首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arteriovenous anastomoses in the rabbit ear were examined with scanning electron microscopy to elucidate the structural differentiation of the media of the shunt. Arterial, intermediate, and venous segments in the shunt and two layers of the media in the intermediate segment were differentiated based on cell shape and cell organization. In the arterial segment, smooth muscle cells were spindle-shaped, either elongated or short, with a few branches, and were arranged circularly or diagonally with respect to the vessel's long axis. There were also stellate muscle cells with radiating processes. In the intermediate segment, the smooth muscle cells of the outer layer of the media were also arranged circularly and resembled the elongated cells in the arterial segments, but they were more irregular in shape and had more processes than those of the arterial segment. The epithelioid cells of the inner layer of the media were oval or polygonal and oriented irregularly with respect to the vessel's long axis, clustering to form longitudinal plicae. The smooth muscle cells of the venous segment were flat with many lateral processes and formed a thin, discontinuous layer. The smooth muscle cells in the arterial segment and those of the outer layer of the intermediate segment exhibited a highly rugged surface texture, indicating their strong contractility; the epithelioid cells and the smooth muscle cells in the venous segment exhibited a generally smooth surface, indicating less contractility. The intermediate segments were supplied with a dense nerve plexus. The intermediate segments, therefore, may be actively involved in the regulation of blood flow under neuronal influence.  相似文献   

2.
Ultrastructure of pericytes in mouse heart   总被引:5,自引:0,他引:5  
The pericytes of mouse myocardium are extensively branched cells that form an incomplete layer around the endothelium of capillaries and postcapillary venules. The membranes of pericytes and endothelial cells are connected by specialized junctions. Microtubules, intermediate (10-nm) filaments and microfilaments are oriented within circumferentially-arranged cytoplasmic processes of pericytes so as partially to encircle the endothelial cylinder. The intracellular organization of these myocardial pericytes suggests that they are smooth muscle-like cells which may be capable of influencing microvascular dynamics in the heart.  相似文献   

3.
The morphological characteristics of smooth muscle cells (SMCs) and their innervation of the suburothelial microvasculature of the mouse bladder were investigated by immunohistochemistry. Whole mount bladder mucosal preparations were immune-stained for α-smooth muscle actin (α-SMA) and/or neuronal markers and examined using confocal laser scanning microscopy. Suburothelial arterioles consisted of α-SMA-immunopositive circular smooth muscle cells, while the venular wall composed of α-SMA-positive SMCs that displayed several processes which extended from their cell bodies to form an extensive meshwork. In larger venules, a complex meshwork of stellate-shaped SMCs were observed. NG2 chondroitin sulphate proteoglycan-immunoreactive cell bodies of capillary pericytes were not immunoreactive for α-SMA. In the rat bladder suburothelial venules, circular SMCs were the dominant cell type expressing α-SMA-immunoreactivity. Since α-SMA-positive SMCs in suburothelial arterioles and venules in the mouse bladder had quite distinct morphologies, the innervation of both vessels could be examined by double labelling for α-SMA and various neuronal markers. Varicose nerve bundles immunoreactive for tyrosine hydroxylase (sympathetic nerves), choline acetyltransferase (cholinergic nerves) or substance P (primary afferent nerves) were all detected along side suburothelial arterioles. Single varicose nerve fibres positive for these three neuronal markers were also detected around the venules. Thus, whole mount preparations are useful when examining the morphology of α-SMA-positive SMCs of the microvasculature in the suburothelium of mouse bladder as well as their relationship with their innervations. In conclusion, arterioles and venules of the bladder suburothelium are the target of sympathetic, cholinergic and primary afferent nerve fibres.  相似文献   

4.
Summary The architecture of the media of arterial vessels in dog brain was investigated using scanning electron microscopy. The arrangement and shape of the circularly-oriented smooth muscle cells varied with vessel diameter: The arteries (>100 m in diameter) had 4–10 layers of spindle-shaped smooth muscle cells; the muscular arterioles (30–100 m), 2–3 layers of spindle-shaped smooth muscle cells; the terminal arterioles (10–30 m), a compact layer of spindle-shaped smooth muscle cells with more dominant nodular or rod-like processes and thin lateral processes; and the precapillary arterioles (5–15 m), a less compact layer of branched smooth muscle cells.Longitudinally-oriented muscles were observed in the medio-adventitial border. The distribution and arrangement of these muscles varied with vessel size: in the large arteries (> 300 m in diameter), at the branching sites only; in the small arteries (100–300 m), at both the branching and non-branching sites; in the muscular arterioles, at both the branching and non-branching sites in a reticular arrangement with some muscle cells having an asteroid appearance; in the terminal aterioles, only asteroid-like muscle cells were found at the branching and non-branching sites.  相似文献   

