首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 53 毫秒
1.
In addition to reducing fitness by consuming reproductive structures, florivores may also reduce plant fitness by altering interactions with pollinators. To date, the effects of florivore activity on the volatile profile of flowers and subsequent attractiveness to pollinators have not been extensively investigated. In this study, we had three specific objectives: to determine the impact of florivory by the parsnip webworm Depressaria pastinacella on the floral volatile profile of the wild parsnip Pastinaca sativa, to ascertain the mechanisms by which florivory changes the volatile profile, and to estimate the consequences of florivory on visitation by pollinators and eventual seed set. An overall indirect effect of webworms on seed set, that is, the effect of infestation on pollination success, was not detected. However, this overall lack of indirect effect masks the heterogeneity among individual plants. For seven of 14 plants examined, pollination success was altered by webworms, and in four of these plants the alteration in pollination success was consistent with webworm-altered visitation. Webworms significantly altered floral fragrance, in particular causing disproportionate increases in the emissions of octyl esters. Additionally, volatiles from webworm frass, which contains large amounts of the octyl ester metabolite n-octanol, may alter the floral fragrance in ways that change attractiveness of flowers to pollinators. This study suggests that the effects of florivores on plant fitness are not limited to the removal of floral units but may also involve alterations in floral volatile composition, through damage-induced release and detoxification of particular constituents, that affect visitation and pollination success. Handling Editor: Steve Johnson. An erratum to this article can be found at  相似文献   

2.
McCall AC  Barr CM 《Oecologia》2012,170(1):147-157
Although florivores can destroy significant amounts of sexual tissues and indirectly affect pollination, little is known about their preferences, which could shape the evolution of floral traits or defense. In this study, we used a gynodioecious plant Nemophila menziesii, and its main florivore Platyprepia virginalis, to test which floral characteristics are associated with florivory in the field and with florivore choice in the laboratory. Hermaphrodite flowers consistently received more damage than nearby females in the field. In the laboratory setting, florivores also preferred unmanipulated hermaphrodites versus unmanipulated females. Systematic evaluation of hermaphrodite traits, such as corolla size, anther presence, and corolla color, revealed that corolla diameter was the main determinant of florivore preference in this system. Here, we discuss the implications of both pollinator and florivore choice in the evolution of corolla size and sex ratio in gynodioecious species with cytoplasmic male sterility and emphasize the need for more information on the preferences of florivores.  相似文献   

3.
Little is known about how plants protect flowers—their reproductive organs—against florivory. Additionally, the induced floral defense system has been examined in only a few species. We tested the inducibility of putative floral defenses and investigated the relationship between natural florivory and the floral defenses of 12 naturally growing plant species. The relationships between florivory and four chemical traits (nitrogen, phosphorus, total phenolics, and condensed tannins) were investigated in 12 plant species. We also studied whether flowers induce changes in chemical defenses in response to artificial damage in 10 plant species. A higher concentration of floral nitrogen was associated with a decreasing frequency of florivore attacks. Among the four traits of the 10 plant species studied, no trait changed in response to the artificial damage. We suggest that induced defense systems may not be advantageous for flowers, although it is also possible that these species simply do not use induced defense in any of their plant parts.  相似文献   

4.
Plants are faced with a trade-off between on the one hand growth, development and reproduction and on the other hand defence against environmental stresses. Yet, research on insect-plant interactions has addressed plant-pollinator interactions and plant-attacker interactions separately. Plants have evolved a high diversity of constitutive and induced responses to attack, including the systemic emission of herbivore-induced plant volatiles (HIPVs). The effect of HIPVs on the behaviour of carnivorous insects has received ample attention for leaf-feeding (folivorous) species and their parasitoids and predators. Here, we review whether and to what extent HIPVs affect the interaction of plants in the flowering stage with mutualistic and antagonistic insects. Whereas the role of flower volatiles in the interactions between plants and insect pollinators has received increased attention over the last decade, studies addressing both HIPVs and pollinator behaviour are rare, despite the fact that in a number of plant species herbivory is known to affect flower traits, including size, nectar secretion and composition. In addition, folivory and florivory can also result in significant changes in flower volatile emission and in most systems investigated, pollinator visitation decreased, although exceptions have been found. Negative effects of HIPVs on pollinator visitation rates likely exert negative selection pressure on HIPV emission. The systemic nature of herbivore-induced plant responses and the behavioural responses of antagonistic and mutualistic insects, requires the study of volatile emission of entire plants in the flowering stage. We conclude that approaches to integrate the study of plant defences and pollination are essential to advance plant biology, in particular in the context of the trade-off between defence and growth/reproduction.  相似文献   

