首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Actin was localized in testicular spermatids and in ionophore-treated ejaculated sperm of boar by use of a monoclonal anti-actin antibody labeled with colloidal gold. With the on-grid postembedding immunostaining of Lowicryl K4M sections, actin was identified in the subacrosomal region of differentiating spermatids, in the microfilaments of the surrounding Sertoli cells, and in the myoid cells of the tubular wall. Ejaculated sperm, labeled with the preembedding method, showed actin between the plasma membrane and the outer acrosomal membrane of the equatorial segment. Indirect immunofluorescence was positive in the equatorial segment and in the acrosomal cap of intact sperm, whereas reacted sperm at the anterior head region retained fluorescence only in the inner acrosomal membrane. Rhodamine-phalloidin failed to stain intact and reacted sperm. The distribution of actin in sperm head membranes (inner acrosomal membrane, membranes of the equatorial segment), which are retained after the acrosome reaction, is discussed.  相似文献   

2.
Localization of sialyl residues on unfixed ejaculated ram sperm membrane using the direct covalent probes of either ferritin hydrazide or latex hydrazide revealed a unique regional distribution on the plasmalemma covering the sperm head only. Three different labelling zones were identified based on the intensity and the nature of the sialyl glycoconjugates: a patchy-like zone which included the plasma membrane overlaying the post-nuclear cap and the convex side of the apical body of the acrosome; highly ordered heavily labelled zones including the plasmalemma adjacent to the concave apical body of the acrosome and to the posterior part of the equatorial acrosomal segment; a paucity-labelling zone which included the plasma membrane underlying the principal acrosomal region and the anterior part of the equatorial acrosomal segment. The possible physiological role of the highly ordered labelled zones is discussed.  相似文献   

3.
Mammalian spermatozoa must undergo many changes to be able to fertilize the oocyte. One of these changes, the acrosome reaction, has been established as a requisite for gamete membrane fusion to occur; it consists of the fusion and vesiculation of the sperm plasma membrane with the outer acrosomal membrane of the principal segment of the acrosome. Reaction of the equatorial segment has occasionally been observed. The objective of the present work was to determine whether the presence of the sperm plasma membrane over the equatorial segment is necessary for gamete membrane fusion to occur. Golden hamster spermatozoa were capacitated in vitro in TAPL 10K, and the maximum possible percentage of acrosome reaction was determined at 82.79% + 1.69% SD (P = 0.27; r = 0.21). Ultrastructural studies showed that 93.6% of the reacted spermatozoa in this population had their principal and equatorial segments reacted. The fertilizing ability of these spermatozoa was assayed using zona-free hamster oocytes. The percentage of fertilized ova obtained was 98.8% (308/312). Ultrastructural studies snowed the presence of spermatozoa with reacted equatorial segment inside the cytoplasm of immature oocytes. The evidence presented in this work demonstrates that the plasma membrane of spermatozoa with reacted equatorial segment retains its ability to fuse with the oocyte.  相似文献   

4.
Scanning electron microscopy was employed to examine the manner of association between in vitro capacitated spermatozoa and zona-free eggs of the hamster. Spermatozoa with intact acrosomes, which were unable to fuse with eggs, were seen in general associated with egg microvilli in the region of the acrosomal cap. Acrosome-reacting spermatozoa were seen associated with egg microvilli with the dissociating acrosomal caps. Acrosome-reacted spermatozoa, which were able to fuse with eggs, generally associated with egg microvilli by the equatorial segment and the anterior portion of the postacrosomal region. It is inferred that the completion of the acrosome reaction signals changes in the plasma membrane over the equatorial segment of the acrosome and the anterior area of the postacrosomal region which give it a greater affinity to and fusibility with the oolemma.  相似文献   

