首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Respiration cycles through three distinct phases (inspiration, postinspiration, and expiration) each having corresponding medullary cells that are excited during one phase and inhibited during the other two. Laryngeal stimulation is known to induce apnea in newborn animals, but the cellular mechanisms underlying this effect are not known. Intracellular recording of ventral respiratory group neurons was accomplished in intact anesthetized, paralyzed, and mechanically ventilated piglets. Apnea was induced by insufflation of the larynx with ammonia-saturated air, smoke, or water. Laryngeal insufflation induced phrenic nerve apnea, stimulation of postinspiratory neurons, and stable membrane potentials in inspiratory and expiratory cells consistent with postinspiratory inhibition. Usually the membrane potential of each neuronal type cycled through an expiratory level before onset of the first recovery breath. Variants of the apnea response, probably reflecting the aspiration reflex or sniffing, sneezing, coughing, and swallowing, were also observed. These latter patterns showed oscillation between inspiration and postinspiration without an apparent intervening stage II expiratory phase. However, stage II expiratory activity always preceded onset of the first ramp inspiration after such a pattern. These findings suggest that activation of postinspiratory mechanisms causes profound alterations in the respiratory pattern and that stage II expiration importantly modulates recovery of ramp inspiratory activity. The mechanism of this latter effect may be inhibition of early inspiratory neurons with consequent postinhibitory rebound.  相似文献   

2.
Efferent activity was investigated in the phrenic nerve during startle reflex manifesting as somatic nerve discharges (lower intercostal nerves and the nerve endings) in chloralose anesthetized cats. Inhibition (usually of short duration, lasting 23–36 msec) of inspiration activity was found to be the main component of response in the phrenic nerve in the shaping of "low threshold" startle reflex produced by acoustic and tactile stimuli and stimulation of low threshold peripheral afferents. Reflex discharge prevailed amongst the response patterns produced in the phrenic nerve by stimulating high threshold afferents, i.e., early (propriospinal) and late (suprasegmental, arising from stimulating intercostal nerve) or late only (when stimulating the hindlimb nerves). Two patterns of late response could be distinguished, one on inspiration (found in roughly 3 out of 4 experiments) and other on exhalation — the respiratory homologs of somatic startle reflex. Response pattern is described throughout the respiratory cycle. Structure and respiratory modulation of reflex responses produced in the phrenic nerve by stimulating bulbar respiratory structure are also examined. Possible neurophysiological mechanisms underlying phrenic response during the shaping of startle reflex are discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 19, No. 4, pp. 473–482, July–August, 1987.  相似文献   

3.
The effect of stimulation of afferent mesenteric nerves on tidal volume (VT), phrenic nerve, and external intercostal muscle activities was studied in anesthetized spontaneously breathing cats. Both mechanical distension of the small intestine and electrical stimulation of the mesenteric nerves resulted in an initial inspiratory inhibition of VT followed by a gradual recovery above the prestimulus controls. Changes in VT were accompanied by a depression of phrenic nerve activity and an excitation of external intercostal muscle activity. During the recovery phase of VT, the amplitude of phrenic nerve activity returned only partially, whereas the activity of the external intercostal muscle was greater than the prestimulus controls. In a second group of experiments, brief tetanic stimulation at the beginning of inspiration led to a complete and maintained inhibition of phrenic nerve activity but with a simultaneous excitation of external intercostal muscle activity and without any change in VT; whereas expiratory stimulation caused a decrease in expiratory abdominal muscle activity, without changing the peak amplitude of phrenic nerve activity. The respiratory changes observed with distension of the small intestine were abolished after denervation of the mesenteric plexus. It is concluded that activation of the visceral afferents of the mesenteric region reflexly changes diaphragmatic breathing to intercostal breathing. It is assumed that such a type of breathing pattern may occur in pregnancy and in pathophysiological situations involving splanchnic viscera.  相似文献   