5.
Edaphic factors can lead to differences in plant morphology and tissue chemistry. However, whether these differences result in altered plant–insect interactions for soil-generalist plants is less understood. We present evidence that soil chemistry can alter plant–insect interactions both directly, through chemical composition of plant tissue, and indirectly, through plant morphology, for serpentine-tolerant Mimulus guttatus (Phrymaceae). First, we scored floral display (corolla width, number of open flowers per inflorescence, and inflorescence height), flower chemistry, pollinator visitation and florivory of M. guttatus growing on natural serpentine and non-serpentine soil over 2 years. Second, we conducted a common garden reciprocal soil transplant experiment to isolate the effect of serpentine soil on floral display traits and flower chemistry. And last, we observed arrays of field-collected inflorescences and potted plants to determine the effect of soil environment in the field on pollinator visitation and florivore damage, respectively. For both natural and experimental plants, serpentine soil caused reductions in floral display and directly altered flower tissue chemistry. Plants in natural serpentine populations received fewer pollinator visits and less damage by florivores relative to non-serpentine plants. In experimental arrays, soil environment did not influence pollinator visitation (though larger flowers were visited more frequently), but did alter florivore damage, with serpentine-grown plants receiving less damage. Our results demonstrate that the soil environment can directly and indirectly affect plant–mutualist and plant–antagonist interactions of serpentine-tolerant plants by altering flower chemistry and floral display.  相似文献   

6.
1. The neural constraint hypothesis has been investigated in the field of insect–plant interactions. It predicts that the consumer's detection ability, time spent on resources, and efficiency in resource use are affected by different aspects of resource availability. 2. The applicability of this hypothesis in florivory, however, generally lacks a mechanistic understanding of the effect of resource density on neural constraint, so using caged experiments, the (i) ability of a generalist, floriphilic katydid [(Phaneroptera brevis (Serville)] to find a floral resource (inflorescences of Bidens pilosa L.), (ii) attentiveness of the katydid on this resource after successfully detecting the floral resource, and (iii) efficiency of resource use under varying densities of the floral resource were studied. 3. The present results indicated no evidence of an obvious effect of floral resource density on the detection of resources by the florivore but an increase in floral‐resource density generally led to lower efficiency and attentiveness in the foraging katydids. 4. These findings provide the first evidence of the neural constraint hypothesis in the context of resource density and corroborate the applicability of the neural constraint hypothesis in florivory.  相似文献   

7.
Species often interact indirectly with each other via their traits. There is increasing appreciation of trait‐mediated indirect effects linking multiple interactions. Flowers interact with both pollinators and floral herbivores, and the flower‐pollinator interaction may be modified by indirect effects of floral herbivores (i.e., florivores) on flower traits such as flower size attracting pollinators. To explore whether flower size affects the flower‐pollinator interaction, we used Eurya japonica flowers. We examined whether artificial florivory decreased fruit and seed production, and also whether flower size affected florivory and the number of floral visitors. The petal removal treatment (i.e., artificial florivory) showed approximately 50% reduction in both fruit and seed set in natural pollination but not in artificial pollination. Furthermore, flower size increased the number of floral visitors, although it did not affect the frequency of florivory. Our results demonstrate that petal removal indirectly decreased 75% of female reproductive output via decreased flower visits by pollinators and that flower size mediated indirect interactions between florivory and floral visitors.  相似文献   