5.
Oviductins are high-molecular-weight glycoproteins synthesized and secreted by nonciliated oviductal epithelial cells and have been shown to play a role in fertilization and early embryo development. The present study was carried out to examine the in vitro binding capacity of hamster oviductin to homologous sperm and to determine the sites of its localization in untreated, capacitated, and acrosome-reacted spermatozoa. Freshly prepared epididymal and capacitated sperm as well as acrosome-reacted sperm were incubated with oviductal fluid prepared from isolated hamster oviducts, fixed and then probed with a monoclonal antibody against hamster oviductin. Results obtained with pre-embedding immunolabeling experiments revealed binding of oviductin to the acrosomal cap and the apical aspect of the postacrosomal region. Immunolabeling of both regions appeared to be more intense in capacitated spermatozoa. Acrosome-reacted sperm showed an immunoreaction of moderate intensity over the postacrosomal region. The plasma membrane overlying the equatorial segment also exhibited a weak labeling. Quantitative analysis obtained with the surface replica technique indicated that oviductin had a higher binding affinity for the acrosomal cap than the postacrosomal region and that the binding of oviductin to the latter plasma membrane domain was enhanced during capacitation. Binding of oviductin to the postacrosomal region, however, was attenuated after acrosome reaction. Immunolabeling for oviductin was found to be the weakest over the equatorial segment regardless of the experimental conditions. The binding of hamster oviductin to specific membrane domains of the homologous sperm and the changes in its distribution during capacitation and acrosome reaction may be important for the function of hamster oviductin preceding and during fertilization.  相似文献   

6.
The localization of proacrosin was determined by using colloidal gold labeling and electron microscopy of boar germ cells during spermiogenesis to post-ejaculation. Proacrosin was first localized in round spermatids during the Golgi phase of spermiogenesis; it was associated with the electron-dense granule, or acrosomal granule that was conspicuous within the acrosome. It remained within the acrosomal granule during the cap and acrosome phases of spermiogenesis. At these stages, there was no apparent association of the proacrosin molecule with the acrosomal membranes. During the maturation phase of spermiogenesis, proacrosin was seen to become dispersed into all regions of the acrosome except the equatorial segment. When sperm from different segments of the epididymis and ejaculated sperm were examined, localization was observed throughout the acrosome except for the equatorial segment. Here proacrosin appeared to be localized on both the inner and outer acrosomal membranes as well as with the acrosomal matrix, although further studies are required to verify the membrane localization. No labeling was seen on the plasma membrane. These data suggest that the synthesis and movement of proacrosin to sites in the acrosome are controlled by an as yet unknown process. The absence of proacrosin on the plasma membrane of mature ejaculated sperm makes it unlikely that this enzyme plays a role in sperm-zona adhesion prior to capacitation.  相似文献   

7.
The equatorial segment of the acrosome underlies the domain of the sperm that fuses with the egg membrane during fertilization. Equatorial segment protein (ESP), a novel 349-amino acid concanavalin-A-binding protein encoded by a two-exon gene (SP-ESP) located on chromosome 15 at q22, has been localized to the equatorial segment of ejaculated human sperm. Light microscopic immunofluorescent observations revealed that during acrosome biogenesis ESP first appears in the nascent acrosomal vesicle in early round spermatids and subsequently segregates to the periphery of the expanding acrosomal vesicle, thereby defining a peripheral equatorial segment compartment within flattened acrosomal vesicles and in the acrosomes of early and late cap phase, elongating, and mature spermatids. Electron microscopic examination revealed that ESP segregates to an electron-lucent subdomain of the condensing acrosomal matrix in Golgi phase round spermatids and persists in a similar electron-lucent subdomain within cap phase spermatids. Subsequently, ESP was localized to electron-dense regions of the equatorial segment and the expanded equatorial bulb in elongating spermatids and mature sperm. ESP is the earliest known protein to be recognized as a marker for the specification of the equatorial segment, and it allows this region to be traced through all phases of acrosomal biogenesis. Based on these observations, we propose a new model of acrosome biogenesis in which the equatorial segment is defined as a discrete domain within the acrosomal vesicle as early as the Golgi phase of acrosome biogenesis.  相似文献   