4.
Electrical stimulation of low threshold splanchnic afferent nerves in lightly anesthetized cat results in phrenic and recurrent laryngeal nerve responses. Both phrenic and recurrent laryngeal inspiratory nerve activities are inhibited, whereas expiratory recurrent nerve activity is triggered and even increased. The significance of this reflex is discussed in relation to laryngeal adductor muscle contractions and the abdominal pressure increase.  相似文献   

5.
To demonstrate the most satisfactory way of using electrical activities of respiratory nerves and muscles, activities of phrenic nerve and external intercostal muscle (ICM) and the airway pressure changes generated by respiratory muscle contraction were recorded in anesthetized cats during complete airway occlusion. Electrical activities were rectified, integrated and processed in terms of peak and average inspiratory rates per 0.1 s and of total activity per breath. Peak rate of phrenic nerve activity exhibited a high linear correlation (r = 0.974) with peak inspiratory pressure. Average phrenic rate showed a similar high correlation (r = 0.973). Peak rate of external ICM was linearly related to peak pressure but the correlation was less good (r = 0.915). Total phrenic activity per breath was too dependent upon inspiratory duration to be a satisfactory correlate (r = 0.674). In this experiment occlusion pressure was an index of muscle force generation and respiratory control system output. It is concluded that peak or average rates of phrenic activity provide an electrical index of output changes. On theoretical grounds, peak rate is probably better.  相似文献   

6.
Brain stem respiratory neuron activity in the cat was studied in relation to efferent outflow (phrenic discharge) under the influence of several forcing inputs: 1) CO2 tension: hypocapnia produces disappearance of firing in some neurons, and conversion of respiratory-modulated to continuous (tonic) firing in others. 2) Lung inflation: during the Bruer-Hering reflex, some neurons have "classical" responses and others have "paradoxical" responses (i.e., opposite in direction to peripheral discharge). 3) Electrical stimulation: stimulus trains to the pneumotaxic center region (rostral lateral pons) produce phase-switching, whose threshold is: a) sharp (indicating action of positive-feedback mechanisms), and b) dependent on timing of stimulus delivery (indicating continuous excitability changes during each respiratory phase). Auto- and crosscorrelation analysis revealed the existence of short-term interactions between: a) medullary inspiratory (I) neurons and phrenic motoneurons; b) pairs of medullary I neurons; c) medullary I neurons and expiratory (E) neurons. A model of the respiratory oscillator is presented, in which the processes of conversion of tonic to phasic activity and switching of the respiratory phases are explained by recurrent excitatory and inhibitory loops.  相似文献   

7.
满恒业  刘磊 《生理学报》1992,44(1):92-97
实验在45只麻醉、自主呼吸、断双侧颈迷走神经的家兔上进行。电刺激或微量注射L-谷氨酸钠于中缝隐核(Nucleus raphe obscurus,NRO),观察到:(1)长串电脉冲刺激NRO(50—200μA,波宽0.3ms,100Hz,4—6s),出现膈神经放电被抑制的反应,被抑制的程度与刺激强度、刺激频率间存在相关性。(2)吸气期用短串电脉冲(100—200μA,波宽0.3ms,50—100Hz,5—20个脉冲)刺激NRO,可提前终止膈神经放电,产生吸气切断效应。吸气切断时间具有刺激落位和刺激强度依赖性。(3)NRO内微量注射细胞体兴奋剂谷氨酸钠(1mol/L,1μl),注药期间出现膈神经放电抑制,注药后为吸气时程(Ti)缩短和呼气时程(Te)延长。  相似文献   