8.
The interaction between the European wild parsnip Pastinaca sativa and its coevolved florivore the parsnip webworm Depressaria pastinacella, established in North America for over 150 years, has resulted in evolution of local chemical phenotype matching. The recent invasion of New Zealand by webworms, exposing parsnips there to florivore selection for the first time, provided an opportunity to assess rates of adaptive response in a real‐time experiment. We planted reciprocal common gardens in the USA and NZ with seeds from (1) US populations with a long history of webworm association; (2) NZ populations that had never been infested and (3) NZ populations infested for 3 years (since 2007) or 6 years (since 2004). We measured impacts of florivory on realized fitness, reproductive effort and pollination success and measured phenotypic changes in infested NZ populations relative to uninfested NZ populations to determine whether rapid adaptive evolution in response to florivory occurred. Irrespective of country of origin or location, webworms significantly reduced plant fitness. Webworms reduced pollination success in small plants but not in larger plants. Although defence chemistry remained unchanged, plants in infested populations were larger after 3–6 years of webworm florivory. As plant size is a strong predictor of realized fitness, evolution of large size as a component of florivore tolerance may occur more rapidly than evolution of enhanced chemical defence.  相似文献   

9.
Flowers of dioecious plants have sexually dimorphic traits that may affect florivore performances, and florivores may have preferences to plant sex that are correlated with their performance on different plant sexes. We investigated the florivory on a polygamodioecious evergreen shrub Eurya japonica in Japan to reveal florivores and their feeding patterns involved in sexually biased florivory on E. japonica flowers. Flowers of E. japonica were infested by lepidopteran and dipteran larvae and hemipteran insects. Lepidopteran larvae were chewers, dipteran larvae were gall makers and hemipteran insects were suckers. Chewed flowers were most frequent among infested flowers. Of florivores, lepidopteran larvae, mostly of Geometridae, were the important florivore that damaged flowers by chewing. Florivores infested male flower buds more often than female flower buds, but only a geometrid larvae Chloroclystis excise, which exclusively uses flower buds, showed the biased infection on male flowers. Rearing experiments for two other geometrid moths which use both leaves and flowers showed that the preference and performance of Ourapteryx nivea that fed mainly leaves did not differ between the plant sexes, whereas the development of Alcis angulifera larvae which fed both leaves and flowers was slower when they fed female than male leaves and flower buds. In addition, A. angulifera larvae fed fewer flower buds on female than on male plants. These results show that the male‐biased florivory on E. japonica trees is attributed mainly to the specialist florivore and also feeding preference for male flowers in an opportunistic florivore that feed both leaves and flowers.  相似文献   

10.
Although plant–animal interactions like pollination and herbivory are obviously interdependent, ecological investigations focus mainly on one kind of interaction ignoring the possible significance of the others. Plants with flowers offer an extraordinary possibility to study such mutualistic and antagonistic interactions since it is possible to measure changes in floral traits and fitness components in response to different organisms or combinations of them. In a three factorial common garden experiment we investigated single and combined effects of root herbivores, leaf herbivores and decomposers on flowering traits and plant fitness of Sinapis arvensis. Leaf herbivory negatively affected flowering traits indicating that it could significantly affect plant attractiveness to pollinators. Decomposers increased total plant biomass and seed mass indicating that plants use the nutrients liberated by decomposers to increase seed production. We suggest that S. arvensis faced no strong selection pressure from pollen limitation, for two reasons. First, reduced nutrient availability through leaf herbivory affected primarily floral traits that could be important for pollinator attraction. Second, improved nutrient supply through decomposer activity was invested in seed production and not in floral traits. This study indicates the importance of considering multiple plant–animal interactions simultaneously to understand selection pressures underlying plant traits and fitness.  相似文献   

