首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
All secreted proteins in Escherichia coli must be maintained in an export-competent state before translocation across the inner membrane. In the case of the Sec pathway, this function is carried out by the dedicated SecB chaperone and the general chaperones DnaK-DnaJ-GrpE and GroEL-GroES, whose job collectively is to render substrate proteins partially or entirely unfolded before engagement of the translocon. To determine whether these or other general molecular chaperones are similarly involved in the translocation of folded proteins through the twin-arginine translocation (Tat) system, we screened a collection of E. coli mutant strains for their ability to transport a green fluorescent protein (GFP) reporter through the Tat pathway. We found that the molecular chaperone DnaK was essential for cytoplasmic stability of GFP bearing an N-terminal Tat signal peptide, as well as for numerous other recombinantly expressed endogenous and heterologous Tat substrates. Interestingly, the stability conferred by DnaK did not require a fully functional Tat signal as substrates bearing translocation defective twin lysine substitutions in the consensus Tat motif were equally unstable in the absence of DnaK. These findings were corroborated by crosslinking experiments that revealed an in vivo association between DnaK and a truncated version of the Tat substrate trimethylamine N-oxide reductase (TorA502) bearing an RR or a KK signal peptide. Since TorA502 lacks nine molybdo-cofactor ligands essential for cofactor attachment, the involvement of DnaK is apparently independent of cofactor acquisition. Finally, we show that the stabilizing effects of DnaK can be exploited to increase the expression and translocation of Tat substrates under conditions where the substrate production level exceeds the capacity of the Tat translocase. This latter observation is expected to have important consequences for the use of the Tat system in biotechnology applications where high levels of periplasmic expression are desirable.  相似文献   

2.
Twin-arginine translocation (Tat) systems allow the translocation of folded proteins across biological membranes of most prokaryotes. In proteobacteria, a TatBC complex binds Tat substrates and initiates their translocation after recruitment of the component TatA. TatA and TatB belong to one protein family, but only TatB forms stable complexes with TatC. Here we show that TatB builds up TatA-like modular complexes in the absence of TatC. This TatB ladder ranges from about 100 to over 880 kDa with 105+/-10 kDa increments. TatC alone can form a 250 kDa complex which could be a scaffold that can recruit TatB to form defined TatBC complexes.  相似文献   

3.
The Tat system transports folded proteins across bacterial and thylakoid membranes. In Gram-negative organisms, a TatABC substrate-binding complex and separate TatA complex are believed to coalesce to form an active translocon, with all three subunits essential for translocation. Most Gram-positive organisms lack a tatB gene, indicating major differences in organization and possible differences in mode of action. Here, we have studied Tat complexes encoded by the tatAdCd genes of Bacillus subtilis. Expression of tatAdCd in an Escherichia coli tat null mutant results in efficient export of a large, cofactor-containing E. coli Tat substrate, TorA. We show that the tatAd gene complements E. coli mutants lacking either tatAE or tatB, indicating a bifunctional role for this subunit in B. subtilis. Second, we have identified and characterized two distinct Tat complexes that are novel in key respects: a TatAdCd complex of approximately 230 kDa that is significantly smaller than the analogous E. coli TatABC complex (approximately 370 kDa on BN gels) and a separate TatAd complex. The latter is a discrete entity of approximately 270 kDa as judged by gel filtration chromatography, very different from the highly heterogeneous E. coli TatA complex that ranges in size from approximately 50 kDa to over 600 kDa. TatA heterogeneity has been linked to the varying size of Tat substrates being translocated, but the singular nature of the B. subtilis TatAd complex suggests that discrete TatAC and TatA complexes may form a single form of translocon.  相似文献   

