首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Laminar shear stress (LSS) is known to increase endothelial nitric oxide (NO) production, which is essential for vascular health, through expression and activation of nitric oxide synthase 3 (NOS3). Recent studies demonstrated that LSS also increases the expression of argininosuccinate synthetase 1 (ASS1) that regulates the provision of L-arginine, the substrate of NOS3. It was thus hypothesized that ASS1 might contribute to vascular health by enhancing NO production in response to LSS. This hypothesis was pursued in the present study by modulating NOS3 and ASS1 levels in cultured endothelial cells. Exogenous expression of either NOS3 or ASS1 in human umbilical vein endothelial cells increased NO production and decreased monocyte adhesion stimulated by tumor necrosis factor-α (TNF-α). The latter effect of overexpressed ASS1 was reduced when human umbilical vein endothelial cells were co-treated with small interfering RNAs (siRNAs) for ASS1 or NOS3. SiRNAs of NOS3 and ASS1 attenuated the increase of NO production in human aortic endothelial cells stimulated by LSS (12 dynes·cm(-2)) for 24 h. LSS inhibited monocyte adhesion to human aortic endothelial cells stimulated by TNF-α, but this effect of LSS was abrogated by siRNAs of NOS3 and ASS1 that recovered the expression of vascular cell adhesion molecule-1. The current study suggests that the expression of ASS1 harmonized with that of NOS3 may be important for the optimized endothelial NO production and the prevention of the inflammatory monocyte adhesion to endothelial cells.  相似文献   

3.
Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases.  相似文献   

4.
Endothelial argininosuccinate synthetase 1 (ASS1) regulates the provision of l-arginine to nitric oxide synthase 3 (NOS3). Previous studies demonstrated that endothelial ASS1 expression was induced by laminar shear stress (LSS) and that this enzyme plays a role in maintaining anti-inflammatory microenvironments through enhancing NO production. However, differently from the case of NOS3, the regulatory mechanism for the endothelial ASS1 expression in response to LSS is not well understood. This study addressed a specific issue whether endothelial ASS1 expression is regulated by Kruppel-like factors (KLFs) that are presumed to coordinate endothelial gene expressions in response to LSS. The cDNA microarray data indicated that LSS stimulated the expression of numerous KLFs in human umbilical vein endothelial cells. KLF4 showed the highest fold increase and LSS-dependent increases of KLF4 and most other KLFs were similar in young versus senescent endothelial cells. LSS-induced KLF4 expression was verified by RT-PCR and Western blotting. LSS-induced ASS1 expression and NO production were suppressed by a small interfering RNA for KLF4. The ectopic expression of KLF4 led to the increase of ASS1 expression and NO production. The present study demonstrated a key regulatory role of KLF4 in the endothelial ASS1 expression and NO production in response to LSS.  相似文献   

5.
Animal studies have suggested that nitric oxide (NO) synthases (NOS) play a role in the regulation of protein metabolism in endotoxemia. We therefore investigated the role of inducible NOS (NOS2) on intestinal protein and neuronal NOS (NOS1) and endothelial NOS (NOS3) on amino acid metabolism. Three groups of mice were studied: 1) wild-type (WT), 2) NOS2 knockout (NOS2-KO), and 3) NOS2-KO + N(omega)-nitro-l-arginine methyl ester (NOS2-KO + l-NAME), both in nonstimulated and LPS-treated conditions. By infusion of the stable isotopes l-[phenyl-(2)H(5)]Phe, l-[phenyl-(2)H(2)]Tyr, l-[guanidino-(15)N(2)]Arg, and l-[ureido-(13)C; (2)H(2)]citrulline (Cit), intestinal protein, amino acid, and Arg/NO metabolism were studied on the whole body level and across intestine. In nonstimulated situations, NOS2 deficiency increased whole body protein turnover and intestinal Gln uptake and Cit production. In NOS2-KO + l-NAME, the above-mentioned changes were reversed. After LPS in WT, whole body NO and Cit production increased. In contrast to this, LPS decreased net intestinal Gln uptake, whole body NO, and Cit production in NOS2-KO mice. Treatment of NOS2-KO + l-NAME with LPS was lethal in eight of eleven mice (73%). The surviving mice in this group showed a major drop in intestinal protein breakdown and synthesis to almost zero. Thus both in baseline conditions and during endotoxemia, the absence of NOS2 upregulated NOS1 and/or NOS3, which increased intestinal metabolism. The drop in intestinal protein metabolism in the endotoxemic NOS2-KO + l-NAME group might play a role in mortality in that group.  相似文献   

