首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Thirteen dengue virus-specific, cytotoxic CD4+ CD8- T-cell clones were established from a donor who was infected with dengue virus type 3. These clones were examined for virus specificity and human leukocyte antigen (HLA) restriction in cytotoxic assays. Six patterns of virus specificities were determined. Two serotype-specific clones recognized only dengue virus type 3. Two dengue virus subcomplex-specific clones recognized dengue virus types 2, 3, and 4, and one subcomplex-specific clone recognized dengue virus types 1, 2, and 3. Four dengue virus serotype-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4. One flavivirus-cross-reactive clone recognized dengue virus types 1, 2, 3, and 4 and West Nile virus (WNV), but did not recognize yellow fever virus (YFV), whereas three flavivirus-cross-reactive clones recognized dengue virus types 1, 2, 3, and 4, WNV, and YFV. HLA restriction in the lysis by these T-cell clones was also heterogeneous. HLA-DP, HLA-DQ, and HLA-DR were used as restriction elements by various T-cell clones. We also examined the recognition of viral nonstructural protein NS3, purified from cells infected with dengue virus type 3 or WNV, by these T-cell clones. One serotype-specific clone, two dengue virus subcomplex-specific clones, and three dengue virus serotype-cross-reactive clones recognized NS3 of dengue virus type 3. One flavivirus-cross-reactive clone recognized NS3 of dengue virus type 3 and WNV. These results indicate that heterogeneous dengue virus-specific CD4+ cytotoxic T cells are stimulated in response to infection with a dengue virus and that a nonstructural protein, NS3, contains multiple dominant T-cell epitopes.  相似文献   

2.
Fcgamma receptor (FcgammaR)-mediated entry of infectious dengue virus immune complexes into monocytes/macrophages is hypothesized to be a key event in the pathogenesis of complicated dengue fever. FcgammaRIA (CD64) and FcgammaRIIA (CD32), which predominate on the surface of such dengue virus-permissive cells, were compared for their influence on the infectivity of dengue 2 virus immune complexes formed with human dengue virus antibodies. A signaling immunoreceptor tyrosine-based activation motif (ITAM) incorporated into the accessory gamma-chain subunit that associates with FcgammaRIA and constitutively in FcgammaRIIA is required for phagocytosis mediated by these receptors. To determine whether FcgammaRIA and FcgammaRIIA activation functions are also required for internalization of infectious dengue virus immune complexes, we generated native and signaling-incompetent versions of each receptor by site-directed mutagenesis of ITAM tyrosine residues. Plasmids designed to express these receptors were transfected into COS-7 cells, and dengue virus replication was measured by plaque assay and flow cytometry. We found that both receptors mediated enhanced dengue virus immune complex infectivity but that FcgammaRIIA appeared to do so far more effectively. Abrogation of FcgammaRIA signaling competency, either by expression without gamma-chain or by coexpression with gamma-chain mutants, was associated with significant impairment of phagocytosis and of dengue virus immune complex infectivity. Abrogation of FcgammaRIIA signaling competency was also associated with equally impaired phagocytosis but had no discernible effect on dengue virus immune complex infectivity. These findings point to fundamental differences between FcgammaRIA and FcgammaRIIA with respect to their immune-enhancing capabilities and suggest that different mechanisms of dengue virus immune complex internalization may operate between these FcgammaRs.  相似文献   

3.
U Kontny  I Kurane    F A Ennis 《Journal of virology》1988,62(11):3928-3933
It has been reported that anti-dengue antibodies at subneutralizing concentrations augment dengue virus infection of monocytic cells. This is due to the increased uptake of dengue virus in the form of virus-antibody complexes by cells via Fc gamma receptors. We analyzed the effects of recombinant human gamma interferon (rIFN-gamma) on dengue virus infection of human monocytic cells. U937 cells, a human monocytic cell line, were infected with dengue virus in the form of virus-antibody complexes after rIFN-gamma treatment. Pretreatment of U937 cells with rIFN-gamma resulted in a significant increase in the number of dengue virus-infected cells and in the yield of infectious virus. rIFN-gamma did not augment dengue virus infection when cells were infected with virus in the absence of anti-dengue antibodies. Gamma interferon (IFN-gamma) produced by peripheral blood lymphocytes from dengue-immune donors after in vitro stimulation with dengue antigens also augmented dengue virus infection of U937 cells. IFN-gamma did not augment dengue virus infections when cells were infected with virus in the presence of F(ab')2 prepared from anti-dengue immunoglobulin G. Human immunoglobulin inhibited IFN-gamma-induced augmentation. IFN-gamma increased the number of Fc gamma receptors on U937 cells. The increase in the percentage of dengue antigen-positive cells correlated with the increase in the number of Fc gamma receptors after rIFN-gamma treatment. These results indicate that IFN-gamma-induced augmentation of dengue virus infection is Fc gamma receptor mediated. Based on these results we conclude that IFN-gamma increases the number of Fc gamma receptors and that this leads to an augmented uptake of dengue virus in the form of dengue virus-antibody complexes, which results in augmented dengue virus infection.  相似文献   