4.
C Conrad  R Rauhut    G Klug 《Nucleic acids research》1998,26(19):4446-4453
23S rRNA in Rhodobacter capsulatus shows endoribonuclease III (RNase III)-dependent fragmentation in vivo at a unique extra stem-loop extending from position 1271 to 1331. RNase III is a double strand (ds)-specific endoribonuclease. This substrate preference is mediated by a double-stranded RNA binding domain (dsRBD) within the protein. Although a certain degree of double strandedness is a prerequisite, the question arises what structural features exactly make this extra stem-loop an RNase III cleavage site, distinguishing it from the plethora of stem-loops in 23S rRNA? We used RNase III purified from R.capsulatus and Escherichia coli, respectively, together with well known substrates for E.coli RNase III and RNA substrates derived from the special cleavage site in R.capsulatus 23S rRNA to study the interaction between the Rhodobacter enzyme and the fragmentation site. Although both enzymes are very similar in their amino acid sequence, they exhibit significant differences in binding and cleavage of these in vitro substrates.  相似文献   

5.
A group of bacterial exported proteins are synthesized with N-terminal signal peptides containing a SRRxFLK 'twin-arginine' amino acid motif. Proteins bearing twin-arginine signal peptides are targeted post-translationally to the twin-arginine translocation (Tat) system which transports folded substrates across the inner membrane. In Escherichia coli, most integral inner membrane proteins are assembled by a co-translational process directed by SRP/FtsY, the SecYEG translocase, and YidC. In this work we define a novel class of integral membrane proteins assembled by a Tat-dependent mechanism. We show that at least five E. coli Tat substrate proteins contain hydrophobic C-terminal transmembrane helices (or 'C-tails'). Fusions between the identified transmembrane C-tails and the exclusively Tat-dependent reporter proteins TorA and SufI render the resultant chimeras membrane-bound. Export-linked signal peptide processing and membrane integration of the chimeras is shown to be both Tat-dependent and YidC-independent. It is proposed that the mechanism of membrane integration of proteins by the Tat system is fundamentally distinct from that employed for other bacterial inner membrane proteins.  相似文献   

6.
Escherichia coli is frequently used as a convenient host organism for soluble recombinant protein expression. However, additional strategies are needed for proteins with complex folding characteristics. Here, we suggested that the acidic, neutral, and alkaline isoelectric point (pI) range curves correspond to the channels of the E. coli type-II cytoplasmic membrane translocation (periplasmic translocation) pathways of twin-arginine translocation (Tat), Yid, and general secretory pathway (Sec), respectively, for unfolded and folded target proteins by examining the characteristic pI values of the N-termini of the signal sequences or the leader sequences, matching with the known diameter of the translocation channels, and analyzing the N-terminal pI value of the signal sequences of the Tat substrates. To confirm these proposed translocation pathways, we investigated the soluble expression of the folded green fluorescent protein (GFP) with short N-terminal polypeptides exhibiting pI and hydrophilicity separately or collectively. This, in turn, revealed the existence of an anchor function with a specific directionality based on the N-terminal pI value (termed as N-terminal pI-specific directionality) and distinguished the presence of the E. coli type-II cytoplasmic membrane translocation pathways of Tat, Yid, and Sec for the unfolded and folded target proteins. We concluded that the pI value and hydrophilicity of the short N-terminal polypeptide, and the total translational efficiency of the target proteins based on the ΔGRNA value of the N-terminal coding regions are important factors for promoting more efficient translocation (secretion) through the largest diameter of the Tat channel. These results show that the short N-terminal polypeptide could substitute for the Tat signal sequence with improved efficiency.  相似文献   

7.
The Escherichia coli twin-arginine protein transport (Tat) system is a molecular machine dedicated to the translocation of fully folded substrate proteins across the energy-transducing inner membrane. Complex cofactor-containing Tat substrates, such as the model (NiFe) hydrogenase-2 and trimethylamine N-oxide reductase (TorA) systems, acquire their redox cofactors prior to export from the cell and require to be correctly assembled before transport can proceed. It is likely, therefore, that cellular mechanisms exist to prevent premature export of immature substrates. Using a combination of genetic and biochemical approaches including gene knockouts, signal peptide swapping, complementation, and site-directed mutagenesis, we highlight here this crucial 'proofreading' or 'quality control' activity in operation during assembly of complex endogenous Tat substrates. Our experiments successfully uncouple the Tat transport and cofactor-insertion activities of the TorA-specific chaperone TorD and demonstrate unequivocally that TorD recognises the TorA twin-arginine signal peptide. It is proposed that some Tat signal peptides operate in tandem with cognate binding chaperones to orchestrate the assembly and transport of complex enzymes.  相似文献   