6.
The expression of the argininosuccinate synthetase gene (ASS), the limiting enzyme of arginine synthesis, was previously shown to be rapidly induced by a short-term (4 h) exposure to IL-1beta in Caco-2 cells [Biochimie, 2005, 403-409]. The present report shows that, by contrast, a long-term (24 h) exposure to IL-1beta inhibited the ASS activity despite an increase in both specific mRNA level and protein amount, demonstrating a post-translational effect. Concerning the mechanism involved, we demonstrate that the inhibiting effect is linked to the production of nitric oxide (NO) induced by IL-1beta. Indeed, the inhibiting effect of IL-1beta was totally blocked in the presence of l-NMMA, an inhibitor of the inducible nitric oxide synthase, or by culturing the cells in an arginine-deprived medium. Moreover, a decrease in the ASS activity was induced by culturing the cells in the presence of SNAP, a NO donor. Conversely, blocking the action of NO by antioxidant agents, the stimulatory effect of IL-1beta on ASS activity was restored, as measured at 24 h. Finally, such an inhibiting effect of NO on ASS activity may be related, at least in part, to S-nitrosylation of the protein. The physiological relevance of the antagonistic effects of IL-1beta and NO on ASS is discussed.  相似文献   

7.
Neuronal nitric oxide (NO) levels are modulated through the control of catalytic activity of NO synthase (NOS). Although signals limiting excess NO synthesis are being extensively studied in the vertebrate nervous system, our knowledge is rather limited on the control of NOS in neurons of invertebrates. We have previously reported a transient inactivation of NOS in hibernating snails. In the present study, we aimed to understand the mechanism leading to blocked NO production during hypothermic periods of Helix pomatia. We have found that hypothermic challenge translocated NOS from the cytosol to the perinuclear endoplasmic reticulum, and that this cytosol to membrane trafficking was essential for inhibition of NO synthesis. Cold stress also downregulated NOS mRNA levels in snail neurons, although the amount of NOS protein remained unaffected in response to hypothermia. Our studies with cultured neurons and glia cells revealed that glia-neuron signaling may inhibit membrane binding and inactivation of NOS. We provide evidence that hypothermia keeps NO synthesis "hibernated" through subcellular redistribution of NOS.  相似文献   

8.
Almost all about citrulline in mammals   总被引:2,自引:0,他引:2  
Summary. Citrulline (Cit, C6H13N3O3), which is a ubiquitous amino acid in mammals, is strongly related to arginine. Citrulline metabolism in mammals is divided into two fields: free citrulline and citrullinated proteins. Free citrulline metabolism involves three key enzymes: NO synthase (NOS) and ornithine carbamoyltransferase (OCT) which produce citrulline, and argininosuccinate synthetase (ASS) that converts it into argininosuccinate. The tissue distribution of these enzymes distinguishes three “orthogonal” metabolic pathways for citrulline. Firstly, in the liver, citrulline is locally synthesized by OCT and metabolized by ASS for urea production. Secondly, in most of the tissues producing NO, citrulline is recycled into arginine via ASS to increase arginine availability for NO production. Thirdly, citrulline is synthesized in the gut from glutamine (with OCT), released into the blood and converted back into arginine in the kidneys (by ASS); in this pathway, circulating citrulline is in fact a masked form of arginine to avoid liver captation. Each of these pathways has related pathologies and, even more interestingly, citrulline could potentially be used to monitor or treat some of these pathologies. Citrulline has long been administered in the treatment of inherited urea cycle disorders, and recent studies suggest that citrulline may be used to control the production of NO. Recently, citrulline was demonstrated as a potentially useful marker of short bowel function in a wide range of pathologies. One of the most promising research directions deals with the administration of citrulline as a more efficient alternative to arginine, especially against underlying splanchnic sequestration of amino acids. Protein citrullination results from post-translational modification of arginine; that occurs mainly in keratinization-related proteins and myelins, and insufficiencies in this citrullination occur in some auto-immune diseases such as rheumatoid arthritis, psoriasis or multiple sclerosis.  相似文献   