8.
We studied the influence of central and peripheral chemoreceptor stimulation on the activities of the phrenic and internal intercostal (iic) nerves in decerebrate, vagotomized, and paralyzed cats with bilateral pneumothoraces. Whole iic nerves of the rostral thorax (T2-T5) usually discharged during neural inspiration, whereas those of the caudal thorax (T7-T11) were primarily active during neural expiration. Filaments of rostral iic nerves that terminated in iic muscles generally discharged during expiration, suggesting that inspiratory activity recorded in whole iic nerves may have innervated other structures, possibly parasternal muscles. All nerves were phasically active at hyperoxic normocapnia and increased their activities systematically with hypercapnia. Isocapnic hypoxia or intra-arterial NaCN injection consistently increased phrenic and inspiratory iic nerve activities. In contrast, expiratory iic nerve discharges were either decreased (10 cats) or increased (7 cats) by hypoxia. Furthermore, expiratory responses to NaCN were highly variable and could not be predicted from the corresponding response to hypoxia. The results show that central and peripheral chemoreceptor stimulation can affect inspiratory and expiratory motoneuron activities differentially. The variable effects of hypoxia on expiratory iic nerve activity may reflect a relatively weak influence of carotid body afferents on expiratory bulbospinal neurons. However, the possibility that the magnitude of expiratory motoneuron activity is influenced by the intensity of the preceding centrally generated inspiratory discharge is also discussed.  相似文献   

9.
张有青  满恒业 《生理学报》1991,43(6):594-599
实验用兔,在乌拉坦静脉麻醉、切断双侧颈迷走神经、自主呼吸条件下进行,以膈神经放电作呼吸指标。观察了面神经核腹内侧区(VMNF)微量注射三种递质对呼吸节律的影响。结果如下:(1)VMNF 区微量注射肾上腺素呼吸频率增加,膈神经吸气性放电的递增速度加快,积分幅度升高,VMNF 区微量注射妥拉苏林,呼吸频率下降且妥拉苏林可阻断肾上腺素的呼吸效应。(2)VMNF 区微量注射γ-氨基丁酸、甘氨酸导致呼吸频率下降,吸气时程、呼气时程延长。提示肾上腺素、γ-氨基丁酸、甘氨酸可能作为递质作用于 VMNF 区的神经元而发挥呼吸调节作用。  相似文献   

10.
Central inspiratory influence on abdominal expiratory nerve activity   总被引:1,自引:0,他引:1  
Our purpose was to determine whether the intensity of abdominal expiratory nerve discharge is conditioned by the intensity of the preceding inspiratory phrenic discharge, independent of mechanical and chemical afferent influences. In decerebrate, paralyzed, vagotomized cats with bilateral pneumothoraxes, we recorded phrenic and abdominal (cranial iliohypogastric nerve, L1) nerve activities at hyperoxic normocapnia. We reduced the duration and intensity (i.e., integrated peak height) of phrenic nerve discharge for single cycles by stimulating the cut central end of the superior laryngeal nerve (SLN) during the central inspiratory phase (75 microA, 20-50 Hz, 0.2-ms pulse). Premature termination of inspiration consistently reduced expiratory duration (TE) and abdominal expiratory nerve activity (area of integrated neurogram), but the average reduction in TE was much less than the reduction in abdominal nerve activity (14 vs. 51%). Stimulation of the cut central end of the vagus nerve yielded similar results, as did spontaneous premature terminations of inspiration, which we observed in one cat. SLN stimulation during hyperoxic hypercapnia resulted in more variable responses, and higher stimulation frequencies were usually required to abort inspiration. SLN (or vagal) stimulation during expiration consistently increased abdominal expiratory nerve activity. We speculate that this facilitatory response is gated during inspiration, thereby allowing the inspiratory conditioning effect on the subsequent expiration to be expressed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Inspiratory rhythm in airway smooth muscle tone   总被引:2,自引:0,他引:2  
In anesthetized paralyzed open-chested cats ventilated with low tidal volumes at high frequency, we recorded phrenic nerve activity, transpulmonary pressure (TPP), and either the tension in an upper tracheal segment or the impulse activity in a pulmonary branch of the vagus nerve. The TPP and upper tracheal segment tension fluctuated with respiration, with peak pressure and tension paralleling phrenic nerve activity. Increased end-tidal CO2 or stimulation of the carotid chemoreceptors with sodium cyanide increased both TPP and tracheal segment tension during the increased activity of the phrenic nerve. Lowering end-tidal CO2 or hyperinflating the lungs to achieve neural apnea (lack of phrenic activity) caused a decrease in TPP and tracheal segment tension and abolished the inspiratory fluctuations. During neural apnea produced by lowering end-tidal CO2, lung inflation caused no further decrease in tracheal segment tension and TPP. Likewise, stimulation of the cervical sympathetics, which caused a reduction in TPP and tracheal segment tension during normal breathing, caused no further reduction in these parameters when the stimulation occurred during neural apnea. During neural apnea the tracheal segment tension and TPP were the same as those following the transection of the vagi or the administration of atropine (0.5 mg/kg). Numerous fibers in the pulmonary branch of the vagus nerve fired in synchrony with the phrenic nerve. Only these fibers had activity which paralleled changes in TPP and tracheal tension. We propose that the major excitatory input to airway smooth muscle arises from cholinergic nerves that fire during inspiration, which have preganglionic cell bodies in the ventral respiratory group in the region of the nucleus ambiguus and are driven by the same pattern generators that drive the phrenic and inspiratory intercostal motoneurons.  相似文献   