8.
Targeting of proteins to and translocation across the membranes is a fundamental biological process in all organisms. In bacteria, the twin arginine translocation (Tat) system can transport folded proteins. Here, we demonstrate in vivo that the high potential iron-sulfur protein (HiPIP) from Allochromatium vinosum is translocated into the periplasmic space by the Tat system of Escherichia coli. In vitro, reconstituted HiPIP precursor (preHoloHiPIP) was targeted to inverted membrane vesicles from E. coli by a process requiring ATP when the Tat substrate was properly folded. During membrane targeting, the protein retained its cofactor, indicating that it was targeted in a folded state. Membrane targeting did not require a twin arginine motif and known Tat system components. On the basis of these findings, we propose that a pathway exists for the insertion of folded cofactor-containing proteins such as HiPIP into the bacterial cytoplasmic membrane.  相似文献   

9.
The twin-arginine translocation (Tat) system translocates folded proteins across biological membranes. It has been suggested that the Tat system of Escherichia coli can direct Tat substrates to degradation if they are not properly folded [Matos, C.F., Robinson, C. and Di Cola, A. (2008) The Tat system proofreads FeS protein substrates and directly initiates the disposal of rejected molecules. EMBO J. 27, 2055-2063; Matos, C.F., Di Cola, A. and Robinson, C. (2009) TatD is a central component of a Tat translocon-initiated quality control system for exported FeS proteins in Escherichia coli. EMBO Rep. 10, 474-479]. Contrary to the earlier reports, it is now concluded that reported differences between tested strains were due to variations in expression levels and inclusion body formation. Using the native Tat substrate NrfC and a malfolded variant thereof, we show that the turnover of these proteins is not affected by the absence of all known Tat components. Malfolded NrfC is degraded more quickly than the native protein, indicating that Tat-independent protease systems can recognize malfolded Tat substrates.  相似文献   

10.
In Escherichia coli, a subset of periplasmic proteins is exported via the twin-arginine translocation (Tat) pathway. In the present study, we have purified the Tat complex from E. coli, and we show that it contains only TatA, TatB, and TatC. Within the purified complex, TatB and TatC are present in a strict 1:1 ratio, suggesting a functional association. This has been confirmed by expression of a translational fusion between TatB and TatC. This Tat(BC) chimera supports efficient Tat-dependent export, indicating that TatB and TatC act as a unit in both structural and functional terms. The purified Tat complex contains varying levels of TatA, suggesting a gradual loss during isolation and a looser association. The molecular mass of the complex is approximately 600 kDa, demonstrating the presence of multiple copies of TatA, B, and C. Co-immunoprecipitation experiments show that TatC is required for the interaction of TatA with TatB, suggesting that TatA may interact with the complex via binding to TatC.  相似文献   

11.
In Escherichia coli, the Tat system promotes the membrane translocation of a subset of exported proteins across the cytoplasmic membrane. Four genes (tatA, tatB, tatC, and tatE) have been identified that encode the components of the E. coli Tat translocation apparatus. Whereas TatA and TatE can functionally substitute for each other, the TatB and the TatC proteins have been shown to perform distinct functions. In contrast to Tat systems of the ABC(E) type found in E. coli and many other bacteria, some microorganisms possess a TatAC-type translocase that consists of TatA and TatC only, suggesting that, in these systems, TatB is not required or that one of the remaining components (TatA or TatC) additionally takes over the TatB function. We have addressed the molecular basis for the difference in subunit composition between TatABC(E) and TatAC-type systems by using a genetic approach. A plasmid-encoded E. coli minimal Tat translocase consisting solely of TatA and TatC was shown to mediate a low level translocation of a sensitive Tat-dependent reporter protein. Suppressor mutations in the minimal Tat translocase were isolated that compensate for the absence of TatB and that showed substantial increases in translocation activities. All of the mutations mapped to the extreme amino-terminal domain of TatA. No mutations affecting TatC were identified. These results suggest that in TatAC-type systems, the TatA protein represents a bifunctional component fulfilling both the TatA and TatB functions. Furthermore, our results indicate that the structure of the amino-terminal domain of TatA is decisive for whether or not TatB is required.  相似文献   