9.
In the cephalopod mollusk Octopus vulgaris, the gonadotropic hormone released by the optic gland controls sexual maturity. Several lobes of the central nervous system control the activity of this gland. In one of these lobes, the olfactory lobe, a gonadotropin releasing hormone (GnRH) neuronal system has been described. We assume that several inputs converge on the olfactory lobes in order to activate GnRH neurons and that a glutamatergic system mediates the integration of stimuli on these neuropeptidergic neurons. The presence of N-methyl-d-aspartate (NMDA) receptor immunoreactivity in the neuropil of olfactory lobes and in the fibers of the optic gland nerve, along with the GnRH nerve endings strongly supports this hypothesis. A distinctive role in the control of GnRH secretion has also been attributed, in vertebrates, to nitric oxide (NO). The lobes and nerves involved in the nervous control of reproduction in Octopus contain nitric oxide synthase (NOS). Using a set of experiments aimed at manipulate a putative l-glutamate/NMDA/NO signal transduction pathway, we have demonstrated, by quantitative real-time PCR, that NMDA enhances the expression of GnRH mRNA in a dose-response manner. The reverting effect of a selective antagonist of NMDA receptors (NMDARs), 2-amino-5-phosphopentanoic acid (D-APV), confirms that such an enhancing action is a NMDA receptor-mediated response. Nitric oxide and calcium also play a positive role on GnRH mRNA expression. The results suggest that in Octopusl-glutamate could be a key molecule in the nervous control of sexual maturation.  相似文献   

10.
The dynamic regulation of nitric oxide synthase (NOS) activity and cGMP levels suggests a functional role in the development of nervous systems. We report evidence for a key role of the NO/cGMP signalling cascade on migration of postmitotic neurons in the enteric nervous system of the embryonic grasshopper. During embryonic development, a population of enteric neurons migrates several hundred micrometers on the surface of the midgut. These midgut neurons (MG neurons) exhibit nitric oxide-induced cGMP-immunoreactivity coinciding with the migratory phase. Using a histochemical marker for NOS, we identified potential sources of NO in subsets of the midgut cells below the migrating MG neurons. Pharmacological inhibition of endogenous NOS, soluble guanylyl cyclase (sGC) and protein kinase G (PKG) activity in whole embryo culture significantly blocks MG neuron migration. This pharmacological inhibition can be rescued by supplementing with protoporphyrin IX free acid, an activator of sGC, and membrane-permeant cGMP, indicating that NO/cGMP signalling is essential for MG neuron migration. Conversely, the stimulation of the cAMP/protein kinase A signalling cascade results in an inhibition of cell migration. Activation of either the cGMP or the cAMP cascade influences the cellular distribution of F-actin in neuronal somata in a complementary fashion. The cytochemical stainings and experimental manipulations of cyclic nucleotide levels provide clear evidence that NO/cGMP/PKG signalling is permissive for MG neuron migration, whereas the cAMP/PKA cascade may be a negative regulator. These findings reveal an accessible invertebrate model in which the role of the NO and cyclic nucleotide signalling in neuronal migration can be analyzed in a natural setting.  相似文献   

11.
Nitric oxide (NO) regulates numerous processes during endotoxemia and inflammation. However, the sequential changes in whole body (Wb) nitric oxide (NO) production during endotoxemia in vivo remain to be clarified. Male Swiss mice were injected intraperitoneally with saline (control group) or lipopolysaccharide (LPS group). After 0, 2, 4, 6, 9, 12, and 24 h, animals received a primed constant infusion of L-[guanidino-(15)N(2)-(2)H(2)]arginine, L-[ureido-(15)N]citrulline, L-[5-(15)N]glutamine, and L-[ring-(2)H(5)]phenylalanine in the jugular vein. Arterial blood was collected for plasma arginine (Arg), citrulline (Cit), glutamine (Gln), and phenylalanine (Phe) concentrations and tracer-to-tracee ratios. NO production was calculated as plasma Arg-to-Cit flux, Wb de novo Arg synthesis as plasma Cit-to-Arg flux, and Wb protein breakdown as plasma Phe flux. LPS reduced plasma Arg and Cit and increased Gln and Phe concentrations. Two peaks of NO production were observed at 4 and 12 h after LPS. Although LPS did not affect total Arg production, de novo Arg production decreased after 12 h. The second peak of NO production coincided with increased Wb Cit, Gln, and Phe production. In conclusion, the curve of NO production in both early and late phases of endotoxemia is not related to plasma Arg kinetics. However, because Wb Cit, Gln, and Phe fluxes increased concomitantly with the second peak of NO production, NO production is probably related to the catabolic phase of endotoxemia.  相似文献   

