首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
The chromosomal location of T-DNa inserts in ten independently derived and confirmed transgenic plants ofP. hybrida was detected byin situ hybridization. Nine transgenic plants had the T-DNA inerts at single sites distributed among each of the seven chromosomes; in one plant the T-DNA inserts were detected on two different chromosomes. Although the T-DNA inserts were integrated randomly among the chromosomes, seven of the 11 total inserts were located at or near the telomere. Thus, T-DNA inserts appear to have potential for tagging chromosomes and chromosome fragments.  相似文献   

2.
Nineteen transgenic banana plants, produced via Agrobacterium-mediated transformation, were analyzed for the integration of T-DNA border regions using an improved anchored PCR technique. The method described is a relatively fast, three-step procedure (restriction digestion of genomic DNA, ligation of ‘vectorette’-type adaptors, and a single round of suppression PCR) for the amplification of specific T-DNA border-containing genomic fragments. Most transgenic plants carried a low number of inserts and the method was suitable for a detailed characterization of the integration events, including T-DNA border integrity as well as the insertion of non-T-DNA vector sequences, which occurred in 26% of the plants. Furthermore, the particular band pattern generated by four enzyme/primer combinations for each individual plant served as a fingerprint, allowing the identification of plants representing identical transformation events. Genomic Southern hybridization and nucleotide sequence analysis of amplification products confirmed the data obtained by anchored PCR. Sequencing of seven right or left border junction regions revealed different T-DNA processing events for each plant, indicating a relatively low frequency of precisely nicked T-DNA integration among the plants studied.  相似文献   

3.
Summary A rapid regeneration system was used for studies ofAgrobacterium-mediated transformation inPisum sativum L. Cotyledonary node explants were inoculated withAgrobacterium tumefaciens strains containing binary vectors carrying genes for nopaline synthase (NOS),β-glucuronidase (GUS), and neomycin phosphotransferase (NPTII) and placed on selection medium containing either 75 or 150 mg/liter kanamycin. A GUS encoding gene (uidA) containing an intron was used to monitor gene expression from 6 to 21 days postinoculation. GUS activity could be observed 6 days after inoculation in the area of the explant in which regeneration-occurred. Regenerating tissue containing transformed cells was observed in explants on selection medium 21 days postinoculation. Using this system, a single transgenic plant was obtained. Progeny of this plant, which contained two T-DNA inserts, demonstrated segregation for the inserts and for expression of the NOS gene in the selfed R1 progeny. NPTII activity was observed in the R2 generation, indicating inheritance and expression of the foreign DNA over at least two generations. Attempts to repeat this procedure were unsuccessful.  相似文献   

4.
Summary We describe in this paper the construction and use of a set of novel Ti plasmid-derived vectors that can be used to produce transgenic plants. These vectors are based on one of two strategies: 1) double recombination into the wild-type Ti plasmid of genetic information flanked by two T-DNA fragments on a wide-host range plasmid; 2) the binary vector strategy. The vector based on the double recombination principle contains a kanamycin resistance gene for use as a plant selectable marker, a polylinker for the insertion of foreign genes, and a nopaline synthase gene. The vector was constructed such that a disarmed T-DNA results from the double recombination event. The binary vector combines several advantageous features including an origin of replication that is stable in Agrobacterium in the absence of selection, six unique sites for insertion of foreign genes, an intact nopaline synthase gene, and a kanamycin resistance marker for selection of transformed plant cells. All of these vectors have been used to produce tobacco plants transformed with a variety of foreign genes.  相似文献   

5.
Transformation of tomato (Lycopersicon esculentum Mill.) was carried out using disarmed Agrobacterium tumefaciens strain EHA 105 harboring a binary vector pBIG-HYG-bspA. The plasmid contains the bspA (boiling stable protein of aspen) gene under the control of a CaMV35S promoter and nopaline synthase (NOS) terminator, hygromycin phosphotransferase gene (hpt) driven by nopaline synthase promoter and polyadenylation signal of Agrobacterium gene7 as terminator and a promoterless gus gene. Very strong β-glucuronidase (GUS) expression was observed in transformed tomato plants but never in non-transformed (control). Since GUS expression was observed only in transformed plants, the possibility of the presence of endogenous GUS enzymes was ruled out. Possibility of false GUS positives was also ruled out because the GUS positive explants reacted positively to polymerase chain reaction (PCR) and PCR-Southern tests carried out for the presence of bspA gene, which indicated the integration of T-DNA in tomato genome. The promoterless GUS expression was hypothesized either due to leaky NOS termination signal of bspA gene or due to different cryptic promoters of plant origin. It was concluded that GUS expression was observed in the putative transgenics either due to the read through mechanism by the strong CaMV35S promoter or due to several cryptic promoters driving the gus gene in different transgenic lines.  相似文献   