11.
Plants experience unique challenges due to simultaneous life in two spheres, above- and belowground. Interactions with other organisms on one side of the soil surface may have impacts that extend across this boundary. Although our understanding of plant–herbivore interactions is derived largely from studies of leaf herbivory, belowground root herbivores may affect plant fitness directly or by altering interactions with other organisms, such as pollinators. In this study, we investigated the effects of leaf herbivory, root herbivory, and pollination on plant growth, subsequent leaf herbivory, flower production, pollinator attraction, and reproduction in cucumber (Cucumis sativus). We manipulated leaf and root herbivory with striped cucumber beetle (Acalymma vittatum) adults and larvae, respectively, and manipulated pollination with supplemental pollen. Both enhanced leaf and root herbivory reduced plant growth, and leaf herbivory reduced subsequent leaf damage. Plants with enhanced root herbivory produced 35% fewer female flowers, while leaf herbivory had no effect on flower production. While leaf herbivory reduced the time that honey bees spent probing flowers by 29%, probing times on root-damaged plants were over twice as long as those on control plants. Root herbivory increased pollen limitation for seed production in spite of increased honey bee preference for plants with root damage. Leaf damage and hand-pollination treatments had no effect on fruit production, but plants with enhanced root damage produced 38% fewer fruits that were 25% lighter than those on control plants. Despite the positive effect of belowground damage on honey bee visitation, root herbivory had a stronger negative effect on plant reproduction than leaf herbivory. These results demonstrate that the often-overlooked effects of belowground herbivores may have profound effects on plant performance.  相似文献   

12.
H. George Wang  Susan Mopper 《Oikos》2008,117(4):564-570
Most herbivore studies focus on foliage feeders, despite the potentially strong impact of florivores on plant fitness and ecological communities. Vertebrate florivory is particularly noteworthy because it destroys the inflorescence, and may affect the community of floral arthropods. Strong biotic forces such as florivory can be influenced by abiotic forces. For example, field studies indicate that white-tailed deer Odocoileus virginianus consume up to 90% of all flowers produced in Iris hexagona populations that inhabit high salinity wetlands, whereas freshwater iris populations suffer relatively little damage. We conducted a common garden experiment to investigate the potential effects of vertebrate florivory and salinity on two iris herbivores, the leafminer Cerodontha iridiphora , and the verbena bud moth, Endothenia hebesana . We administered four levels of florivory: zero (control), one, two, and three flowers removed per stalk, and applied three levels of salinity (0, 4 and 8 parts per thousand NaCl) in a full-factorial design. Florivory and salinity had separate and interacting effects on herbivore performance. Salinity was more detrimental to herbivores than florivory, which was beneficial at low levels. A positive effect of moderate salinity on sexual reproduction was reversed by florivory. Our research reveals complex interactions between environmental stress and florivory, an understudied form of herbivory. These interactions have implications for wetland ecological communities that are increasingly exposed to biotic and abiotic stress.  相似文献   

13.
Plant interactions with mutualists and antagonists vary remarkably across space, and have played key roles in the ecology and evolution of flowering plants. One dominant form of spatial variation is human modification of the landscape, including urbanization and suburbanization. Our goal was to assess how suburbanization affected plant–animal interactions in Gelsemium sempervirens in the southeastern United States, including interactions with mutualists (pollination) and antagonists (nectar robbing and florivory). Based on differences in plant–animal interactions measured in multiple replicate sites, we then developed predictions for how these differences would affect patterns of natural selection, and we explored the patterns using measurements of floral and defensive traits in the field and in a common garden. We found that Gelsemium growing in suburban sites experienced more robbing and florivory as well as more heterospecific but not conspecific pollen transfer. Floral traits, particularly corolla length and width, influenced the susceptibility of plants to particular interactors. Observational data of floral traits measured in the field and in a common garden provided some supporting but also some conflicting evidence for the hypothesis that floral traits evolved in response to differences in species interactions in suburban vs. wild sites. However, the degree to which plants can respond to any one interactor may be constrained by correlations among floral morphological traits. Taken together, consideration of the broader geographic context in which organisms interact, in both suburban and wild areas, is fundamental to our understanding of the forces that shape contemporary plant–animal interactions and selection pressures in native species.  相似文献   