4.
Serotype-cross-reactive dengue virus-specific cytotoxic T lymphocytes (CTL) induced during a primary dengue virus infection are thought to play a role in the immunopathogenesis of dengue hemorrhagic fever (DHF) during a secondary dengue virus infection. Although there is no animal model of DHF, we previously reported that murine dengue virus-specific CTL responses are qualitatively similar to human dengue virus-specific CTL responses. We used BALB/c mice to study the specificity of the CTL response to an immunodominant epitope on the dengue virus NS3 protein. We mapped the minimal H-2Kd-restricted CTL epitope to residues 298 to 306 of the dengue type 2 virus NS3 protein. In short-term T-cell lines and clones, the predominant CD8+ CTL to this epitope in mice immunized with dengue type 2 virus or vaccinia virus expressing the dengue type 4 virus NS3 protein were cross-reactive with dengue type 2 or type 4 virus, while broadly serotype-cross-reactive CTL were a minority population. In dengue type 3 virus-immunized mice, the predominant CTL response to this epitope was broadly serotype cross-reactive. All of the dengue virus-specific CTL clones studied also recognized the homologous NS3 sequences of one or more closely related flaviviruses, such as Kunjin virus. The critical contact residues for the CTL clones with different specificities were mapped with peptides having single amino acid substitutions. These data demonstrate that primary dengue virus infection induces a complex population of flavivirus-cross-reactive NS3-specific CTL clones in mice and suggest that CTL responses are influenced by the viral serotype. These findings suggest an additional mechanism by which the order of sequential flavivirus infections may influence disease manifestations.  相似文献   

5.
Severe dengue virus infections usually occur in individuals who have preexisting anti-dengue virus antibodies. Mast cells are known to play an important role in host defense against several pathogens, but their role in viral infection has not yet been elucidated. The effects of dengue virus infection on the production of chemokines by human mast cells were examined. Elevated levels of secreted RANTES, MIP-1alpha, and MIP-1beta, but not IL-8 or ENA-78, were observed following infection of KU812 or HMC-1 human mast cell-basophil lines. In some cases a >200-fold increase in RANTES production was observed. Cord blood-derived cultured human mast cells treated with dengue virus in the presence of subneutralizing concentrations of dengue virus-specific antibody also demonstrated significantly (P < 0.05) increased RANTES production, under conditions which did not induce significant degranulation. Chemokine responses were not observed when mast cells were treated with UV-inactivated dengue virus in the presence or absence of human dengue virus-specific antibody. Neither antibody-enhanced dengue virus infection of the highly permissive U937 monocytic cell line nor adenovirus infection of mast cells induced a RANTES, MIP-1alpha, or MIP-1beta response, demonstrating a selective mast cell response to dengue virus. These results suggest a role for mast cells in the initiation of chemokine-dependent host responses to dengue virus infection.  相似文献   

6.
观察登革 2型PrM基因的pSFV重组甲病毒抗该型病毒的作用 ,进一步探讨登革 2型PrM基因的这种重组病毒对其它 3个血清型登革病毒复制的阻断作用 .采用体外转录和电穿孔 ,分别将构建的含正、反义PrM基因的重组质粒DNA和辅助载体DNA转录成RNA ,然后将这两种RNA共转染BHK细胞 ,进而包装成重组病毒颗粒 .再将激活的重组病毒感染细胞 ,分别用不同型病毒进行攻击 .然后通过免疫荧光法 ,观察对登革病毒复制的阻断作用 .结果表明 ,含登革 2型PrM基因的重组病毒不仅可阻断登革 2型病毒的复制 ,同样具有抑制其他 3个型病毒复制的能力 ,且抗登革 1、4型病毒的复制作用强于抗登革 3型病毒的作用 .用 10 3 TCID50 剂量的登革病毒攻击 ,含反义PrM基因的重组病毒可完全阻断登革 1、3、4型病毒的复制 .但含正义PrM基因的重组病毒对登革 3型病毒的复制不能完全阻断 .为探讨登革病毒防治新途径奠定了基础  相似文献   