8.
Examination of the type and frequency of damage to the head of spermatozoa using electron microscopy can be used to evaluate the quality of differently treated sperm. This report describes a systematic approach based on 29 morphological categories of sperm heads assessed from discrete regions in raw, chilled and frozen-thawed spermatozoa. Injury occurred principally at the plasma membrane and could be present or absent in all regions. In the anterior segment, when the plasma membrane is present, it can be intact, dilated, very dilated, disrupted, or contain vesicles characteristic of acrosomal reaction-like capacitation changes. When the plasma membrane is absent, the acrosome may be intact, exhibit a complete loss of contents, or retain some contents of the apical ridge and present a very dilated outer acrosomal membrane. The plasma membrane in the equatorial segment and the boundary between regions can be intact, dilated, very dilated or disrupted. The post-acrosomal plasma membrane is classified as intact, dilated or very dilated, whereas the dense lamina is intact, dilated or fragmented. The morphology of the heads most frequently observed in chilled spermatozoa consists of anterior and equatorial segments with a dilated, or dilated and disrupted plasma membrane; a boundary between regions with an intact and dilated plasma membrane; and a post-acrosomal region with an intact plasma membrane and dense lamina, both dilated. In frozen-thawed spermatozoa, the morphology of the heads is more frequently characterised by no plasma membrane and an acrosome showing complete or some loss of contents in the apical ridge and very dilated outer acrosomal membrane, presenting mostly dilated and fragmented dense lamina in the post-acrosomal region. These findings are consistent with the conclusion that the freezing process produces an increase in the degree of damage to the cells when they are subjected to increasing degrees of cold shock. There are still difficulties in developing a good diluent and process for preserving the plasma membrane in ram spermatozoa. This systematisation, using different categories, allows characterisation of multiple transmission electron microscopy images. Thus, the different changes observed due to cryopreservation may be correlated.  相似文献   

9.
The acrosome is a large secretory vesicle of the sperm head that carries enzymes responsible for the digestion of the oocyte's investments. The event leads to sperm penetration and allows fertilization to occur. Release of the acrosomal enzymes is mediated by the interaction between sperm acrosomal and plasma membranes (acrosome reaction). Biochemical characterization of the acrosomal membrane has been restrained by a lack of methods to isolate uncontaminated fractions of the membrane. Here, we use new methods to expose the membrane to in situ cytochemical labeling by lectin-gold complexes. We study the topology and relative density of glycoconjugates both across and along the plane of the acrosomal membrane of boar sperm. Detachment of the plasma membrane from glutaraldehyde-fixed cells exposed the cytoplasmic surface of the acrosome to the lectin markers; freeze-fractured halves of the acrosomal membrane were marked by "fracture-label" (Aguas, A. P., and P. Pinto da Silva, 1983, J. Cell Biol. 97:1356-1364). We show that the cytoplasmic surface of the intact acrosome is devoid of binding sites for both concanavalin A (Con A) and wheat germ agglutinin (WGA). By contrast, it contains a high density of neuraminidase-resistant anionic sites detected by cationic ferritin. On freeze-fractured sperm, the receptors for Con A partitioned with the exoplasmic membrane half of the acrosomal membrane. The Con A-binding glycoconjugates were accumulated on the equatorial segment of the membrane. A low density of WGA receptors, as well as of intramembrane particles, was found on the freeze-fracture halves of the acrosomal membrane. The plasma membrane displayed, in the same preparations, a high density of receptors for both Con A and WGA. We conclude that the acrosome is limited by a membrane poor in glycoconjugates, which are exclusively exposed on the exoplasmic side of the bilayer. Regionalization of Con A receptors on the acrosome shows that sperm intracellular membranes, like the sperm surface, express domain distribution of glycocomponents.  相似文献   

10.
Experiments to bind fluorescein-conjugated Arachis hypogea (peanut) agglutinin (FITC-PNA) to washed human spermatozoa demonstrated that this lectin binds to the acrosome region in air-dried preparations. Since there was no binding when labelling was performed in suspension, and comparable labelling to that seen in air-dried preparations was seen when spermatozoa treated with saponin (to lyse the plasma membrane) were labelled in suspension, the lectin must bind to an intracellular structure, probably the outer acrosomal membrane. This was confirmed by ultrastructural localization of colloidal gold-conjugated lectin in saponin-treated spermatozoa. Treatment of spermatozoa with the detergent Nonidet P-40 caused a marked change in the binding pattern: more spermatozoa showed binding in the equatorial segment of the acrosome with no binding in the anterior cap region. A comparable, less marked, change was seen when spermatozoa were incubated overnight under conditions known to support the capacitation and spontaneous acrosome reactions. Treatment with the calcium ionophore A23187 for 1 h to induce acrosome reactions artificially in uncapacitated spermatozoa resulted in the appearance of patchy acrosome fluorescence. From these experiments it is concluded that PNA binds specifically to the outer acrosomal membrane, and that FITC-PNA-labelling may be used to monitor the human sperm acrosome reaction.  相似文献   

