首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FRET experiments utilizing confocal microscopy or flow cytometry assessed homo- and heterotrimeric association of human tumor necrosis factor receptor-associated factors (TRAF) in living cells. Following transfection of HeLa cells with plasmids expressing CFP- or YFP-TRAF fusion proteins, constitutive homotypic association of TRAF2, -3, and -5 was observed, as well as heterotypic association of TRAF1-TRAF2 and TRAF3-TRAF5. A novel heterotypic association between TRAF2 and -3 was detected and confirmed by immunoprecipitation in Ramos B cells that constitutively express both TRAF2 and -3. Experiments employing deletion mutants of TRAF2 and TRAF3 revealed that this heterotypic interaction minimally involved the TRAF-C domain of TRAF3 as well as the TRAF-N domain and zinc fingers 4 and 5 of TRAF2. A novel flow cytometric FRET analysis utilizing a two-step approach to achieve linked FRET from CFP to YFP to HcRed established that TRAF2 and -3 constitutively form homo- and heterotrimers. The functional importance of TRAF2-TRAF3 heterotrimerization was demonstrated by the finding that TRAF3 inhibited spontaneous NF-kappaB, but not AP-1, activation induced by TRAF2. Ligation of CD40 on Ramos B cells by recombinant CD154 caused TRAF2 and TRAF3 to dissociate, whereas overexpression of TRAF3 in Ramos B cells inhibited CD154-induced TRAF2-mediated activation of NF-kappaB. Together, these results reveal a novel association between TRAF2 and TRAF3 that is mediated by unique portions of each protein and that specifically regulates activation of NF-kappaB, but not AP-1.  相似文献   

2.
3.
Signaling by some TNF receptor family members, including CD40, is mediated by TNF receptor-associated factors (TRAFs) that interact with receptor cytoplasmic domains following ligand-induced receptor oligomerization. Here we have defined the oligomeric structure of recombinant TRAF domains that directly interact with CD40 and quantitated the affinities of TRAF2 and TRAF3 for CD40. Biochemical and biophysical analyses demonstrated that TRAF domains of TRAF1, TRAF2, TRAF3, and TRAF6 formed homo-trimers in solution. N-terminal deletions of TRAF2 and TRAF3 defined minimal amino acid sequences necessary for trimer formation and indicated that the coiled coil TRAF-N region is required for trimerization. Consistent with the idea that TRAF trimerization is required for high-affinity interactions with CD40, monomeric TRAF-C domains bound to CD40 significantly weaker than trimeric TRAFs. In surface plasmon resonance studies, a hierarchy of affinity of trimeric TRAFs for trimeric CD40 was found to be TRAF2 > TRAF3 > TRAF1 and TRAF6. CD40 trimerization was demonstrated to be sufficient for optimal NF-kappaB and p38 mitogen activated protein kinase activation through wild-type CD40. In contrast, a higher degree of CD40 multimerization was necessary for maximal signaling in a cell line expressing a mutated CD40 (T254A) that signaled only through TRAF6. The affinities of TRAF proteins for oligomerized receptors as well as different requirements for degree of receptor multimerization appear to contribute to the selectivity of TRAF recruitment to receptor cytoplasmic domains.  相似文献   