12.
In cats anesthetized with chloralose-urethan, vagotomized, paralyzed, and artifically ventilated, superficial radial (cutaneous) and hamstring (muscle) nerve afferents were stimulated while phrenic nerve electrical activity was recorded. The results obtained with both types of nerves were similar. Stimulation in mid and late expiration advanced the onset of the next inspiration, shortening its duration. Stimulation in early inspiration advanced, while that in late inspiration delayed, the onset of the next expiration. These effects were often accompanied by changes in phrenic motoneuron firing patterns (earlier recruitment, increased discharge frequency, increased slope of integrated phrenic neurogram). Repetitive somatic afferent stimulation produced sustained increases in respiratory frequency in all cats and in half of them entrainment of respiratory frequency to the frequency of stimulation occurred at ratios such as 4:3, 4:5, 1:2, 1:3, 1:4, and 1:7. The lowest stimulus intensity required for evoking these phase shifts was between 5 and 10T (threshold of most excitable fibers) for muscle afferents and between 1 and 2T for cutaneous afferents. These results demonstrate the existence of a reflex mechanism capable of locking respiratory frequency to that of a periodic somatic afferent input. They also provide an experimental basis for the hypothesis that reflexes are resposible for the observed locking between step or pedal frequency and respiratory rate during exercise in man.  相似文献   

13.
Stimulation of the superior laryngeal nerve (SLN) results in apnea in animals of different species, the mechanism of which is not known. We studied the effect of the GABA(A) receptor blocker bicuculline, given intravenously and intracisternally, on apnea induced by SLN stimulation. Eighteen 5- to 10-day-old piglets were studied: bicuculline was administered intravenously to nine animals and intracisternally to nine animals. The animals were anesthetized and then decerebrated, vagotomized, ventilated, and paralyzed. The phrenic nerve responses to four levels of electrical SLN stimulation were measured before and after bicuculline. SLN stimulation caused a significant decrease in phrenic nerve amplitude, phrenic nerve frequency, minute phrenic activity, and inspiratory time (P < 0.01) that was proportional to the level of electrical stimulation. Increased levels of stimulation were more likely to induce apnea during stimulation that often persisted beyond cessation of the stimulus. Bicuculline, administered intravenously or intracisternally, decreased the SLN stimulation-induced decrease in phrenic nerve amplitude, minute phrenic activity, and phrenic nerve frequency (P < 0.05). Bicuculline also reduced SLN-induced apnea and duration of poststimulation apnea (P < 0.05). We conclude that centrally mediated GABAergic pathways are involved in laryngeal stimulation-induced apnea.  相似文献   

14.
延髓腹外侧Boetzinger复合体呼吸时相转换效应的研究   总被引:1,自引:0,他引:1  
Li Q  Lü M  Song G  Zhang H  Liu L 《生理学报》1999,51(1):96-100
The effects of electrical stimulation of B?tzinger complex (Bot.C) on respiratory rhythm were investigated in 40 urethane anesthetized adult rabbits. The results were as follows. (1) A short train stimulation delivered in the early inspiratory phase produced a transient inhibition of phrenic discharge. The stimulus, when delivered in the mid or late inspiratory phase, could cause a premature termination of the inspiratory phase ("inspiratory off-switch") and a switching to the expiratory phase, which was accompanied with the reduced duration of the consecutive expiratory phase. There was a negative linear correlation between the threshold intensity of inspiratory off-switching and delivery time of stimulation. (2) A short train stimulation delivery in the expiratory phase elicited a transient phrenic discharge. The discharge in the late expiratory phase was followed by a premature onset inspiration. This effect was also dependent on the strength and delivery time of the stimulus. The results suggest that the Bot.C is involved in the central control of respiratory phase-switching.  相似文献   