6.
The tumour-inducing T-DNA gene 4 (T-cyt gene) of the nopaline Ti plasmid pTiC58 was cloned and introduced into tobacco cells by leaf disc transformation using Agrobacterium plasmid vectors. Tobacco shoots exposed to elevated cytokinin levels were unable to develop roots and lacked apical dominance. Using exogenously applied phytohormone manipulations we were able to regenerate morphologically normal transgenic tobacco plants which differed in endogenous cytokinin levels from normal untransformed plants. Although T-cyt gene mRNA levels, as revealed by dot-blot hybridization data, in these rooting plants were only about half those in primary transformed shoots the total amount of cytokinins was much lower than in crown gall tissue or cytokinin-type transformed shoots as reported by others. Nevertheless the cytokinin content in T-cyt plants was about 3 times greater than in control tobacco plants.Elevated cytokinin levels have been shown to change the expression of several plant genes, including some nuclear genes encoding chloroplast proteins. Our results show that the mRNA levels of chloroplast rbcL gene increase in cytokinin-type transgenic tobacco plants as compared with untransformed plants. Data obtained suggest that T-cyt transgenic plants are a good model for studying plant gene activity in different parts of the plant under endogenous cytokinin stress.  相似文献   

7.
The Cre/loxP site-specific recombination system has been applied in various plant species including maize (Zea mays) for marker gene removal, gene targeting, and functional genomics. A BIBAC vector system was adapted for maize transformation with a large fragment of genetic material including a herbicide resistance marker gene, a 30 kb yeast genomic fragment as a marker for fluorescence in situ hybridization (FISH), and a 35S-lox-cre recombination cassette. Seventy-five transgenic lines were generated from Agrobacterium-mediated transformation of a maize Hi II line with multiple B chromosomes. Eighty-four inserts have been localized among all 10 A chromosome pairs by FISH using the yeast DNA probe together with a karyotyping cocktail. No inserts were found on the B chromosomes; thus a bias against the B chromosomes by the Agrobacterium-mediated transformation was revealed. The expression of a cre gene was confirmed in 68 of the 75 transgenic lines by a reporter construct for cre/lox mediated recombination. The placement of the cre/lox site-specific recombination system in many locations in the maize genome will be valuable materials for gene targeting and chromosome engineering.  相似文献   

8.
Summary The regal pelargonium, ev. Dubonnet, was transformed using the disarmed Agrobacterium tumefaciens strains LBA4404 or EHA105 containing the binary vector pLN70. This plasmid carries on its T-DNA the rolC gene from Agrobacterium rhizogenes under control of the CaMV 35S promoter and the npt II selectable marker gene under a NOS promoter. Six independent transformants were produced and grouped according to their phenotypic characteristics. Two transformants showed the same phenotype as the untransformed control plants. Three transformants exhibited a dwarf phenotype and one displayed a super-dwarf phenotype. Southern hybridization analyses of the T-DNA left border region using a npt II probe showed that the six transformants all arose from independent transformation events. Northern hybridization analyses showed that the rolC gene was expressed only in the four transformants that exhibited a dwarf phenotype. Our data show that the phenotypic effects of rolC expression in regal pelargoniums include reductions in plant height, leaf area, petal area, and corolla length. Earlier flowering of the rolC transgenics by up to 22d was also observed.  相似文献   