12.
13.
This paper deals with enzymological, immunochemical and molecular genetic analyses of citrullinemia and argininosuccinic aciduria. Citrullinemia has been classified by Saheki et al. [J. inher. Metab. Dis. 8: 155-156, 1985] into three types from the properties of the deficient argininosuccinate synthetase (ASS) of the patients. Analysis of hepatic mRNA coding for ASS revealed certain characteristics in type II and III citrullinemic patients whose hepatic ASS protein was low. A newly developed enzyme-linked immunosorbent assay (ELISA) of argininosuccinate lyase (ASL) protein showed that 8 out of ten cases of argininosuccinic aciduria had no detectable ASL protein in the liver, erythrocytes, cultured skin fibroblasts or cultured amniocytes.  相似文献   

14.
Nitric oxide promotes differentiation of rat white preadipocytes in culture   总被引:8,自引:0,他引:8  
The putative role of nitric oxide (NO) in modulating adipogenesis was investigated in cultured preadipocytes derived from rat white adipose tissue. The NO releasing reagent, hydroxylamine (HA), and nitric oxide synthase (NOS) substrate L-arginine (Arg) had no influence on cell replication. However, both HA and Arg exhibited significant induction on differentiation, as evidenced by increased lipoprotein lipase (LPL) and glycerol-3-phosphate dehydrogenase (GPDH) activities, as well as accelerated triacylglycerol (TG) accumulation. These observations suggested a positive role of NO in modulating adipogenesis. Preadipocytes were found to produce NO, and a approximately 50% increase over basal level was observed on the first 2 days of differentiation. Deprivation of endogenous NOS activity by a non-selective NOS inhibitor, N(G)-monomethyl-L-arginine (NMMA), partially abrogated the differentiation process, implicating a role for endogenous NO to stimulate preadipocyte differentiation. Both NOS isoforms, eNOS and iNOS, were detected in differentiating preadipocytes. Specific iNOS inhibitors (1400W and aminoguanidine) had little influence on NO production and differentiation, suggesting that eNOS rather than iNOS may be the major isoform involved in modulating adipogenesis.  相似文献   

15.
Fan W  Huang F  Wu Z  Zhu X  Li D  He H 《Nitric oxide》2012,26(1):32-37
Nitric oxide (NO) is a free radical gas that has been shown to be produced by nitric oxide synthase (NOS) in different cell types and recognized to act as a neurotransmitter or neuromodulator in the nervous system. NOS isoforms are expressed and/or can be induced in the related structures of trigeminal nerve system, in which the regulation of NOS biosynthesis at different levels of gene expression may allow for a fine control of NO production. Several lines of evidence suggest that NO may play a role through multiple mechanisms in orofacial pain processing. This report will review the latest evidence for the role of NO involved in orofacial pain and the potential cellular mechanisms are also discussed.  相似文献   

16.
本文用一氧化氮合酶和乙酰胆碱酯酶双重显示法,对大鼠回肠肌间神经丛进行了组织化学观察,结果发现三种不同染色的神经元:(1)乙酰胆碱酯酶阳性神经元(占82%);(2)一氧化氮合酶阳性神经元(占16%);(3)一氧化氮合酶和乙酰胆碱酯酶阳性神经元(占2%)。以上结果提示,一氧化氮可以与乙酰胆碱共存于大鼠回肠肌间神经丛的少数神经元内。本文还对肠肌间神经丛内神经元的类型和一氧化氮的作用进行了讨论。  相似文献   

17.
Production of nitric oxide (NO), an evolutionarily conserved, intercellular signaling molecule, appears to be required for the maintenance of the larval state in the gastropod mollusc Ilyanassa obsoleta. Pharmacological inactivation of endogenous nitric oxide synthase (NOS), the enzyme that generates NO, can trigger metamorphosis in physiologically competent larvae of this species. Neuropils in the brains of these competent larvae display histochemical reactivity for NADPH diaphorase (NADPHd), an indication of neuronal NOS activity. The intensity of NADPHd staining is greatest in the neuropil of the apical ganglion (AG), a region of the brain that contains the apical sensory organ and that innervates the bilobed ciliated velum, the larval swimming and feeding organ. Once metamorphosis is initiated, the intensity of NADPHd staining in the AG and presumably, concomitant NO production, decline. The AG is finally lost by the end of larval metamorphosis, some 4 days after induction. To determine if the neurons of the AG are a source of larval NO, we conducted immunocytochemical studies on larval Ilyanassa with commercially available antibodies to mammalian neuronal NOS. We localized NOS-like immunoreactivity (NOS-IR) to 3 populations of cells in competent larvae: somata of the AG and putative sensory neurons in the edge of the mantle and foot. Immunocytochemistry on pre-competent larvae demonstrated that numbers of NOS-IR cells in the AG increase throughout the planktonic larval stage.  相似文献   