11.
Sperm-oocyte membrane fusion has been observed during monospermic fertilization of a human oocyte in vitro. Women were stimulated with both clomiphene citrate and human menopausal gonadotropin and were given human chorionic gonadotropin before a LH-surge. Twelve oocytes, collected at laparoscopy from six women who became pregnant by IVF, were allowed to mature for 7–14 hours in vitro and inseminated with preincubated sperm, fixed between 1–3 hours after insemination, and examined by transmission electron microscopy. Membrane fusion had occurred in one ovum 2 hours after insemination, and the oocyte had resumed maturation and was at anaphase II of meiosis. Cortical granules had been exocytosed, and some of their contents were visible at the surface close to the oolemma all around the oocyte. The sperm that fused with this oocyte was acrosome-reacted and had been partly incorporated into the ooplasm, while the anterior two-thirds of its head was phagocytosed by a tongue of cortical ooplasm. Membrane fusion had occurred between the oolemma and the plasma membrane overlying the postacrosomal segment of the sperm head, posterior to the equatorial vestige. Sperm chromatin had not decondensed, and serial sections revealed a midpiece attached to the basal plate and a tail located deeper in the ooplasm, all devoid of plasma membrane. Supplementary sperm penetrating the inner zona, approaching the perivitelline space, had undergone the acrosome reaction but had a persistent vestige of the equatorial segment of the acrosome with intact plasma membrane. Evidence of sperm chromatin decondensation was seen in other oocytes, 3 hours after insemination, which were at telophase II of meiosis. Eight oocytes penetrated by sperm were monospermic, while four were unfertilized. The general pattern of sperm fusion and incorporation appears to conform to that seen in most other mammals. The study also reveals that sperm have to complete the acrosome reaction before fusing with the egg.  相似文献   

12.
Calcium was identified by a pyroantimonate-osmium fixation technique in ram spermatozoa undergoing a spontaneous acrosome reaction induced by incubation of diluted semen at 39°C. Intracellular calcium was only detected in diluted spermatozoa and increased in amount and distribution over 4 hr At 4 hr, the majority of the spermatozoa displayed ultrastructural evidence of an acrosome reaction. Calcium was initially evident on the outer acrosomal membrane in multiparticulate clusters, which were seen to be located on scalloped crests of acrosomal membrane as fusion developed; it was also located in the region of the acrosomal ridge beneath the outer acrosomal membrane. Vesiculation commenced just anterior to the equatorial segment and proceeded anteriorly. As vesiculation advanced, calcium particles became associated with the periphery of the vesicles attached in the region of the fusion between the two membranes, but were never seen inside the vesicles. The equatorial segment was not labelled until much later in the reaction, at which time calcium particles were also evident on the nuclear membrane; vesiculation of the equatorial segment was also noted at this time. Dense labelling of the postacrosomal dense lamina was seen in all incubated spermatozoa. At the anterior margin of this structure the labelling was seen to be in a “sawtooth” arrangement. The disposition of the calcium both temporally and spatially is discussed in relation to its possible mechanisms in bringing about membrane fusion. © 1995 Wiley-Liss, Inc.  相似文献   