9.
Transposon-mediated repositioning of transgenes is an attractive strategy to generate plants that are free of selectable markers and T-DNA inserts. By using a minimal number of transformation events a large number of transgene insertions in the genome can be obtained so as to benefit from position effects in the genome that can contribute to higher levels of expression. We constructed a Bacillus thuringiensis synthetic cry1B gene expressed under control of the maize ubiquitin promoter between minimal terminal inverted repeats of the maize Ac-Ds transposon system, which was cloned in the 5' untranslated sequence of a gfp gene used as an excision marker. The T-DNA also harboured the Ac transposase gene driven by the CaMV 35S promoter and the hph gene conferring resistance to the antibiotic hygromycin. Sixty-eight independent rice (Oryza sativa L.) transformants were regenerated and molecularly analysed revealing excision and reinsertion of the Ds-cry1B element in 37% and 25% respectively of the transformation events. Five independent transformants harbouring 2–4 reinserted Ds-Cry1B copies were analysed in the T1 progeny, revealing 0.2 to 1.4 new transpositions per plant. Out segregation of the cry1B gene from the T-DNA insertion site was observed in 17 T1 plants, representing 10 independent repositioning events without selection. Western analysis of leaf protein extracts of these plants revealed detectable Cry1B in all the plants indicating efficient expression of the transgene reinsertions. Stability of position and expression of the cry1B transgene was further confirmed in T2 progeny of T-DNA-free T1 plants. New T-DNA-free repositioning events were also identified in T2 progenies of T1 plants heterozygous for the T-DNA. Furthermore, preliminary whole plant bioassay of T-DNA-free lines challenged with striped stem borer larvae suggested that they are protected against SSB attacks. These results indicate that transposon mediated relocation of the gene of interest is a powerful method for generating T-DNA integration site-free transgenic plants and exploiting favourable position effects in the plant genome.  相似文献   

10.
Summary We investigated the potential of the Agrobacterium tumefaciens T-DNA as an insertional mutagen in Arabidopsis thaliana. Arabidopsis lines transformed with different T-DNA vectors were generated using a leaf disc infection procedure adapted for efficient selection on either kanamycin or hygromycin medium. A standardized screening procedure was developed for the detection of recessive mutations in T2 populations of regenerated and/or transformed lines. Recessive mutations originating from the tissue culture procedure occurred at a low frequency — between 2% and 5%. Within 110 transformed lines that contained a total of about 150 T-DNA inserts, one recessive mutation, named pfl, cosegregated with a specific T-DNA copy. This pfl mutation mainly affected the morphology of the first seedling leaves under normal growth conditions and was mapped to chromosome 1. No recombination between the pfl locus and the kanamycin resistance marker on the T-DNA was detected when screening F2 and F3 populations of a mutant crossed to the wild type. The maximal genetic distance between the pfl locus and the kanamycin resistance gene, determined as 0.4±0.4 cMorgan, strongly suggests that the pfl mutation is induced by the insertion of the T-DNA. Our finding of one T-DNA-linked recessive mutation in 110 transgenic lines indicates that T-DNA can be used for mutagenization of the Arabidopsis genome under tissue culture conditions.  相似文献   

11.
Introduction of large-DNA fragments into cereals by Agrobacterium-mediated transformation is a useful technique for map-based cloning and molecular breeding. However, little is known about the organization and stability of large fragments of foreign DNA introduced into plant genomes. In this study, we produced transgenic rice plants by Agrobacterium-mediated transformation with a large-insert T-DNA containing a 92-kb region of the wheat genome. The structures of the T-DNA in four independent transgenic lines were visualized by fluorescence in situ hybridization on extended DNA fibers (fiber FISH). By using this cytogenetic technique, we showed that rearrangements of the large-insert T-DNA, involving duplication, deletion and insertion, had occurred in all four lines. Deletion of long stretches of the large-insert DNA was also observed in Agrobacterium.  相似文献   