14.
Some types of plant accumulate liquid in their inflorescences creating phytotelmata. These environments protect the flowers against florivory, although they may be colonized by aquatic or semi-aquatic florivorous insect larvae, whose effects on the fitness of the plants remain unclear. We tested the hypothesis of floral antagonism by the occupants of phytotelmata, which predicts that florivory by the occupants of the phytotelmata represents a cost to the female fitness of the plant, reducing its fecundity. We manipulated experimentally the infestation by 3 florivores larvae species occupants of phytotelmata in inflorescences of Heliconia spathocircinata (Heliconiaceae) to test for negative direct trophic effects on the fecundity of the flowering and fruiting bracts. We found that the foraging of the hoverfly (Syrphidae) and moth (Lepidoptera) larvae in the inflorescences contributed to a decline in the fecundity of the plant. While the lepidopteran impacted fecundity when foraging in both flowering and fruiting bracts, the syrphid only affected the fruiting bracts, which indicates that the nectar and floral tissue are the principal resource exploited by the hoverfly. By contrast, soldier fly (Stratiomyidae) had a neutral effect on fecundity, while foraging in flowering or fruiting bracts. These findings corroborate our hypothesis, that herbivory by the larval occupants represents cost to the host plant having phytotelmata. The negative influence of this foraging on plant fecundity will nevertheless depend on the consequences of the exploitation of resources, which vary considerably in ephemeral habitats such as the phytotalmanta of flower parts.  相似文献   

15.
1. Florivory, which is less studied but as equally widespread as herbivory, can have effects on plant and floral trait adaptations, individual fitness, and community interactions. However, there are still knowledge gaps in our understanding of florivory, including the role of neural constraints and diet specialisation of florivores in floral resource utilisation. 2. According to the neural constraint hypothesis, a generalist flower‐visiting katydid is expected to have lower decision‐making efficacy in feeding when subjected to the presence of both capitula and leaves, compared to the presence of either one of the two resources. 3. In the present study, experiments using the katydid, Phaneroptera brevis, and the plant, whiteweed, Ageratum conyzoides, were carried out to examine the foraging behaviour of the katydid to test our hypothesis. The results confirmed the prediction of the neural constraint hypothesis. 4. The decision‐making efficacy was generally lowered when the katydid was presented with the choice for both the resource that is preferred (capitula) and less preferred (leaves). It was also shown that Phaneroptera brevis is floriphilic, as it prefers capitula to leaves. 5. In conclusion, the first evidence of neural constraint in florivory is provided and suggests that more can be explored into the effects of neural constraints and diet specialisation in floral resource utilisation.  相似文献   

16.
Many plants produce defense chemicals that are induced in response to damage. In spite of the tight links between floral tissue and plant reproduction, very little is known about whether floral defenses are induced in response to floral damage. We manipulated Impatiens capensis flowers to determine whether floral damage reduces subsequent florivory, whether it induces anthocyanins or condensed tannins in floral tissues, and whether responses are localized or systemic. We damaged one flower per plant at one of three damage levels (0, 30, or 60 % tissue removal), collected subsequent flowers at set time intervals and branch locations, and measured whole-plant florivory for 3 weeks following damage. We also observed a flower color polymorphism and analyzed responses separately for red- and yellow-flowered plants. Moderate damage to a single flower reduced subsequent whole-plant florivory, but heavy damage did not. Moderate damage to a focal flower also increased anthocyanins in subsequent flowers on the same branch of red-flowered plants, but decreased anthocyanins on parallel-branch flowers of yellow-flowered plants. Damage did not affect floral tannins. Because the reduction in florivory was systemic and induced anthocyanins were not consistently induced systemically, there may be other secondary compounds not measured in this study that were systemically induced, or effects of visual or olfactory cues of damage itself that reduced subsequent florivory. This is the first study demonstrating that damage to a single flower can reduce subsequent whole-plant florivory in the field, indicating that initial damage can have cascading effects on subsequent interactions.  相似文献   