7.
Adult Aedes aegypti mosquitoes were collected in Puerto Triunfo, central Colombia, where dengue is endemic, during a six month period. Viral infection within the head of each individual mosquito was identified by an immunofluorescent assay (IFA) using a flavivirus-specific monoclonal antibody. The dengue virus serotype, present in each flavivirus-positive specimen, was then determined in portions of the remaining thorax using IFAs with serotype-specific monoclonal antibodies. Among 2065 female Aedes aegypti collected and tested, twenty-four flavivirus-positive individuals were found (minimum infection rate 11.6%), three identified as dengue type-1 and twenty-one as dengue type-2 virus. This was consistent with the isolation of only these two serotypes of dengue virus from dengue fever patients within this town. No vertical transmission of dengue virus could be detected in 1552 male Aedes aegypti collected. This method is inexpensive, simple, rapid to perform and suitable for use in developing countries to identify and distinguish different serotypes of dengue virus in their vectors during eco-epidemiological investigations.  相似文献   

8.
We analyzed the CD4+ T-lymphocyte responses to dengue, West Nile, and yellow fever viruses 4 months after immunization of a volunteer with an experimental live-attenuated dengue virus type 1 vaccine (DEN-1 45AZ5). We examined bulk culture proliferation to noninfectious antigens, determined the precursor frequency of specific CD4+ T cells by limiting dilution, and established and analyzed CD4+ T-cell clones. Bulk culture proliferation was predominantly dengue virus type 1 specific with a lesser degree of cross-reactive responses to other dengue virus serotypes, West Nile virus, and yellow fever virus. Precursor frequency determination by limiting dilution in the presence of noninfectious dengue virus antigens revealed a frequency of antigen-reactive cells of 1 in 1,686 peripheral blood mononuclear cells (PBMC) for dengue virus type 1, 1 in 9,870 PBMC for dengue virus type 3, 1 in 14,053 PBMC for dengue virus type 2, and 1 in 17,690 PBMC for dengue virus type 4. Seventeen CD4+ T-cell clones were then established by using infectious dengue virus type 1 as antigen. Two patterns of dengue virus specificity were found in these clones. Thirteen clones were dengue virus type 1 specific, and four clones recognized both dengue virus types 1 and 3. Analysis of human leukocyte antigen (HLA) restriction revealed that five clones are HLA-DRw52 restricted, one clone is HLA-DP3 restricted, and one clone is HLA-DP4 restricted. These results indicate that in this individual, the CD4+ T-lymphocyte responses to immunization with live-attenuated dengue virus type 1 vaccine are predominantly serotype specific and suggest that a multivalent vaccine may be necessary to elicit strong serotype-cross-reactive CD4+ T-lymphocyte responses in such individuals.  相似文献   

9.
Thepparit C  Smith DR 《Journal of virology》2004,78(22):12647-12656
Dengue virus, the causative agent of dengue fever, dengue shock syndrome, and dengue hemorrhagic fever, infects susceptible cells by initially binding to a receptor(s) located on the host cell surface. Evidence to date suggests that receptor usage may be cell and serotype specific, and this study sought to identify dengue virus serotype 1 binding proteins on the surface of liver cells, a known target organ. By using a virus overlay protein binding assay (VOPBA), in both nondenaturing and denaturing gel systems, a putative dengue virus serotype 1 binding protein of approximately 37 kDa expressed on the surface of liver (HepG2) cells was identified. Mass spectrometry analysis identified a candidate protein, the 37/67-kDa high-affinity laminin receptor. Entry of the dengue virus serotype 1 was significantly inhibited in a dose-dependent manner by both antibodies directed against the 37/67-kDa high-affinity laminin receptor and soluble laminin. No inhibition of virus entry was seen with dengue virus serotypes 2, 3, or 4, demonstrating that the 37/67-kDa high-affinity laminin receptor is a serotype-specific receptor for dengue virus entry into liver cells.  相似文献   