5.
6.
The innervation of the dorsal aorta and renal vasculature in the toad (Bufo marinus) has been studied with both fluorescence and ultrastructural histochemistry. The innervation consists primarily of a dense plexus of adrenergic nerves associated with all levels of the preglomerular vasculature. Non-adrenergic nerves are occasionally found in the renal artery, and even more rarely near the afferent arterioles. Many of the adrenergic nerve profiles in the dorsal aorta and renal vasculature are distinguished by high proportions of chromaffin-negative, large, filled vesicles. Close neuromuscular contacts are common in both the renal arteries and afferent arterioles. Possibly every smooth muscle cell in the afferent arterioles is multiply innervated. The glomerular capillaries and peritubular vessels are not innervated, and only 3-5% of efferent arterioles are accompanied by single adrenergic nerve fibres. Thus, nervous control of glomerular blood flow must be exerted primarily by adrenergic nerves acting on the preglomerular vasculature. The adrenergic innervation of the renal portal veins and efferent renal veins may play a role in regulating peritubular blood flow. In addition, glomerular and postglomerular control of renal blood flow could be achieved by circulating agents acting via contractile elements in the glomerular mesangial cells, and in the endothelial cells and pericytes of the efferent arterioles. Some adrenergic nerve profiles near afferent arterioles are as close as 70 nm to distal tubule cells, indicating that tubular function may be directly controlled by adrenergic nerves.  相似文献   

7.
By means of classical anatomical techniques: injection of contrast masses into the vascular network, macro-microscopic preparation, translucency, roentgenography, and some histological techniques, peculiarities of the hemomicrocirculatory bed in muscles of the human arm and forearm have been revealed. Small arteries of the 3d-4th order run along the muscle fiber fasciculi. In the center of the 2d order muscle fasciculus, in its internal perimysium, arteriole and venule (or 2 venules) run; from them into the 1st order fasciculus, precapillary arterioles and postcapillary venules, connected by means of capillaries, run. The arteriole and the venule, accompanying it, together with the precapillary arterioles and postcapillary venules, branching off them, form a unit of the microcirculatory bed of the arm and forearm muscles (module). Well developed intramuscular arterial anastomoses, presence of isolated structural-functional units of the hemomicrocirculatory bed ensure functional prosperity of the human muscles.  相似文献   

8.
We have affinity-fractionated rabbit antiactin immunoglobulins (IgG) into classes that bind preferentially to either muscle or nonmuscle actins. The pools of muscle- and nonmuscle-specific actin antibodies were used in conjunction with fluorescence microscopy to characterize the actin in vascular pericytes, endothelial cells (EC), and smooth muscle cells (SMC) in vitro and in situ. Nonmuscle-specific antiactin IgG stained the stress fibers of cultured EC and pericytes but did not stain the stress fibers of cultured SMC, although the cortical cytoplasm associated with the plasma membrane of SMC did react with nonmuscle-specific antiactin. Whereas the muscle-specific antiactin IgG failed to stain EC stress fibers and only faintly stained their cortical cytoplasm, these antibodies reacted strongly with the fiber bundles of cultured SMC and pericytes. Similar results were obtained in situ. The muscle-specific antiactin reacted strongly with the vascular SMC of arteries and arterioles as well as with the perivascular cells (pericytes) associated with capillaries and post-capillary venules. The non-muscle-specific antiactin stained the endothelium and the pericytes but did not react with SMC. These findings indicate that pericytes in culture and in situ possess both muscle and nonmuscle isoactins and support the hypothesis that the pericyte may represent the capillary and venular correlate of the SMC.  相似文献   