17.
Abstract 1. Plants experience herbivory on many different tissues that can affect reproduction directly by damaging tissues and decreasing resource availability, or indirectly via interactions with other species such as pollinators. 2. This study investigated the combined effects of leaf herbivory, root herbivory, and pollination on subsequent damage, pollinator preference, and plant performance in a field experiment using butternut squash (Cucurbita moschata). Leaf and root herbivory were manipulated using adult and larval striped cucumber beetles (Acalymma vittatum F.), a cucurbit specialist. 3. Leaf herbivory reduced subsequent pistillate floral damage and powdery mildew (Sphaerotheca fuliginea) infection. In spite of these induced defences, the overall effect of leaf herbivory on plant reproduction was negative. Leaf herbivory reduced staminate flower production, fruit number, and seed weight. In contrast, root herbivory had a minimal impact on plant reproduction. 4. Neither leaf nor root herbivory altered pollinator visitation or floral traits, suggesting that reductions in plant performance from herbivory were as a result of direct rather than indirect effects. In addition, no measured aspect of reproduction was pollen limited. 5. Our study reveals that although leaf herbivory by the striped cucumber beetle can protect against subsequent damage, this protection was not enough to prevent the negative impacts on plant performance.  相似文献   

18.
Andrew C. McCall 《Oikos》2006,112(3):660-666
Resistance to leaf herbivory is well-documented in plants. In contrast, resistance to herbivory in flowers has received very little attention, even though reproductive tissues are often essential for plant reproduction. Plants may protect reproductive tissues with a range of defenses from constitutive to induced, although ecological costs associated with constitutive defense or resistance are expected to be higher than costs associated with induced responses. Induced responses in flowers may be effective against floral herbivores while minimizing the negative impacts of resistance on pollinators. This study examines induced responses in Nemophila menziesii (Hydrophyllaceae), a plant that frequently receives high levels of floral herbivory. I report that natural caterpillar herbivory increased levels of resistance against caterpillars later in the season. Similarly, artificial clipping to flowers consistently reduced natural damage to flowers vs unclipped controls over two years. Neither whole-plant nor individual seed set was affected by the reduction of floral damage. Induced resistance in reproductive tissues may benefit plants that are exposed to both floral herbivory and pollinator activity and can be an important link between plant antagonists and plant mutualists.  相似文献   

19.
The effects of floral herbivores on floral traits may result in alterations in pollinator foraging behaviour and subsequently influence plant reproductive success. Fed-upon plants may have evolved mechanisms to compensate for herbivore-related decreased fecundity. We conducted a series of field experiments to determine the relative contribution of floral herbivores and pollinators to female reproductive success in an alpine herb, Pedicularis gruina, in two natural populations over two consecutive years. Experimental manipulations included bagging, hand supplemental, geitonogamous pollination, and simulated floral herbivory. Bumblebees not only avoided damaged flowers and plants but also decreased successive visits of flowers in damaged plants, and the latter may reduce the level of geitonogamy. Although seed set per fruit within damaged plants was higher than that in intact plants, total seed number in damaged plants was less than that in intact plants, since floral herbivory-mediated pollinator limitation led to a sharp reduction of fruit set. Overall, the results suggest that resource reallocation within inflorescences of damaged plants may partially compensate for a reduction in seed production. Additionally, a novel finding was the decrease in successive within-plant bumblebee visits following floral herbivory. This may increase seed quantity and quality of P. gruina since self-compatible species exhibit inbreeding depression. The patterns of compensation of herbivory and its consequences reported in this study give an insight into the combined effects of interactions between floral herbivory and pollination on plant reproductive fitness.  相似文献   

20.
Identifying the factors that affect a plant’s probability of being found and damaged by herbivores has been a central topic in the study of herbivory. Although herbivory could have important negative consequences on carnivorous plants, their interaction with herbivores remains largely unexplored. We evaluated the effect of spatial variation in light environment (sunny, shade and full-shade sites) on the pattern of leaf herbivory and florivory of the carnivorous plant Pinguicula moranensis. Plants’ overall probability of leaf damage was high (74.24%). Mean herbivory was four times higher in the sunny and shade sites than the observed in the full-shade site. Nearly 8% of plants suffered damage to reproductive structures, although the probability of florivory was similar among sites. Discussion addressed the inter-site variation in mean herbivory considering the effect of light exposure and the impact that herbivory could have on fitness components of this carnivorous plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号