10.
Two yellow fever virus (YFV)/dengue virus chimeras which encode the prM and E proteins of either dengue virus serotype 2 (dengue-2 virus) or dengue-4 virus within the genome of the YFV 17D strain (YF5.2iv infectious clone) were constructed and characterized for their properties in cell culture and as experimental vaccines in mice. The prM and E proteins appeared to be properly processed and glycosylated, and in plaque reduction neutralization tests and other assays of antigenic specificity, the E proteins exhibited profiles which resembled those of the homologous dengue virus serotypes. Both chimeric viruses replicated in cell lines of vertebrate and mosquito origin to levels comparable to those of homologous dengue viruses but less efficiently than the YF5.2iv parent. YFV/dengue-4 virus, but not YFV/dengue-2 virus, was neurovirulent for 3-week-old mice by intracerebral inoculation; however, both viruses were attenuated when administered by the intraperitoneal route in mice of that age. Single-dose inoculation of either chimeric virus at a dose of 10(5) PFU by the intraperitoneal route induced detectable levels of neutralizing antibodies against the homologous dengue virus strains. Mice which had been immunized in this manner were fully protected from challenge with homologous neurovirulent dengue viruses by intracerebral inoculation compared to unimmunized mice. Protection was associated with significant increases in geometric mean titers of neutralizing antibody compared to those for unimmunized mice. These data indicate that YFV/dengue virus chimeras elicit antibodies which represent protective memory responses in the mouse model of dengue encephalitis. The levels of neurovirulence and immunogenicity of the chimeric viruses in mice correlate with the degree of adaptation of the dengue virus strain to mice. This study supports ongoing investigations concerning the use of this technology for development of a live attenuated viral vaccine against dengue viruses.  相似文献   

11.
观察含我国登革 2型病毒株 (D2 4 3)的PrM E基因的复制型SFV(semlikiforestvirus)重组质粒DNA的免疫原性 ,为登革新型疫苗的研制提供依据 .将PrM E基因自T载体上切下 ,插入复制型SFV病毒载体质粒DNA中 .将此重组质粒DNA以电穿孔法导入BHK2 1细胞 ,用间接免疫荧光法在感染细胞内可检测到登革 2型病毒特异蛋白的表达 .采用去除内毒素的质粒提取试剂盒制备重组质粒DNA ,然后以不同剂量通过肌肉多点注射途径免疫Balb c鼠 ,获得的鼠血清可与登革D2 4 3感染的C6 36抗原片起特异的抗原抗体反应 .结果表明 ,含登革 2型病毒PrM E基因的复制型SFV病毒载体质粒DNA在Balb c鼠中可诱导登革 2型病毒特异抗体的产生 ,但抗体水平较低 .  相似文献   

12.
采用间接免疫荧光方法 ,检测患者血清标本中的抗登革病毒IgM和IgG抗体 ;同时将病人急性期血清接种C6 36细胞进行病毒分离。从分离的病毒悬液中提取RNA ,进行RT PCR扩增和序列测定。结果显示 ,该患者血清中存在抗登革病毒的IgM和IgG抗体。从病人血清中分离的病毒 ,经RT PCR和序列测定证实为登革 2型和 3型病毒的特异序列。表明该患者为登革 2型和 3型病毒混合感染  相似文献   

13.
Dengue virus causes leakage of the vascular endothelium, resulting in dengue hemorrhagic fever and dengue shock syndrome. The endothelial cell lining of the vasculature regulates capillary permeability and is altered by immune and chemokine responses which affect fluid barrier functions of the endothelium. Our findings indicate that human endothelial cells are highly susceptible to infection by dengue virus (type 4). We found that dengue virus productively infects ~80% of primary human endothelial cells, resulting in the rapid release of ~10(5) virions 1 day postinfection. Analysis of potential inhibitors of dengue virus entry demonstrated that antibodies and ligands to integrins and cellular receptors were unable to inhibit dengue virus infection of endothelial cells. In contrast, pretreating cells with heparin or heparan sulfate resulted in a 60 to 80% reduction in dengue virus-infected cells, and pretreatment of endothelial cells with heparinase III or protease reduced dengue infectivity by >80%. Dengue virus bound specifically to resin immobilized heparin, and binding was competitively inhibited by excess heparin but not other ligands. Collectively, these findings suggest that dengue virus specifically attaches to heparan sulfate-containing proteoglycan receptors on endothelial cells. Following attachment to human endothelial cell receptors, dengue virus causes a highly productive infection that has the potential to increase viral dissemination and viremia. This provides the potential for dengue virus-infected endothelial cells to directly alter barrier functions of the endothelium, contribute to enhancement of immune cell activation, and serve as potential targets of immune responses which play a central role in dengue pathogenesis.  相似文献   