15.
本文在30只全麻、制动、断双侧迷走神经的家兔上,记录一侧膈神经放电,观察了电刺激脑干中缝背核(Nucleus Raphe Dorsalis,NRD)所诱发出的呼吸效应。1.施以6—10s 长串电脉冲刺激(波宽0.3ms,频率100Hz,波幅4—6V),诱发出了强的呼吸易化效应,使呼吸加深加快。2.吸气相给予0.4s 短串电脉冲刺激可以明显的延长吸气相,用0.15mA 强度刺激,落位在吸气相的2/3时效应最明显。3.呼气相短串电脉串刺激可规律地使呼气时程缩短,促进呼气向吸气的位相转换,诱发此效应出现的强度阈值在呼气相中逐渐降低。  相似文献   

16.
To investigate the influence of inspiratory lung inflation on the respiratory activities of laryngeal motor nerves, vagally intact decerebrate paralyzed cats were ventilated by a servorespirator in accordance with their own phrenic nerve activity. Records were made of the activities of the phrenic nerve, the superior laryngeal nerve (SLN), the recurrent laryngeal nerve (RLN), and the intralaryngeal branches of the RLN serving the thyroarytenoid (TA) and posterior cricoarytenoid (PCA) muscles. Neural activities were assessed in the steady state at different end-tidal O2 and CO2 concentrations. Transient responses to withholding inspiratory lung inflation and to preventing expiratory lung emptying were also studied. Hypercapnia and hypoxia increased the inspiratory activities of the phrenic nerve, SLN, RLN, and its PCA branch. TA inspiratory activity was not changed. Expiratory activities of RLN, PCA, and TA were all increased in hypoxia. When lung inflation was withheld, neural inspiratory duration and the inspiratory activities of all nerves increased. The subsequent period of neural expiration was marked by an exaggerated burst of activity by the TA branch of the RLN. TA expiratory activity was also sharply increased after inspiratory efforts that were reflexly delayed by the prevention of lung emptying. TA activity in expiration was enhanced after vagotomy and was usually more prominent than when lung inflation was withheld before vagal section. The results demonstrate the importance and complexity of the influence of vagal afferents on laryngeal motor activity.  相似文献   

17.
The dependence of phrenic efferent discharge on vagal-volume feedback was examined in barbiturate-anesthetized, paralyzed cats ventilated by a phrenic-driven servo respirator. The characteristics of the respiratory were altered for a single breath, and the resulting change in phrenic activity was quantitated by comparison with phrenic activity without phasic volume feedback. The relation between volume feedback and phrenic inhibition was determined both when inspiratory termination occurred during the rising phase of phrenic discharge and during the plateau observed with barbiturate-induced apneusis. Inhibition of inspiratory activity occurred only when lung volume exceeded a time-dependent threshold. Above this threshold, andextending over a substantial volume range, volume feedback caused graded and reversible inhibition of phrenic discharge. The threshold for graded inhibition declined progressively during the inspiratory phase, showing no obvious relation to the level of inspiratory activity. At any particular time, the relation between volume and phrenic inhibition was convex to the volume axis, and the slope of the relationship increased with inspiratory time. The results indicate that a) volume feedback inhibits inspiration in a graded manner, b) partial inhibition of phrenic activity renders it more susceptible to additional inhibition, and c) inhibitory effectiveness of volume feedback increases with time.  相似文献   