4.
5.
CD40 is a member of the tumor necrosis factor receptor family that mediates a number of important signaling events in B-lymphocytes and some other types of cells through interaction of its cytoplasmic (ct) domain with tumor necrosis factor receptor-associated factor (TRAF) proteins. Alanine substitution and truncation mutants of the human CD40ct domain were generated, revealing residues critical for binding TRAF2, TRAF3, or both of these proteins. In contrast to TRAF2 and TRAF3, direct binding of TRAF1, TRAF4, TRAF5, or TRAF6 to CD40 was not detected. However, TRAF5 could be recruited to wild-type CD40 in a TRAF3-dependent manner but not to a CD40 mutant (Q263A) that selectively fails to bind TRAF3. CD40 mutants with impaired binding to TRAF2, TRAF3, or both of these proteins completely retained the ability to activate NF-kappaB and Jun N-terminal kinase (JNK), implying that CD40 can stimulate TRAF2- and TRAF3-independent pathways for NF-kappaB and JNK activation. A carboxyl-truncation mutant of CD40 lacking the last 32 amino acids required for TRAF2 and TRAF3 binding, CD40(Delta32), mediated NF-kappaB induction through a mechanism that was suppressible by co-expression of TRAF6(DeltaN), a dominant-negative version of TRAF6, but not by TRAF2(DeltaN), implying that while TRAF6 does not directly bind CD40, it can participate in CD40 signaling. In contrast, TRAF6(DeltaN) did not impair JNK activation by CD40(Delta32). Taken together, these findings reveal redundancy in the involvement of TRAF family proteins in CD40-mediated NF-kappaB induction and suggest that the membrane-proximal region of CD40 may stimulate the JNK pathway through a TRAF-independent mechanism.  相似文献   

6.
7.
Latent membrane protein 1 (LMP1), encoded by Epstein-Barr virus, is required for EBV-mediated B cell transformation and plays a significant role in the development of posttransplant B cell lymphomas. LMP1 has also been implicated in exacerbation of autoimmune diseases such as systemic lupus erythematosus. LMP1 is a constitutively active functional mimic of the tumor necrosis factor receptor superfamily member CD40, utilizing tumor necrosis factor receptor-associated factor (TRAF) adaptor proteins to induce signaling. However, LMP1-mediated B cell activation is amplified and sustained compared with CD40. We have previously shown that LMP1 and CD40 use TRAFs 1, 2, 3, and 5 differently. TRAF6 is important for CD40 signaling, but the role of TRAF6 in LMP1 signaling in B cells is not clear. Although TRAF6 binds directly to CD40, TRAF6 interaction with LMP1 in B cells has not been characterized. Here we tested the hypothesis that TRAF6 is a critical regulator of LMP1 signaling in B cells, either as part of a receptor-associated complex and/or as a cytoplasmic adaptor protein. Using TRAF6-deficient B cells, we determined that TRAF6 was critical for LMP1-mediated B cell activation. Although CD40-mediated TRAF6-dependent signaling does not require the TRAF6 receptor-binding domain, we found that LMP1 signaling required the presence of this domain. Furthermore, TRAF6 was recruited to the LMP1 signaling complex via the TRAF1/2/3/5 binding site within the cytoplasmic domain of LMP1.  相似文献   

8.
In B lymphocytes, CD40 signals contribute to the activation of Ab secretion, isotype switching, T cell costimulation, and immunological memory. TRAF proteins appear to be important components of the CD40 signal transduction complex, but their roles in the activation of B cell effector functions are poorly understood. We examined the contributions of TNF receptor-associated factor 2 (TRAF2) and TRAF3 to CD40-activated differentiation in mouse B cells transfected with inducible TRAF and dominant-negative TRAF cDNAs. We find that binding of TRAF2 and TRAF3 to CD40 is not required for the induction of Ab secretion, but that both TRAF molecules can regulate the activation process. We demonstrate a negative regulatory role for TRAF3 and that this activity is dependent on the availability of an intact TRAF3-binding site in the cytoplasmic domain of CD40. In contrast, TRAF2 appears to play a positive role in B cell differentiation, and this activity is apparent even when its binding site on CD40 is disrupted.  相似文献   