18.
Argininosuccinate synthase (ASS) is the rate-limiting enzyme in the urea cycle. Along with nitric oxide synthase (NOS)-2, ASS endows cells with the L-citrulline/nitric oxide (NO·) salvage pathway to continually supply L-arginine from L-citrulline for sustained NO· generation. Because of the relevant role of NOS in liver injury, we hypothesized that downregulation of ASS could decrease the availability of intracellular substrate for NO· synthesis by NOS-2 and, hence, decrease liver damage. Previous work demonstrated that pyrazole plus LPS caused significant liver injury involving NO· generation and formation of 3-nitrotyrosine protein adducts; thus, wild-type (WT) and Ass+/- mice (Ass+/+ mice are lethal) were treated with pyrazole plus LPS, and markers of nitrosative stress, as well as liver injury, were analyzed. Partial ablation of Ass protected from pyrazole plus LPS-induced liver injury by decreasing nitrosative stress and hepatic and circulating TNFα. Moreover, apoptosis was prevented, since pyrazole plus LPS-treated Ass+/- mice showed decreased phosphorylation of JNK; increased MAPK phosphatase-1, which is known to deactivate JNK signaling; and lower cleaved caspase-3 than treated WT mice, and this was accompanied by less TdT-mediated dUTP nick end labeling-positive staining. Lastly, hepatic neutrophil accumulation was almost absent in pyrazole plus LPS-treated Ass+/- compared with WT mice. Partial Ass ablation prevents pyrazole plus LPS-mediated liver injury by reducing nitrosative stress, TNFα, apoptosis, and neutrophil infiltration.  相似文献   

19.
(6R)-5,6,7,8-Tetrahydro-L-biopterin (R-THBP) is a cofactor not only for aromatic amino acid hydroxylases in mammalian tissues but also for nitric oxide synthase (NOS) induced by endotoxins or cytokines in some kinds of cells. Recently it has been reported that nitric oxide (NO) has biological activity in endothelium and in brain as well. NO activates soluble guanylate cyclase (sGC). Superoxide reacts with NO easily and shortens the half-life of NO actions. We found, in a study using rat cerebellar cytosol fraction, that R-THBP itself did not directly activate sGC, but activated sGC at concentrations ranging from 0.1 to 10 microM only under NO generating conditions of activated NOS and in the presence of sodium nitroprusside. In addition, R-THBP (1 microM) did not alter the NOS activity, which was determined by L-citrulline formation. These results suggest that R-THBP may regulate sGC activity associated with NO formation in the central nervous system.  相似文献   

20.
Abstract: The glial-derived neurotrophic protein S100β has been implicated in the development and maintenance of the nervous system. S100β has also been postulated to play a role in mechanisms of neuropathology because of its specific localization and selective overexpression in Alzheimer's disease. However, the exact relationship between S100β overexpression and neurodegeneration is unclear. Recent data have demonstrated that treatment of cultured rat astrocytes with high concentrations of S100β results in a potent activation of inducible nitric oxide synthase (iNOS) and a subsequent generation of nitric oxide (NO), which can lead to astrocytic cell death. To investigate whether S100β-induced NO release from astrocytes might influence neurons, we studied S100β effects on neuroblastoma B104 cells or primary hippocampal neurons co-cultured with astrocytes. We found that S100β treatment of astrocyte-neuron co-cultures resulted in neuronal cell death by both necrosis and apoptosis. Neuronal cell death induced by S100β required the presence of astrocytes and depended on activation of iNOS. Cell death correlated with the levels of NO and was blocked by a specific NOS inhibitor. Our data support the idea that overexpression of S100β may be an exacerbating factor in the neurodegeneration of Alzheimer's disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号