12.
Ray N  Oates J  Turner RJ  Robinson C 《FEBS letters》2003,534(1-3):156-160
The DmsD protein is essential for the biogenesis of DMSO reductase in Escherichia coli, and binds the signal peptide of the DmsA subunit, a Tat substrate. This suggests a role as a guidance factor to target pre-DmsA to the translocase. Here, we have analysed the export of fusion proteins in which the DmsA and TorA signal peptides are fused to green fluorescent protein. Both chimeras are efficiently exported to the periplasm in wild-type E. coli cells and we show that their export efficiencies are essentially identical in a mutant lacking DmsD. An authentic Tat substrate, TMAO reductase, is also efficiently exported in the dmsD mutant. The data indicate that DmsD carries out a critical role in DMSO reductase biogenesis/assembly but is not required for the functioning of the DmsA signal peptide.  相似文献   

13.
The twin-arginine translocation (Tat) system transports folded proteins across the bacterial plasma membrane, including FeS proteins that receive their cofactors in the cytoplasm. We have studied two Escherichia coli Tat substrates, NrfC and NapG, to examine how, or whether, the system exports only correctly folded and assembled FeS proteins. With NrfC, substitutions in even one of four predicted FeS centres completely block export, indicating an effective proofreading activity. The FeS mutants are rapidly degraded but only if they interact with the Tat translocon; they are stable in a tat deletion strain and equally stable in wild-type cells if the signal peptide twin-arginine motif is removed to block targeting. Basically similar results are obtained with NapG. The Tat apparatus thus proofreads these substrates and directly initiates the turnover of rejected molecules. Turnover of mutated FeS substrates is completely dependent on the TatA/E subunits that are believed to be involved in the late stages of translocation, and we propose that partial translocation triggers substrate turnover within an integrated quality control system for FeS proteins.  相似文献   

14.
The twin-arginine translocation (Tat) system transports folded proteins across bacterial and plant thylakoid membranes. Most current models for the translocation mechanism propose the coalescence of a substrate-binding TatABC complex with a separate TatA complex. In Escherichia coli, TatA complexes are widely believed to form the translocation pore, and the size variation of TatA has been linked to the transport of differently sized substrates. Here, we show that the TatA paralog TatE can substitute for TatA and support translocation of Tat substrates including AmiA, AmiC, and TorA. However, TatE is found as much smaller, discrete complexes. Gel filtration and blue native electrophoresis suggest sizes between ~50 and 110 kDa, and single-particle processing of electron micrographs gives size estimates of 70-90 kDa. Three-dimensional models of the two principal TatE complexes show estimated diameters of 6-8 nm and potential clefts or channels of up to 2.5 nm diameter. The ability of TatE to support translocation of the 90-kDa TorA protein suggests alternative translocation models in which single TatA/E complexes do not contribute the bulk of the translocation channel. The homogeneity of both the TatABC and the TatE complexes further suggests that a discrete Tat translocase can translocate a variety of substrates, presumably through the use of a flexible channel. The presence and possible significance of double- or triple-ring TatE forms is discussed.  相似文献   

15.
The twin-arginine translocation (Tat) system operates in the chloroplast thylakoid and the plasma membranes of a wide range of bacteria. It recognizes substrates bearing cleavable signal peptides in which a twin-arginine motif almost invariably plays a key role in recognition by the translocation machinery. These signal peptides are surprisingly similar to those used to specify transport by Sec-type systems, but the Tat pathway differs in fundamental respects from Sec-type and other protein translocases. Its key attribute is its ability to translocate large, fully folded (even oligomeric) proteins across tightly sealed membranes. To date, three key tat genes have been characterised and the first details of the Tat system are beginning to emerge. In this article we review the salient features of Tat systems, with an emphasis on the targeting signals involved, the substrate specificities of Tat systems, our current knowledge of Tat complex structures and the known mechanistic features. Although the article is focused primarily on bacterial systems, we incorporate relevant aspects of plant thylakoid Tat work and we discuss how the plant and bacterial systems may differ in some respects.  相似文献   

