulating skeletal muscle contraction is not known. The expression of RyR3 in skeletal muscles was studied in mice from late fetal stages to adult life. RyR3 was found to be expressed widely in murine skeletal muscles during the post-natal phase of muscle development, but was not detectable in muscles of adult mice, with the exception of the diaphragm and soleus muscles. RyR3 knockout mice were generated, and it was shown that skeletal muscle contraction in these mice was impaired during the first weeks after birth. In skeletal muscles isolated from newborn RyR3(-/- )mice, but not in those from adult mice, the twitch elicited by electrical stimulation and the contracture induced by caffeine were strongly depressed. These results provide the first evidence that RyR3 has a physiological role in excitation-contraction coupling of neonatal skeletal muscles. The disproportion between the low amount of RyR3 and the large impact of the RyR3 knockout suggests that this isoform contributes to the amplification of Ca2+ released by the existing population of ryanodine receptors (RyR1).  相似文献   

5.
Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.  相似文献   

6.
《Genomics》1995,29(3)
By using primers complementary to the rat βB1 crystallin gene sequence, we amplified exons 5 and 6 of the orthologous human gene (CRYBB1). The amplified human segments displayed greater than 88% sequence homology to the corresponding rat and bovine sequences.CRYBB1was assigned to the group 5 region in 22q11.2–q12.1 by hybridizing the exon 6 PCR product to somatic cell hybrids containing defined portions of human chromosome 22. The exon 5 and exon 6 PCR products ofCRYBB1were used to localize, by interspecific backcross mapping, the mouse gene (Crybb1) to the central portion of chromosome 5. Three other β crystallin genes (βB2(−1), βB3, and βA4) have previously been mapped to the same regions in human and mouse. We demonstrate that the βB1 and βA4 crystallin genes are very closely linked in the two species. These assignments complete the mapping and identification of the human and mouse homologues of the major β crystallins genes that are expressed in the bovine lens.  相似文献   

7.
Aquaculture farming may benefit from genetically engineering fish to tolerate environmental stress. Here, we used the vector pCVCG expressing the Vitreoscilla hemoglobin (vhb) gene driven by the common carp β-actin promoter to create stable transgenic zebrafish. The survival rate of the 7-day-old F2 transgenic fish was significantly greater than that of the sibling controls under 2.5% O2 (dissolved oxygen (DO), 0.91 mg/l). Meanwhile, we investigated the relative expression levels of several marker genes (hypoxia-inducible factor alpha 1, heat shock cognate 70-kDa protein, erythropoietin, beta and alpha globin genes, lactate dehydrogenase, catalase, superoxide dismutase, and glutathione peroxidase) of transgenic fish and siblings after hypoxia exposure for 156 h. The expression profiles of the vhb transgenic zebrafish revealed that VHb could partially alleviate the hypoxia stress response to improve the survival rate of the fish. These results suggest that that vhb gene may be an efficient candidate for genetically modifying hypoxia tolerance in fish.  相似文献   

8.
We have cloned agroup of cDNAs that encodes the skeletal ryanodine receptor isoform(RyR1) of fish from a blue marlin extraocular muscle library. The cDNAsencode a protein of 5,081 amino acids with a calculated molecular massof 576,302 Da. The deduced amino acid sequence shows strong sequenceidentity to previously characterized RyR1 isoforms. An RNA probederived from a clone of the full-length marlin RyR1 isoform hybridizesto RNA preparations from extraocular muscle and slow-twitch skeletalmuscle but not to RNA preparations from fast-twitch skeletal or cardiacmuscle. We have also isolated a partial RyR clone from marlin andtoadfish fast-twitch muscles that shares 80% sequence identity withthe corresponding region of the full-length RyR1 isoform, and a RNAprobe derived from this clone hybridizes to RNA preparations fromfast-twitch muscle but not to slow-twitch muscle preparations. Westernblot analysis of slow-twitch muscles in fish indicates the presence ofonly a single high-molecular-mass RyR proteincorresponding to RyR1. [3H]ryanodine bindingassays revealed the fish slow-twitch muscle RyR1 had a greatersensitivity for Ca2+ than thefast-twitch muscle RyR1. The results indicate that, in fish muscle,fiber type-specific RyR1 isoforms are expressed and the two proteinsare physiologically distinct.