14.
A L Rothman  I Kurane    F A Ennis 《Journal of virology》1996,70(10):6540-6546
The target epitopes, serotype specificity, and cytolytic function of dengue virus-specific T cells may influence their theoretical roles in protection against secondary infection as well as the immunopathogenesis of dengue hemorrhagic fever. To study these factors in an experimental system, we isolated dengue virus-specific CD4+ and CD8+ T-cell clones from dengue-2 virus-immunized BALB/c mice. The T-cell response to dengue virus in this mouse strain was heterogeneous; we identified at least five different CD4+ phenotypes and six different CD8+ phenotypes. Individual T-cell clones recognized epitopes on the dengue virus pre-M, E, NSl/NS2A, and NS3 proteins and were restricted by the I-Ad, I-Ed, Ld, and Kd antigens. Both serotype-specific and serotype-cross-reactive clones were isolated in the CD4+ and CD8+ subsets; among CD8+ clones, those that recognized the dengue virus structural proteins were serotype specific whereas those that recognized the nonstructural proteins were serotype cross-reactive. All of the CD8+ and one of five CD4+ clones lysed dengue virus-infected target cells. Using synthetic peptides, we identified an Ld-restricted epitope on the E protein (residues 331 to 339, SPCKIPFEI) and a Kd-restricted epitope on the NS3 protein (residues 296 to 310, ARGYISTRVEM GEAA). These data parallel previous findings of studies using human dengue virus-specific T-cell clones. This experimental mouse system may be useful for studying the role of the virus serotype and HLA haplotype on T-cell responses after primary dengue virus infection.  相似文献   

15.
登革病毒流行株的分离鉴定及其毒力位点变异研究   总被引:3,自引:0,他引:3  
目的:从登革热患者血清中分离登革病毒,鉴定流行株的血清型及其毒力。对其中两分离株E基因进行序列测定,分析其可能的毒力位点变异。方法:采集临床诊断为登革热患者急性期血清91份,接种于C6/36细胞分离病毒,应用间接免疫荧光法鉴定及分型。并通过乳鼠脑内接种和空斑试验,测定分离株的毒力。扩增2株分离株E基因,克隆到pGEM-T载体进行序列测定,分析变异位点。结果:在91份血清中经2~3次传代分离出8株病毒,鉴定为登革1型病毒。在E蛋白影响毒力的3个区段中,两分离株有3处存在变异。结论:推测此次广州地区流行登革热可能由DEN 1型病毒感染引起,流行株的毒力较弱。毒力减弱可能和其基因位点变异有关。  相似文献   

16.
The envelope protein of dengue virus is involved in host cell attachment for entry and induction of protective immunity. Current efforts are focused on producing a tetravalent vaccine by mixing four monovalent vaccine components. In this work, we developed a genetic vaccine based on a novel adeno-associated viral (AAV) vector expressing the carboxy-terminal truncated envelope protein (79E) of dengue virus. The expression of the recombinant 79E protein in HEK 293 cells was confirmed by Western blot. Vectors packaged with novel AAV capsids (AAV2/8 or AAV2/rh32.33) were injected into C57BL/6 mice intramuscularly. Dengue virus antigen was produced in the mice and induced long-lasting antibody responses against the dengue virus still detectable 20 weeks after immunization. AAV2/8 vaccine induced higher anti-dengue virus antibody levels than AAV2/rh32.33 vaccine or AAV plasmid. Furthermore, the anti-dengue antibodies could neutralize homogeneous dengue virus. These results demonstrated that the AAV vaccines possessed appropriate immunogenicity and could be used for the development of an effective dengue vaccine.  相似文献   

17.

Background

Dengue has emerged as one of the most important infectious diseases in the last five decades. Evidence indicates the expansion of dengue virus endemic areas and consequently the exponential increase of dengue virus infections across the subtropics. The clinical manifestations of dengue virus infection include sudden fever, rash, headache, myalgia and in more serious cases, spontaneous bleeding. These manifestations occur in children as well as in adults. Defining the epidemiology of dengue in a given area is critical to understanding the disease and devising effective public health strategies.