9.
Summary Three types of pericytes outline the vascular bed in Golgi preparations of the newborn rabbit brain. Elongate cells (Type I) are restricted to capillaries, elements resembling smooth muscle cells (Type II) surround vessels of intermediate size, and large flat forms (Type III) cover the surface of arterioles and venules. Electron microscopy shows all types to be located within a well defined perivascular basement membrane. It also reveals the presence of filaments in the cytoplasm of some pericytes resembling the myofilaments of smooth muscle cells. It suggests the possibility that some pericytes are capable of contraction and may participate in regulating blood flow in small vessels.Microglia cells bear no resemblance to pericytes in terms of their shape, distribution or staining characteristics. Microglia cells are located outside the vascular basement membrane (external basal lamina) in the brain parenchyma, and they vary in form according to their location and the character of the surrounding extracellular space. This study does not support the hypothesis that microglia cells arise from pericytes but indicates that they originate either by in situ division or from hematogenous elements that enter the brain by crossing the vessel wall.Support provided by N.I.H. Grants No. NS 10864 and NS 07938 from the U.S. Public Health Service.  相似文献   

10.
Subcutaneous adipose tissue was obtained from fetuses removed from pregnant obese (Ossabaw) and lean (crossbred) sows at three stages of gestation (70, 90, and 110 days). Histochemical analysis for nucleo-side phosphatase (NPase), alkaline phosphatase (APase), and NADH tetrazoleum reductase (NADH-TR) was conducted on fresh-frozen cryostat sections. Age- associated changes in NPase and NADH-TR reactions in the arteriolar system were correlated with the morphological development of the medial layer of arterioles and arteries. For instance, a strong NPase reaction in small arterioles was associated temporally with the assumption of a normal smooth muscle cell morphology and arrangement in the medial layer. In the youngest fetuses, strong NADH-TR reactions were only evident in small and presumptive arterioles and venules (associated with fat cells). Little NADH-TR reactivity was evident in larger arterioles and venules in 70-day tissue. Arteries and large arterioles were distinguished from veins and venules (strong reactions vs. weak reactions) with NADH-TR and NPase reactions in the oldest fetuses. In the younger fetuses, the NPase distinction (arterioles vs. veinules) was obvious before NADH-TR distinction. Small adipocyte-associated vessels were APase positive in the youngest fetuses, but APase reactivity was limited to short segments of vessel between arterioles and capillaries in the oldest fetuses. With the following exceptions, all the above observations were independent of fetal strain. In obese fetuses (110 day) small venules and small arterioles were equally reactive for NPase activity. Capillaries in obese fetuses (110 day) were NADH-TR reactive, whereas no activity was evident in capillaries from lean fetuses (110 day).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Lymph node nerve endings have been studied in 1- to 48-day-old mice. Serial sections of Epon-embedded lymph nodes were observed under the electron microscope to find the nerve endings. Most lymph node nerve fibers finally reach the smooth muscle cells of arterioles and muscular venules. Both kinds of vascular endings are similar, although endings are less numerous on venules. Nerve endings consist of one or more nerve processes surrounded by a usually incomplete Schwann cell sheath; frequently, axons show wide areas directly facing the muscle cells. The distance between such a naked axon and a myocyte ranges from 100 to 800 nm. Small granulated and clear vesicles are especially abundant in varicosities of nerve processes that are located very close to muscle cells. Nerve endings of lymph node vasculature probably correspond to vasomotor sympathetic adrenergic endings, regulating the degree of contraction of vessels which have a muscular layer. Other kinds of nerve endings also exist in lymph nodes: some axons appear free in the stroma and contact the surfaces of reticular cells; the latter also extend delicate cytoplasmic processes that surround the axons. The functional significance of nerve cell-reticular cell contacts is unknown.  相似文献   

12.
Summary Transection of neurosecretory axons of the hypothalamo-neurohypophysial tract within the hypothalamus by stereotactic grafts of various tissues or knife cuts induced the development of neurophysin-positive plexus around arterioles, venules and capillaries in the vicinity of these grafts or cuts. These plexus ranged from single axons to densely woven networks and tended to increase progressively with time after experimental intervention. At the fine structural level, typical neurosecretory axon profiles were either abutting the perivascular connective tissue space or located within it. They were usually-accompanied by astrocyte processes or microglial cells. Many of these axons had extensive contact with the surrounding basal lamina at which point clusters of microvesicles reminiscent of axon terminals in the neural lobe were present.  相似文献   