  相似文献   

9.
In order to investigate the polymorphism of α-globin chain of hemoglobin amongst caprines, the linked Iα and IIα globin genes of Barbary sheep (Ammotragus lervia), goat (Capra hircus), European mouflon (Ovis aries musimon), and Cyprus mouflon (Ovis aries ophion) were completely sequenced, including the 5′ and 3′ untranslated regions. European and Cyprus mouflons, which do not show polymorphic α globin chains, had almost identical α globin genes, whereas Barbary sheep exhibit two different chains encoded by two nonallelic genes. Four different α genes were observed and sequenced in goat, validating previous observations of the existence of allelic and nonallelic polymorphism. As in other vertebrates, interchromosomal gene conversion appears to be responsible for such polymorphism. Evaluation of nucleotide sequences at the level of molecular evolution of the Iα-globin gene family in the caprine taxa suggests a closer relationship between the genus Ammotragus and Capra. Molecular clock estimates suggest sheep-mouflon, goat-aoudad, and ancestor-caprine divergences of 2.8, 5.7, and 7.1 MYBP, respectively.  相似文献   

10.
11.
As part of our efforts to characterize Na,K-ATPase isoforms in salmonid fish, we investigated the linkage arrangement of genes coding for the alpha and beta-subunits of the enzyme complex in the tetraploid-derived genome of the rainbow trout (Oncorhynchus mykiss). Genetic markers were developed from four of five previously characterized alpha-subunit isoforms (alpha1b, alpha1c, alpha2 and alpha3) and four expressed sequence tags derived from yet undescribed beta-subunit isoforms (beta1a, beta1b, beta3a and beta3b). Sex-specific linkage analysis of polymorphic loci in a reference meiotic panel revealed that Na,K-ATPase genes are generally dispersed throughout the rainbow trout genome. A notable exception was the colocalization of two alpha-subunit genes and one beta-subunit gene on linkage group RT-12, which may thus share a conserved orthologous segment with linkage group 1 in zebrafish (Danio rerio). Consistent with previously reported homeologous relationships among the chromosomes of the rainbow trout, primers designed from the alpha3-isoform detected a pair of duplicated genes on linkage groups RT-27 and RT-31. Similarly, the evolutionary conservation of homeologous regions on linkage groups RT-12 and RT-16 was further supported by the map localization of gene duplicates for the beta1b isoform. The detection of homeologs within each gene family also raises the possibility that novel isoforms may be discovered as functional duplicates.  相似文献   

12.
13.
14.
The neonatal mammalian skeletal muscle contains both type 1 and type 3 ryanodine receptors (RyR1 and RyR3) located in the sarcoplasmic reticulum membrane. An allosteric interaction between RyR1 and dihydropyridine receptors located in the plasma membrane mediates voltage-induced Ca(2+) release (VICR) from the sarcoplasmic reticulum. RyR3, which disappears in adult muscle, is not involved in VICR, and the role of the transiently expressed RyR3 remains elusive. Here we demonstrate that RyR1 participates in both VICR and Ca(2+)-induced Ca(2+) release (CICR) and that RyR3 amplifies RyR1-mediated CICR in neonatal skeletal muscle. Confocal measurements of intracellular Ca(2+) in primary cultured mouse skeletal myotubes reveal active sites of Ca(2+) release caused by peripheral coupling between dihydropyridine receptors and RyR1. In myotubes lacking RyR3, the peripheral VICR component is unaffected, and RyR1s alone are able to support inward CICR propagation in most cells at an average speed of approximately 190 microm/s. With the co-presence of RyR1 and RyR3 in wild-type cells, unmitigated radial CICR propagates at 2,440 microm/s. Because neonatal skeletal muscle lacks a well developed transverse tubule system, the RyR3 reinforcement of CICR seems to ensure a robust, uniform, and synchronous activation of Ca(2+) release throughout the cell body. Such functional interplay between RyR1 and RyR3 can serve important roles in Ca(2+) signaling of cell differentiation and muscle contraction.  相似文献   

15.
K. Noack  R. Zardoya    A. Meyer 《Genetics》1996,144(3):1165-1180
The evolutionary position of bichirs is disputed, and they have been variously aligned with ray-finned fish (Actinopterygii) or lobe-finned fish (Sarcopterygii), which also include tetrapods. Alternatively, they have been placed into their own group, the Brachiopterygii. The phylogenetic position of bichirs as possibly the most primitive living bony fish (Osteichthyes) made knowledge about their mitochondrial genome of considerable evolutionary interest. We determined the complete nucleotide sequence (16,624 bp) of the mitochondrial genome of a bichir, Polypterus ornatipinnis. Its genome contains 13 protein-coding genes, 22 tRNAs, two rRNAs and one major noncoding region. The genome''s structure and organization show that this is the most basal vertebrate that conforms to the consensus vertebrate mtDNA gene order. Bichir mitochondrial protein-coding and ribosomal RNA genes have greater sequence similarity to ray-finned fish than to either lamprey or lungfish. Phylogenetic analyses suggest the bichir''s placement as the most basal living member of the ray-finned fish and rule out its classification as a lobe-finned fish. Hence, its lobe-fins are probably not a shared-derived trait with those of lobe-finned fish (Sarcopterygii).  相似文献   