9.
10.
Signal transduction through the CD40 receptor is initiated by binding of its trimeric ligand and propagated by interactions of tumor necrosis factor receptor-associated factor (TRAF) proteins with the multimerized CD40 cytoplasmic domain. Using defined multimeric constructs of the CD40 cytoplasmic domain expressed as either soluble or myristoylated proteins, we have addressed the extent of receptor multimerization needed to initiate signal transduction and identified components of CD40 signaling complexes. Signal transduction in human embryonic kidney 293 cells, measured by nuclear factor kappaB activation, was observed in cells expressing soluble trimeric CD40 cytoplasmic domain and to a lesser extent in cells expressing dimeric CD40 cytoplasmic domain. Nuclear factor kappaB activation was strongest in cells expressing myristoylated trimeric CD40 cytoplasmic domain. Signal transduction through trimeric CD40 cytoplasmic domains with various point mutations in the TRAF binding sites was similar to signal transduction through analogous full-length receptors. Transiently expressed soluble trimeric CD40 cytoplasmic domain was isolated as complexes that contained TRAF2, TRAF3, TRAF5, TRAF6, and the inhibitor of apoptosis protein (c-IAP1). Association of c-IAP1 with the CD40 cytoplasmic domain complex was indirect and dependent on the presence of an intact TRAF1/2/3 binding site. These results suggest that extracellular ligation of CD40 can be bypassed and that soluble trimerized CD40 complexes can be isolated and used to identify components that link CD40 with signaling pathways.  相似文献   

11.
The tumor necrosis factor receptor-associated factor (TRAF) protein family members are critically involved in activation of NF-kappaB, JNK, and p38 activation triggered by tumor necrosis factor (TNF) receptor family members and toll/interleukin-1 receptor (TIR)-containing receptors. TRAF proteins (except for TRAF1) contain an N-terminal RING finger domain that is essential for their functions. In this report, we identified a protein designated as TRAF7, which contains a RING finger domain and a zinc finger domain that are mostly conserved with those of TRAFs. TRAF7 also contains seven WD40 repeats at its C terminus. TRAF7 specifically interacted with MEKK3 and potentiated MEKK3-mediated AP1 and CHOP activation. Depletion of TRAF7 by antisense RNA inhibited MEKK3-mediated AP1 and CHOP activation. Moreover, overexpression of TRAF7 induced caspase-dependent apoptosis. Domain mapping experiments indicated that TRAF7 potentiated MEKK3-mediated AP1 and CHOP activation and induced apoptosis through distinct domains. Our studies identified a novel TRAF family member that is involved in MEKK3 signaling and apoptosis.  相似文献   

12.
Lymphotoxin-beta receptor (LTbetaR) and CD40 are members of the tumor necrosis factor family of signaling receptors that regulate cell survival or death through activation of NF-kappaB. These receptors transmit signals through downstream adaptor proteins called tumor necrosis factor receptor-associated factors (TRAFs). In this study, the crystal structure of a region of the cytoplasmic domain of LTbetaR bound to TRAF3 has revealed an unexpected new recognition motif, 388IPEEGD393, for TRAF3 binding. Although this motif is distinct in sequence and structure from the PVQET motif in CD40 and PIQCT in the regulator TRAF-associated NF-kappaB activator (TANK), recognition is mediated in the same binding crevice on the surface of TRAF3. The results reveal structurally adaptive "hot spots" in the TRAF3-binding crevice that promote molecular interactions driving specific signaling after contact with LTbetaR, CD40, or the downstream regulator TANK.  相似文献   

13.
CD40 function is initiated by tumor necrosis factor (TNF) receptor-associated factor (TRAF) adapter proteins, which play important roles in signaling by numerous receptors. Characterizing roles of individual TRAFs has been hampered by limitations of available experimental models and the poor viability of most TRAF-deficient mice. Here, B cell lines made deficient in TRAF2 using a novel homologous recombination system reveal new roles for TRAF2. We demonstrate that TRAF2 participates in synergy between CD40 and B cell antigen receptor signals, and in CD40-mediated, TNF-dependent IgM production. We also find that TRAF2 participates in the degradation of TRAF3 associated with CD40 signaling, a role that may limit inhibitory actions of TRAF3. Finally, we show that TRAF2 and TRAF6 have overlapping functions in CD40-mediated NF-kappaB activation and CD80 up-regulation. These findings demonstrate previously unappreciated roles for TRAF2 in signaling by TNF receptor family members, using an approach that facilitates the analysis of genes critical to the viability of whole organisms.  相似文献   