13.
The development of blood vessels during the first three postnatal weeks was studied in the ventral stripe of the spinotrapezius muscle of the rat by use of India ink-gelatine injections, and electron microscopy. The number of terminal arterioles and collecting venules remained unchanged postnatally in the observed area. A remarkable proximodistal gradient of vascular development was apparent: while the basic structure of the hilar vessels remained unchanged in the time studied, the intramuscular arteries and veins matured gradually. More peripherally, gradual maturation of terminal and precapillary arterioles was observed. The capillary endothelium and the pericytes showed immature features, and remained unchanged during the time studied. An intense rebuilding activity was found in the endothelial cells of the growing venules, expressed by various forms of gaps, covered by an intact basal lamina and pericytes. Numerous mast cells and macrophages were found along all vessels. Intramuscular lymphatics were not present prior to the first postnatal week.  相似文献   

14.
This paper describes the localization of isomyosins in the pericytes of four rat microvascular beds: heart, diaphragm, pancreas, and the intestinal mucosa, by use of immunoperoxidase techniques and IgGs specific for either nonmuscle or smooth muscle isoforms. Based on the semiquantitative nature of the peroxidatic reaction, we concluded that the amount and distribution of these isoforms vary with the microvascular bed and also with vascular segments within the same bed. In the pericytes of small capillaries, nonmuscle isomyosin is the predominant form, whereas the smooth muscle isomyosin is present in very low concentration. A reversed relationship is found in the pericytes associated with larger capillaries and postcapillary venules. These results, taken together with previous findings on actin (Herman, I., and P. A. D'Amore, 1983, J. Cell Biol. 97:278a), tropomyosin (Joyce, N. C., M. F. Haire, and G. E. Palade, 1985, J. Cell Biol. 100:1379-1386), and cyclic GMP-dependent protein kinase (Joyce, N., P. DeCamilli, and J. Boyles, 1984, Microvasc. Res. 28:206-219), indicate that pericytes contain proteins essential for contraction in higher concentration than any other cells associated with the microvasculature, except smooth muscle cells. Pericytes appear to be, therefore, cells differentiated for a contractile function within the microvasculature.  相似文献   

15.
We have investigated indirectly the presence of nitric oxide in the enteric nervous system of the digestive tract of human fetuses and newborns by nitric oxide synthase (NOS) immunocytochemistry and nicotinamide adenine dinucleotide phosphate diaphorase (NADPHd) histochemistry. In the stomach, NOS immunoactivity was confined to the myenteric plexus and nerve fibres in the outer smooth musculature; few immunoreactive nerve cell bodies were found in ganglia of the outer submucous plexus. In the pyloric region, a few nitrergic perikarya were seen in the inner submucous plexus and some immunoreactive fibres were found in the muscularis mucosae. In the small intestine, nitrergic neurons clustered just underneath or above the topographical plane formed by the primary nerve strands of the myenteric plexus up to the 26th week of gestation, after which stage, they occurred throughout the ganglia. Many of their processes contributed to the dense fine-meshed tertiary nerve network of the myenteric plexus and the circular smooth muscle layer. NOS-immunoreactive fibres directed to the circular smooth muscle layer originated from a few NOS-containing perikarya located in the outer submucous plexus. In the colon, caecum and rectum, labelled nerve cells and fibres were numerous in the myenteric plexus; they were also found in the outer submucous plexus. The circular muscle layer had a much denser NOS-immunoreactive innervation than the longitudinally oriented taenia. The marked morphological differences observed between nitrergic neurons within the developing human gastrointestinal tract, together with the typical innervation pattern in the ganglionic and aganglionic nerve networks, support the existenc of distinct subpopulations of NOS-containing enterice neurons acting as interneurons or (inhibitory) motor neurons.  相似文献   

16.
The fine structure of the ectodermal and endodermal muscle layers of Hydra magnipapillata has been analyzed by scanning electron microscopy after hydrolytic removal of the mesoglea with NaOH and subsequent exposure of the basal and lateral aspects of the layers by mechanical dissection. The ectodermal muscle layer consists of fibrous processes of epithelial cells extending longitudinally to the body axis, whereas the endodermal muscle layer comprises cells with hexagonal bases and several strands of myonemes oriented circularly. In each layer, the muscular elements tightly interdigitate, extending a continuous muscle sheet along the mesoglea. The ectodermal and endodermal muscle sheets communicate with each other via foliate microprojections penetrating the mesoglea. On the lateral aspect of the ectodermal epithelium, spiny nerve fibers run along the upper surface of the muscle processes. The spines are often attached to muscle processes, suggesting that the former monitor muscle contraction. Nerve fibers occasionally come into contact with the mesoglea through narrow gaps between the muscle processes. In the hypostomal ectoderm, a small spindle-shaped cell, probably sensory in nature, extends an apical cilium and a long basal process.  相似文献   