16.
We have characterized Tdr1, a family of Tc1-like transposable elements found in the genome of zebrafish (Danio rerio). The copy number and distribution of the sequence in the zebrafish genome have been determined, and by these criteria Tdr1 can be classified as a moderately repetitive, interspersed element. Examination of the sequences and structures of several copies of Tdr1 revealed that a particular deletion derivative, 1250 by long, of the transposon has been amplified to become the dominant form of Tdr1. The deletion in these elements encompasses sequences encoding the N-terminal portion of the putative Tdr1 transposase. Sequences corresponding to the deleted region were also detected, and thus allowed prediction of the nucleotide sequence of a hypothetical full-length element. Well conserved segments of Tc1-like transposons were found in the flanking regions of known fish genes, suggesting that these elements have a long evolutionary history in piscine genomes. Tdr1 elements have long, 208 by inverted repeats, with a short DNA motif repeated four times at the termini of the inverted repeats. Although different from that of the prototype C. elegans transposon Tc1, this inverted repeat structure is shared by transposable elements from salmonid fish species and two Drosophila species. We propose that these transposons form a subgroup within the Tc1-like family. Comparison of Tc1-like transposons supports the hypothesis that the transposase genes and their flanking sequences have been shaped by independent evolutionary constraints. Although Tc1-like sequences are present in the genomes of several strains of zebrafish and in salmonid fishes, these sequences are not conserved in the genus Danio, thus raising the possibility that these elements can be exploited for gene tagging and genome mapping.  相似文献   

17.
Two isoforms of ryanodine receptors are expressed in skeletal muscles, RyR1 and RyR3. We investigated the relative level of expression of RyRs in developing murine skeletal muscles using [3H]ryanodine binding and immunoprecipitation experiments. In the diaphragm RyR3 accounted for 11% of total RyRs in 5-day-old mice and for 3% of total RyRs in 60-day-old mice. In hindlimb muscles, RyR3 accounted for 3% and 1% of total RyRs in 5-day-old and adult mice, respectively. The activity of RyR1 channels in native microsomal vesicles from murine muscles was found to be as low as 35% of that measured after CHAPS exposure, while no inhibition was observed for RyR3. CHAPS sensitivity of recombinant RyR1 and RyR3 expressed in HEK293 cells was also investigated. The activity of recombinant RyR1 but not RyR3 channels was found to be inhibited in native conditions, suggesting that this property may not be dependent on a muscle environment.  相似文献   

18.
Cyclooxygenase is a key enzyme in prostanoid biosynthesis. Mammalian species have two cyclooxygenases, constitutively expressed cyclooxygenase-1 (Cox-1) and inducible cyclooxygenase-2 (Cox-2). Cox-1 and/or Cox-2 have been also identified in other vertebrates, including fish. We identified a second zebrafish Cox-2 gene orthologue, Cox-2b. All of the functionally important amino acids for cyclooxygenase enzymes are conserved in Cox-2b. The 3' untranslated region of the Cox-2b message contains AU rich elements characteristic of regulation at the level of mRNA stability. Constitutive tissue expression patterns for Cox-2a and Cox-2b are distinct, but overlap. Both Cox-2a and Cox-2b expression are inducible in the kidney when fish are exposed to tetradecanoylphorbol acetate. Like Cox-2a, Cox-2b protein, expressed in COS cells is functionally active. Thus, the zebrafish genome contains two functional, inducible Cox-2 genes. Database searching demonstrates that some fish genomes contain multiple Cox-1 or Cox-2 cyclooxygenase genes, suggesting alternate duplication and retention of this gene.  相似文献   

19.
20.
SUN基因是调控植物生长发育的关键基因。本研究鉴定了二倍体森林草莓(Fragaria vesca)的SUN基因家族,并对各成员的理化性质、基因结构、系统进化以及基因表达进行了分析。结果表明,森林草莓有31个FvSUN基因,其编码蛋白可聚类为7个组,同一组内成员具有高度相似的基因结构与编码蛋白保守域;FvSUNs蛋白的亚细胞定位主要在细胞核中。共线性分析表明森林草莓FvSUNs基因家族主要通过染色体片段复制产生,拟南芥与森林草莓存在23对直系同源基因。利用森林草莓的转录组数据,对FvSUNs基因的组织表达特征进行分析,发现主要可归为3类:各组织均表达、组织中几乎不表达、组织特异性表达,并通过实时荧光定量PCR (quantitative real-time polymerase chain reaction, qRT-PCR)进一步验证结果。此外,还对森林草莓进行不同的逆境胁迫处理,qRT-PCR分析了31个FvSUNs基因的表达情况,发现大部分基因均在不同程度上受低温、高盐或干旱胁迫的诱导表达。这些研究结果为深入揭示草莓SUN基因的生物学功能及其分子机制奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号