12.
13.
Summary Two lines of transgenic Nicotiana tabacum transformed to kanamycin resistance by means of a binary Agrobacterium vector containing a nos-npt gene were investigated over three generations. Southern hybridization and crossing analyses revealed that a single copy of T-DNA had integrated in each line and that the kanamycin resistance was regularly transmitted to the progeny as a monogenic dominant trait. Homozygous transgenic plants were fully fertile, morphologically normal and did not significantly differ from wild-type plants in the quantitative characters examined (plant height, flowering time). The two lines showed very low, but significantly different levels of meiotic instability: kanamycin-sensitive plants occurred among backcross progeny from homozygous transgenic plants with frequencies of 6/45,000 and 25/45,000, respectively. The sensitive plants arose independently of each other and thus resulted from meiotic rather than mitotic events. These findings demonstrate for the first time that integrated foreign genes can be transmitted to progeny with the high degree of meiotic stability required for commercial varieties of crop plants. They emphasize the importance of non-homologous integration and of avoiding co-integration of inactive gene copies for achieving meiotically stable transformants.  相似文献   

14.
Zheng  Si-Jun  Henken  Betty  Sofiari  Eri  Jacobsen  Evert  Krens  Frans A.  Kik  Chris 《Transgenic research》2001,10(3):237-245
Genomic DNA blot hybridization is traditionally used to demonstrate that, via genetic transformation, foreign genes are integrated into host genomes. However, in large genome species, such as Allium cepa L., the use of genomic DNA blot hybridization is pushed towards its limits, because a considerable quantity of DNA is needed to obtain enough genome copies for a clear hybridization pattern. Furthermore, genomic DNA blot hybridization is a time-consuming method. Adaptor ligation PCR (AL-PCR) of genomic DNA flanking T-DNA borders does not have these drawbacks and seems to be an adequate alternative to genomic DNA blot hybridization. Using AL-PCR we proved that T-DNA was integrated into the A. cepa genome of three transgenic lines transformed with Agrobacterium tumefaciens EHA105 (pCAMBIA 1301). The AL-PCR patterns obtained were specific and reproducible for a given transgenic line. The results showed that T-DNA integration took place and gave insight in the number of T-DNA copies present. Comparison of AL-PCR and previously obtained genomic DNA blot hybridization results pointed towards complex T-DNA integration patterns in some of the transgenic plants. After cloning and sequencing the AL-PCR products, the junctions between plant genomic DNA and the T-DNA insert could be analysed in great detail. For example it was shown that upon T-DNA integration a 66bp genomic sequence was deleted, and no filler DNA was inserted. Primers located within the left and right flanking genomic DNA in transgenic shallot plants were used to recover the target site of T-DNA integration.  相似文献   

15.
Summary We have previously described substantial variation in the level of expression of two linked genes which were introduced into transgenic petunia plants using Agrobacterium tumefaciens. These genes were (i) nopaline synthase (nos) and (ii) a chimeric chlorophyll a/b binding protein/octopine synthase (cab/ocs) gene. In this report we analyze the relationship between the level of expression of the introduced genes and T-DNA structure and copy number in 40 transgenic petunia plants derived from 26 transformed calli. Multiple shoots were regenerated from 8 of these calli and in only 6 cases were multiple regenerated shoots from each callus genotypically identical to each other. Many genotypes showed no nos gene expression (22/28). Most of the plants (16/22) which lacked nos gene expression did contain nos-encoding DNA with the expected restriction enzyme map. Similarly, amongst the genotypes showing no cab/ocs gene expression, the majority (11/28) did not show any alterations in restriction fragments corresponding to the expected cab/ocs coding sequences (10/11). Approximately half of the plants carried multiple copies of T-DNA in inverted repeats about the left or right T-DNA boundaries. No positive correlation was observed between the copy number of the introduced DNA and the level of expression of the introduced genes. However, plants with high copy number complex insertions composed of multiple inverted repeats in linear arrays usually showed low levels of expression of the introduced genes.  相似文献   

16.
17.
Alternative selection systems for plant transformation are especially valuable in clonal crops, such as potato (Solanum tuberosum L.), to pyramid transgenes into the same cultivar by successive transformation events. We have modified the pGPTV series of binary vectors to construct pMOA1 to pMOA5, resulting in a series of essentially identical binary vectors except for the presence of different selectable marker genes. These selectable marker genes are tightly inserted between the left and right T-DNA borders and confer resistance to kanamycin (nptII), hygromycin (hpt), methotrexate (dhfr), phosphinothricin (bar), or phleomycin (ble). The T-DNA of all the vectors is based on the minimal features necessary for plant transformation, with no extraneous DNA segments that may be unacceptable to regulatory authorities for general release of transgenic plants. A series of unique restriction sites exists between the right border and each selectable marker gene for subsequent insertion of useful genes. We have also developed improved culture procedures for potato transformation and used the pMOA1 to pMOA5 binary vectors to define stringent selection conditions for each marker gene. Combining these advances improved the frequency of recovering transformed potato plants while maintaining a low frequency of escapes. The relative efficiency of recovering transgenic potato lines with each selectable marker gene can be summarised as: kanamycin resistance>hygromycin resistance>phosphinothricin resistance>phleomycin resistance>methotrexate resistance.  相似文献   