17.
I G Joshua 《Peptides》1991,12(1):37-41
The in vivo responsiveness of small arterioles and venules in the rat cremaster muscle to topical administration of neuropeptide Y was assessed using closed-circuit television microscopy. Male Sprague-Dawley rats were anesthetized with sodium pentobarbital (50 mg/kg) and the cremaster muscle was exposed to increasing bath concentrations of neuropeptide Y (10(-10)-10(-7) M). Neuropeptide Y produced dose-dependent constrictions in first (90 +/- 8 microns), second (50 +/- 6 microns) and third (21 +/- 4 microns) order arterioles. Arteriolar reactivity to the peptide was inversely related to vessel diameters. Venules were relatively unresponsive to neuropeptide Y. Exposure to the alpha-adrenergic receptor antagonist, phentolamine (10(-6) M), failed to modify the arteriolar constrictor responses to neuropeptide Y, while pretreatment with the sympathetic neuronal blocking agent, guanethidine (10(-5) M), produced a small, but significant, reduction in sensitivity. These data suggest that neuropeptide Y causes constriction of arterioles of skeletal muscle, primarily by acting directly on vascular smooth muscle to induce contraction, and not via release of endogenous norepinephrine.  相似文献   

18.
Enzymatic activity of cells, antigenic cellular markers and extracellular matrix of the hyperplastic intima of the aorta and carotid arteries was investigated in non-specific aorto-arteritis by immunomorphological and histochemical techniques. The cells of subendothelial layer of thickened arterial intima contained smooth muscle cell myosin, gave positive reactions to myosin ATP-ase and revealed high activity of thiamine pyrophosphatase. Fibronectin and type IV and V collagen were located in close proximity to these cells. The data obtained make it possible to consider these cells as modified smooth muscle cells. Type III collagen was the prevalent type of extracellular matrix of the thickened intima. A great number of blood vessels of the capillary and precapillary types have been found to penetrate into the intima from the adventitia. A possible role of pericytes surrounding newly formed capillaries as the precursors of subendothelial cell population in the hyperplastic intima is discussed.  相似文献   

19.
By the use of well-characterized antibodies against porcine dynorphin-A(1-8), an endogenous opioid peptide, and the use of a modified immunofluorescence microscopic technique, dynorphin-A(1-8) stained perikarya, nerve fibres, and nerve terminals were visualized in the rat duodenum. Dynorphin-A(1-8) immunoreactive perikarya were revealed with certainty only in the myenteric plexus, while dynorphinergic nerve fibres could bee seen in the myenteric plexus and circular muscle layer, but not in the longitudinal muscle layer and submucous plexus. Dynorphin-A(1-8) immunofluorescent nerve endings were in close contacts with submucosal blood vessels, probably arterioles, and Brunner's gland cells. These findings suggest that the opioid peptide dynorphin-A(1-8) might be synthetized within myenteric plexus perikarya of the rat duodenum and that it might modulate the peristaltic activity, intestinal blood pressure, and production of mucopeptides synthetized within Brunner's gland cells.  相似文献   

20.
Tumor vessel normalization has been proposed as a therapeutic paradigm. However, normal microvessels are hierarchical and vasoreactive with single file transit of red blood cells through capillaries. Such a network has not been identified in malignant tumors. We tested whether the chaotic tumor microcirculation could be reconfigured by the mesenchyme-selective growth factor, FGF9. Delivery of FGF9 to renal tumors in mice yielded microvessels that were covered by pericytes, smooth muscle cells, and a collagen-fortified basement membrane. This was associated with reduced pulmonary metastases. Intravital microvascular imaging revealed a haphazard web of channels in control tumors but a network of arterioles, bona fide capillaries, and venules in FGF9-expressing tumors. Moreover, whereas vasoreactivity was absent in control tumors, arterioles in FGF9-expressing tumors could constrict and dilate in response to adrenergic and nitric oxide releasing agents, respectively. These changes were accompanied by reduced hypoxia in the tumor core and reduced expression of the angiogenic factor VEGF-A. FGF9 was found to selectively amplify a population of PDGFRβ-positive stromal cells in the tumor and blocking PDGFRβ prevented microvascular differentiation by FGF9 and also worsened metastases. We conclude that harnessing local mesenchymal stromal cells with FGF9 can differentiate the tumor microvasculature to an extent not observed previously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号