Methodology/Principal Findings

Here, we report the results from a prospective cohort study of 4380 adults in West Java, Indonesia, from 2000–2004 and 2006–2009. A total of 2167 febrile episodes were documented and dengue virus infections were confirmed by RT-PCR or serology in 268 cases (12.4%). The proportion ranged from 7.6 to 41.8% each year. The overall incidence rate of symptomatic dengue virus infections was 17.3 cases/1,000 person years and between September 2006 and April 2008 asymptomatic infections were 2.6 times more frequent than symptomatic infections. According to the 1997 WHO classification guidelines, there were 210 dengue fever cases, 53 dengue hemorrhagic fever cases (including one dengue shock syndrome case) and five unclassified cases. Evidence for sequential dengue virus infections was seen in six subjects. All four dengue virus serotypes circulated most years. Inapparent dengue virus infections were predominantly associated with DENV-4 infections.

Conclusions/Significance

Dengue virus was responsible for a significant percentage of febrile illnesses in an adult population in West Java, Indonesia, and this percentage varied from year to year. The observed incidence rate during the study period was 43 times higher than the reported national or provincial rates during the same time period. A wide range of clinical severity was observed with most infections resulting in asymptomatic disease. The circulation of all four serotypes of dengue virus was observed in most years of the study.  相似文献   

18.

Background

Co-circulation of multiple dengue virus serotypes has been reported from many parts of the world including India, however concurrent infection with more than one serotype of dengue viruses in the same individual is rarely documented. An outbreak of dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS) occurred in and around Delhi in 2006. This is the first report from India with high percentage of concurrent infections with different dengue virus serotypes circulating during one outbreak.

Results

Acute phase sera from patients were tested for the presence of dengue virus RNA by RT-PCR assay. Of the 69 samples tested for dengue virus RNA, 48 (69.5%) were found to be positive. All the four dengue virus serotypes were found to be co-circulating in this outbreak with DENV-3 being the predominant serotype. In addition in 9 of 48 (19%) dengue virus positive samples, concurrent infection with more than one dengue virus serotype were identified.

Conclusion

This is the first report in which concurrent infections with different dengue virus serotypes is being reported during an outbreak from India. Delhi is now truly hyperendemic for dengue.  相似文献   

19.
Hemorrhage is a severe manifestation of dengue disease. Virus strain and host immune response have been implicated as the risk factors for hemorrhage development. To delineate the complex interplay between the virus and the host, we established a dengue hemorrhage model in immune-competent mice. Mice inoculated intradermally with dengue virus develop hemorrhage within 3 days. In the present study, we showed by the presence of NS1 antigen and viral nuclei acid that dengue virus actively infects the endothelium at 12 h and 24 h after inoculation. Temporal studies showed that beginning at day 2, there was macrophage infiltration into the vicinity of the endothelium, increased tumor necrosis factor alpha (TNF-alpha) production, and endothelial cell apoptosis in the tissues. In the meantime, endothelial cells in the hemorrhage tissues expressed inducible nitric oxide synthase (iNOS) and nitrotyrosine. In vitro studies showed that primary mouse and human endothelial cells were productively infected by dengue virus. Infection by dengue virus induced endothelial cell production of reactive nitrogen and oxygen species and apoptotic cell death, which was greatly enhanced by TNF-alpha. N(G)-nitro-L-arginine methyl ester and N-acetyl cysteine reversed the effects of dengue virus and TNF-alpha on endothelial cells. Importantly, hemorrhage development and the severity of hemorrhage were greatly reduced in mice lacking iNOS or p47(phox) or treatment with oxidase inhibitor, pointing to the critical roles of reactive nitrogen and oxygen species in dengue hemorrhage.  相似文献   

20.
Aedes albopictus as well as Aedes aegypti is an important vector of chikungunya and dengue viruses. Electron microscopic observations on the salivary glands of Ae. albopictus infected with chikungunya virus were performed in comparing with those of Ae. aegypti infected with dengue virus. No virus budding from the cell surface of the chikungunya-infected mosquito's salivary glands was found as shown in dengue-infected ones, in contrast to the findings of the mammalian cells such as Vero, KB, IMR, J-111 and BHK-21 cells infected with chikungunya and/or dengue virus(es).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号