16.
The recently described Tat protein translocation system in Escherichia coli recognizes its protein substrates by the consensus twin arginine (SRRXFLK) motif in the signal peptide. The signal sequence of E. coli pre-pro-penicillin amidase bears two arginine residues separated by one aspargine and does not resemble the Tat-targeting motif but can nevertheless target the precursor to the Tat pathway. Mutational studies have shown that the hydrophobic core region acts in synergism with the positive charged N-terminal part of the signal peptide as a Tat recognition signal and contributes to the efficient Tat targeting of the pre-pro-penicillin amidase.  相似文献   

17.
The twin-arginine translocation (Tat) system transports folded proteins across bacterial plasma membranes and the chloroplast thylakoid membrane. Here, we investigate the composition and structural organization of three different purified Tat complexes from Escherichia coli, Salmonella typhimurium and Agrobacterium tumefaciens. First, we demonstrate the functional activity of these Tat systems in vivo, since expression of the tatABC operons from S.typhimurium or A.tumefaciens in an E.coli tat null mutant strain resulted in efficient Tat-dependent export of an E.coli cofactor-containing substrate, TMAO reductase. The three isolated, affinity-tagged Tat complexes comprised TatA, TatB and TatC in each case, demonstrating a strong interaction between these three subunits. Single-particle electron microscopy studies of all three complexes revealed approximately oval-shaped, asymmetric particles with maximal dimensions up to 13 nm. A common feature is a number of stain-excluding densities surrounding more or less central pools of stain, suggesting protein-lined pores or cavities. The characteristics of size variation among the particles suggest a modular form of assembly and/or the recruitment of varying numbers of TatBC/TatA units. Despite low levels of sequence homology, the combined data indicate structural and functional conservation in the Tat systems of these three bacterial species.  相似文献   

18.
19.
The bacterial twin-arginine translocation (Tat) pathway has been recently described for PhoD of Bacillus subtilis, a phosphodiesterase containing a twin-arginine signal peptide. The expression of phoD is co-regulated with the expression of tatA(d) and tatC(d) genes localized downstream of phoD. To characterize the specificity of PhoD transport further, translocation of PhoD was investigated in Escherichia coli. By using gene fusions, we analyzed the particular role of the signal peptide and the mature region of PhoD in canalizing the transport route. A hybrid protein consisting of the signal peptide of beta-lactamase and mature PhoD was transported in a Sec-dependent manner indicating that the mature part of PhoD does not contain information canalizing the selected translocation route. Pre-PhoD, as well as a fusion protein consisting of the signal peptide of PhoD (SP(PhoD)) and beta-galactosidase (LacZ), remained cytosolic in the E. coli. Thus, SP(PhoD) is not recognized by E. coli transport systems. Co-expression of B. subtilis tatA(d)/C(d) genes resulted in the processing of SP(PhoD)-LacZ and periplasmic localization of LacZ illustrating a close substrate specificity of the TatA(d)/C(d) transport system. While blockage of the Sec-dependent transport did not affect the localization of SP(PhoD)-LacZ, translocation and processing was dependent on the pH gradient of the cytosolic membrane. Thus, the minimal requirement of a functional Tat-dependent protein translocation system consists of a twin-arginine signal peptide-containing Tat substrate, its specific TatA/C proteins, and the pH gradient across the cytosolic membrane.  相似文献   

20.
The twin-arginine protein transport (Tat) system is a remarkable molecular machine dedicated to the translocation of fully folded proteins across energy-transducing membranes. Complex cofactor-containing Tat substrates acquire their cofactors prior to export, and substrate proteins actually require to be folded before transport can proceed. Thus, it is very likely that mechanisms exist to prevent wasteful export of immature Tat substrates or to curb competition between immature and mature substrates for the transporter. Here we assess the primary sequence relationships between the accessory proteins implicated in this process during assembly of key respiratory enzymes in the model prokaryote Escherichia coli. For each respiratory enzyme studied, a redox enzyme maturation protein (REMP) was assigned. The main finding from this review was the hitherto unexpected link between the Tat-linked REMP DmsD and the nitrate reductase biosynthetic protein NarJ. The evolutionary link between Tat transport and cofactor insertion processes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号