18.
Summary We transformed tomato (Lycopersicon esculentum L.) by using Agrobacterium rhizogenes containing two independent plasmids: the wild-type Ri-plasmid, and the vector plasmid, pARC8. The T-DNA of the vector plasmid contained a marker gene (Nos/Kan) encoding neomycin phosphotransferase which conferred resistance to kanamycin in transformed plant cells. Transgenic plants (R 0) with normal phenotype were regenerated from transformed organogenic calli by the punctured cotyledon transformation method. Southern blot analysis of the DNA from these transgenic plants showed that one or two copies of the vector plasmid T-DNA, but none of the Ri-plamid T-DNA, were integrated into the plant genome. Different transgenic plants derived from the same callus clone showed an identical DNA banding pattern, indicating the non-chimeric origin of these plants. We also transformed tomato by using A. tumefaciens strain LBA4404 containing a disarmed Ti-plasmid (pAL4404), and a vector plasmid (pARC8). Transgenic plants derived via A. tumefaciens transformation, like those via A. rhizogenes, contained one to two copies of the integrated vector T-DNA. The kanamycin resistance trait in the progeny (R 1) of most transgenic plants segregated at a ratio of 3:1, suggesting that the vector T-DNAs were integrated at a single site on a tomato chromosome. In some cases, the expression of the marker gene (Nos/Kan) seemed to be suppressed or lost in the progeny.  相似文献   

19.
Summary Genetically transformed repeseed (Brassica napus) roots were obtained by in vitro inoculation of excised stem segments with Agrobacterium rhizogenes. Axenic root organ clones were established and they exhibited a phenotype characteristic of transformed roots: rapid growth, reduced apical dominance and root plagiotropism. Stem regeneration was induced by exposing root fragments to 2,4-dichloroacetic acid (2,4-D) in liquid medium, followed by transfer to solid regeneration medium. The resulting plants exhibited the transformed phenotype observed in other species where similar experiments have been performed. Direct evidence for genetic transformation was obtained from opine assays and molecular hybridization. Sexual transmission of the transformed phenotype was Mendelian, and a probable case of T-DNA insertion into two independent loci within the same plant was detected. The estimated optimal time necessary to obtain transformed oilseed rape plants using this approach is 2 months.  相似文献   

20.
Leaf piece explants of five Brassica juncea (L.) Czern. cultivars were transformed with an Agrobacterium tumefaciens strain EHA105 harboring the plasmid pCAMBIA1301, which contains the β-glucuronidase (uidA) and hygromycin phosphotransferase (hpt) genes under the control of cauliflower mosaic virus 35S (CaMV35S) promoter. Transgenic plants were regenerated on Murashige and Skoog (MS) medium fortified with 8.87 μM 6-benzylaminopurine, 0.22 μM 2,4-dichlorophenoxyacetic acid, and 20 μM silver nitrate in the presence of 30 mg/l hygromycin. When co-culture took place in the presence of 100 μM acetosyringone, the efficiency of stable transformation was found to be approximately 19% in the T 0 generation, with the transgenic plants and their progeny showing constitutive GUS expression in different plant organs. Southern blot hybridization of uidA and hpt genes confirmed transgene integration within the genome of transformed plants of each cultivar. Inheritance of hpt gene for single copy T-DNA inserts showed a 3:1 pattern of Mendelian segregation in progeny plants through germination of T 1 seeds on MS medium containing 30 mg/l hygromycin. The protocol described here reports superior transformation efficiency over previously published protocols and should contribute to enhanced biotechnology applications in B. juncea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号