18.
Mu-opioid receptor agonists depress tidal volume, decrease chest wall compliance, and increase upper airway resistance. In this study, potential neuronal sites and mechanisms responsible for the disturbances were investigated, dose-response relationships were established, and it was determined whether general anesthesia plays a role. Effects of micro-opioid agonists on membrane properties and discharges of respiratory bulbospinal, vagal, and propriobulbar neurons and phrenic nerve activity were measured in pentobarbital-anesthetized and unanesthetized decerebrate cats. In all types of respiratory neurons tested, threshold intravenous doses of the micro-opioid agonist fentanyl slowed discharge frequency and prolonged duration without altering peak discharge intensity. Larger doses postsynaptically depressed discharges of inspiratory bulbospinal and inspiratory propriobulbar neurons that might account for depression of tidal volume. Iontophoresis of the micro-opioid agonist DAMGO also depressed the intensity of inspiratory bulbospinal neuron discharges. Fentanyl given intravenously prolonged discharges leading to tonic firing of bulbospinal expiratory neurons in association with reduced hyperpolarizing synaptic drive potentials, perhaps explaining decreased inspiratory phase chest wall compliance. Lowest effective doses of fentanyl had similar effects on vagal postinspiratory (laryngeal adductor) motoneurons, whereas in vagal laryngeal abductor and pharyngeal constrictor motoneurons, depression of depolarizing synaptic drive potentials led to sparse, very-low-frequency discharges. Such effects on three types of vagal motoneurons might explain tonic vocal fold closure and pharyngeal obstruction of airflow. Measurements of membrane potential and input resistance suggest the effects on bulbospinal Aug-E neurons and vagal motoneurons are mediated presynaptically. Opioid effects on the respiratory neurons were similar in anesthetized and decerebrate preparations.  相似文献   

19.
We examined the effects of chemical and reflex drives on the postinspiratory inspiratory activity (PIIA) of phrenic motoneurons using a single-fiber technique. Action potentials from "single" fibers were recorded from the C5 phrenic root together with contralateral mass phrenic activity (also from C5) in anesthetized, paralyzed, and artificially ventilated cats with intact vagus and carotid sinus nerves. Nerve fibers were classified as "early" or "late" based on their onset of discharge in relation to mass phrenic activity during hyperoxic ventilation. Only the early fibers displayed PIIA but not the late fibers, even when their activity began earlier in inspiration with increased chemical drives. Isocapnic hypoxia increased, whereas hyperoxic hypercapnia shortened the duration of PIIA. Pulmonary stretch and "irritant" receptors inhibited PIIA. Hypercapnia and stimulation of peripheral chemoreceptors by lobeline excited both early and late units to the same extent, but hypoxic ventilation had a less marked excitatory effect on late fiber activity. Irritant receptor activation increased the activity of early more than late fibers. Hyperoxic hyperventilation eliminated late phrenic fiber activity, whereas early fibers became tonically active. Bilateral vagotomy abolished this sustained discharge in eight of nine early units, suggesting the importance of vagal afferents in producing tonic firing during hyperventilation. These results suggest that early and late phrenic fibers have different responses to chemical stimuli and to vagally mediated reflexes; late units do not discharge in postinspiratory period, whereas early fibers do; the PIIA is not affected in the same way by various chemical and vagal inputs; and early units that exhibit PIIA display tonic activity with hyperoxic hypocapnia.  相似文献   

20.
Studies were conducted to determine the effects of intercostal muscle spindle endings (MSEs) and tendon organs (TOs) on medullary inspiratory activity in decerebrate and allobarbital-anesthetized cats. Impeded muscle contractions, elicited by electrical stimulation of the peripheral cut end of the T6 ventral root, were used to stimulate external and internal intercostal TOs without MSEs. Impeded contractions of either the external or internal intercostal muscles reduced phrenic and medullary inspiratory neuronal activities. Vibration was used to selectively stimulate external or internal intercostal MSEs (90 and 40 micron amplitude, respectively). Selective stimulation of either external or internal intercostal MSEs did not change phrenic or medullary inspiratory neuronal activities. It is concluded that both external and internal intercostal TOs have a generalized inhibitory effect on medullary inspiratory activity and intercostal MSEs have no effect on medullary inspiratory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号