14.
To investigate CD40 signaling complex formation in living cells, we used green fluorescent protein (GFP)-tagged CD40 signaling intermediates and confocal life imaging. The majority of cytoplasmic TRAF2-GFP and, to a lesser extent, TRAF3-GFP, but not TRAF1-GFP or TRAF4-GFP, translocated into CD40 signaling complexes within a few minutes after CD40 triggering with the CD40 ligand. The inhibitor of apoptosis proteins cIAP1 and cIAP2 were also recruited by TRAF2 to sites of CD40 signaling. An excess of TRAF2 allowed recruitment of TRAF1-GFP to sites of CD40 signaling, whereas an excess of TRAF1 abrogated the interaction of TRAF2 and CD40. Overexpression of TRAF1, however, had no effect on the interaction of TRADD and TRAF2, known to be important for tumor necrosis factor receptor 1 (TNF-R1)-mediated NF-kappaB activation. Accordingly, TRAF1 inhibited CD40-dependent but not TNF-R1-dependent NF-kappaB activation. Moreover, down-regulation of TRAF1 with small interfering RNAs enhanced CD40/CD40 ligand-induced NF-kappaB activation but showed no effect on TNF signaling. Because of the trimeric organization of TRAF proteins, we propose that the stoichiometry of TRAF1-TRAF2 heteromeric complexes ((TRAF2)2-TRAF1 versus TRAF2-(TRAF1)2) determines their capability to mediate CD40 signaling but has no major effect on TNF signaling.  相似文献   

15.
Signaling through CD40 in B cells leads to B cell proliferation, Ig and IL-6 secretion, isotype switching, and up-regulation of surface molecules. TNF receptor-associated factor (TRAF) proteins associate with the cytoplasmic tail of CD40 and act as adapter molecules. Of the six TRAFs identified to date, TRAFs 2, 3, 5, and 6 are reported to associate directly with the cytoplasmic tail of CD40, but previous studies have principally examined transient overexpression of TRAF6 in cells that do not normally express CD40. Thus, we examined the role of TRAF6 in CD40-mediated B lymphocyte effector functions using two approaches. We produced and stably expressed in mouse B cell lines a human CD40 molecule with two cytoplasmic domain point mutations (hCD40EEAA); this mutant fails to bind TRAF6, while showing normal association with TRAFs 2 and 3. We also inducibly expressed in B cells a transfected "dominant-negative" TRAF6 molecule which contains only the C-terminal TRAF-binding domain of TRAF6. Using both molecules, we found that TRAF6 association with CD40 is important for CD40-induced IL-6 and Ig secretion, and that TRAF6 mediates its effects on CD40-stimulated Ig secretion principally through its effects on IL-6 production by the B cell. TRAF6 association with CD40 was also found to be important for B7-1 up-regulation, but not for up-regulation of other surface molecules. Interestingly, however, although we could show TRAF6-dependent CD40-mediated activation of NF-kappaB in 293 kidney epithelial cells, no such effect was seen in B cells, suggesting that TRAF6 has cell-type-specific functions.  相似文献   

16.
Engagement of CD40 on murine B cells by its ligand CD154 induces the binding of TNFR-associated factors (TRAFs) 1, 2, 3, and 6, followed by the rapid degradation of TRAFs 2 and 3. TRAF degradation occurs in response to signaling by other TNFR superfamily members, and is likely to be a normal regulatory component of signaling by this receptor family. In this study, we found that receptor-induced TRAF degradation limits TRAF2-dependent CD40 signals to murine B cells. However, TRAFs 1 and 6 are not degraded in response to CD40 engagement, despite their association with CD40. To better understand the mechanisms underlying differential TRAF degradation, mixed protein domain TRAF chimeras were analyzed in murine B cells. Chimeras containing the TRAF2 zinc (Zn) domains induced effective degradation, if attached to a TRAF domain that binds to the PXQXT motif of CD40. However, the Zn domains of TRAF3 and TRAF6 could not induce degradation in response to CD40, regardless of the TRAF domains to which they were attached. Our data indicate that TRAF2 serves as the master regulator of TRAF degradation in response to CD40 signaling, and this function is dependent upon both the TRAF Zn domains and receptor binding position.  相似文献   

17.
The emerging role of CD40, a tumor necrosis factor (TNF) receptor family member, in immune regulation, disease pathogenesis, and cancer therapy necessitates the analysis of CD40 signal transduction in a wide range of tissue types. In this study we present evidence that the CD40-interacting proteins TRAF2 and TRAF6 play an important physiological role in CD40 signaling in nonhemopoietic cells. Using mutational analysis of the CD40 cytoplasmic tail, we demonstrate that the specific binding of TRAF2 to CD40 is required for efficient signaling on the NF-kappaB, Jun N-terminal protein kinase (JNK), and p38 axis. In fibroblasts lacking TRAF2 or in carcinoma cells in which TRAF2 has been depleted by RNA interference, the CD40-mediated activation of NF-kappaB and JNK is significantly reduced, and the activation of p38 and Akt is severely impaired. Interestingly, whereas the TRAF6-interacting membrane-proximal domain of CD40 has a minor role in signal transduction, studies utilizing TRAF6 knockout fibroblasts and RNA interference in epithelial cells reveal that the CD40-induced activation of NF-kappaB, JNK, p38, and Akt requires the integrity of TRAF6. Furthermore, we provide evidence that TRAF6 regulates CD40 signal transduction not only through its direct binding to CD40 but also indirectly via its association with TRAF2. These observations provide novel insight into the mechanisms of CD40 signaling and the multiple roles played by TRAF6 in signal transduction.  相似文献   

18.
Tumor necrosis factor receptor-associated factors (TRAFs) associate with the CD40 cytoplasmic domain and initiate signaling after CD40 receptor multimerization by its ligand. We used saturating peptide-based mutational analyses of the TRAF1/TRAF2/TRAF3 and TRAF6 binding sequences in CD40 to finely map residues involved in CD40-TRAF interactions. The core binding site for TRAF1, TRAF2, and TRAF3 in CD40 could be minimally substituted. The TRAF6 binding site demonstrated more amino acid sequence flexibility and could be optimized. Point mutations that eliminated or enhanced binding of TRAFs to one or both sites were made in CD40 and tested in quantitative CD40-TRAF binding assays. Sequences flanking the core TRAF binding sites were found to modulate TRAF binding, and the two TRAF binding sites were not independent. Cloned stable transfectants of human embryonic kidney 293 cells that expressed wild type CD40 or individual CD40 mutations were used to demonstrate that both TRAF binding sites were required for optimal NF-kappaB and c-Jun N-terminal kinase activation. In contrast, p38 mitogen-activated protein kinase activation was primarily dependent upon TRAF6 binding. These studies suggest a role in CD40 signaling for competitive TRAF binding and imply that CD40 responses reflect an integration of signals from individual TRAFs.  相似文献   

19.
20.
MIP-T3 is a human protein found previously to associate with microtubules and the kinesin-interacting neuronal protein DISC1 (Disrupted-in-Schizophrenia 1), but whose cellular function(s) remains unknown. Here we demonstrate that the C. elegans MIP-T3 ortholog DYF-11 is an intraflagellar transport (IFT) protein that plays a critical role in assembling functional kinesin motor-IFT particle complexes. We have cloned a loss of function dyf-11 mutant in which several key components of the IFT machinery, including Kinesin-II, as well as IFT subcomplex A and B proteins, fail to enter ciliary axonemes and/or mislocalize, resulting in compromised ciliary structures and sensory functions, and abnormal lipid accumulation. Analyses in different mutant backgrounds further suggest that DYF-11 functions as a novel component of IFT subcomplex B. Consistent with an evolutionarily conserved cilia-associated role, mammalian MIP-T3 localizes to basal bodies and cilia, and zebrafish mipt3 functions synergistically with the Bardet-Biedl syndrome protein Bbs4 to ensure proper gastrulation, a key cilium- and basal body-dependent developmental process. Our findings therefore implicate MIP-T3 in a previously unknown but critical role in cilium biogenesis and further highlight the emerging role of this organelle in vertebrate development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号