13.
Ram spermatozoa were subjected to cold shock before fixation in pyroantimonate-osmium. Ultrathin sections revealed an electron-dense particulate precipitate in association with the cells. The precipitate was shown to be related to the presence of calcium by exposure of the material to EGTA which reduced or completely eliminated the deposits. In the acrosome region, very little precipitate was evident when the plasma membrane was intact. Cold shock resulted in the disruption of the plasma membrane. When the acrosome remained intact, precipitate was concentrated just anterior to the equatorial segment, but many cells also had acrosomal disruption and then a more even distribution of precipitate was seen on the outer acrosomal membrane. Precipitate was rarely visible within or beneath the acrosome. Post-acrosomally, calcium pyroantimonate deposits were frequently present in the dense lamina beneath the plasma membrane and these became more intense after cold shock. Midpiece sections revealed a few large granules beneath the plasma membrane and a fine particulate precipitate within mitochondria. Similarly, the fine precipitate was also associated with the outer dense fibres in midpieces and tails. Cold shock did not apparently increase the extent or intensity of precipitates in these sites.  相似文献   

14.
A tetraspanin family protein, CD9, has not previously been identified in sperm cells. Here, we characterize sperm CD9 in the mouse, including its unique localization in sperm, appearance during spermatogenesis, and behavior and fate during mouse fertilization. In sperm, CD9 is an inner acrosomal membrane-associated protein, not a plasma membrane-associated protein. Its molecular weight is approximately 24 kDa throughout its processing, from testicular germ cells to acrosome-reacted sperm. A temporal difference was found between mRNA and protein expression; CD9 mRNA was detected in the stages from spermatogonia through round spermatids showing the strongest levels in midpachytene spermatocytes. CD9 protein was detected in the cytoplasm throughout the stages from spermatogonia to spermatocytes. While CD9 was weakly expressed in the spermatids from step 1 through step 14, the signals became clearly positive at the marginal region of the anterior acrosome in elongated spermatids. After the acrosome reaction, the majority of sperm CD9 was retained in the inner acrosomal membrane, but some quantity of CD9 was found on the plasma membrane covering the equatorial segment as detected by immunogold electron microscopy using anti-CD9 antibody. CD9 was maintained on the sperm head after reaching the perivitelline space of CD9-deficient eggs that were recovered after natural mating with wild males. Thus, this study characterizes CD9 in sperm development and fertilization.  相似文献   

15.
Ion channels are pivotal to many aspects of sperm physiology and function. We have used the patch clamp technique to investigate the distribution of ion channels in the plasma membrane of the head of human spermatozoa. We report that three types of activity are common in the equatorial and acrosomal regions of the sperm head. Two of these (a chloride-permeable anion channel showing long stable openings and a second channel which flickered between open and closed states and was dependent upon cytoplasmic factors for activity) were localised primarily to the equatorial segment. A third type, closely resembling the flickering activity but with different voltage sensitivity of P(open), was more widely distributed but was not detectable over the anterior acrosome. In the anterior acrosomal area channels were present but showed very low levels of spontaneous activity. A unique feature of channel activity in the sperm equatorial region was co-localisation into mixed clusters, most patches were devoid of activity but 'active' patches typically contained two or more types of activity (in a single 200-300 nM diameter patch). We conclude that ion channels in the sperm membrane show regionalisation of type and activity and that the channels are clustered into functional groups, possibly interacting through local effects on membrane potential.  相似文献   

16.
The acrosome reaction in human spermatozoa   总被引:5,自引:0,他引:5  
During gamete interaction, sperm acrosome reaction (AR) induced by oocyte investment is a prerequisite event for the spermatozoa to pass through the zona pellucida (ZP), fuse with and penetrate the oocyte. Progesterone (P4), secreted by cumulus cells, is an important cofactor for the occurrence of this exocytosis event. The AR results from the fusion between outer acrosomal and plasma membranes, leading to inner acrosomal membrane exposure. Binding of agonists, P4 or ZP3 glycoprotein, to plasma membrane sperm receptors activates intraspermatic signals and enzymatic pathways involved in the AR. Among the proteins or glycoproteins described as potential sperm receptors for ZP, Gi/Go protein-coupled and tyrosine kinase receptors have been described. Sperm receptors for P4 are poorly characterized, except a putative GABA(A)-like receptor. ZP- and P4-promoted AR is mediated by an obligatory intracellular calcium increase, appearing first at the acrosome equatorial segment and spreading throughout the head. The plasma membrane channels involved in calcium entry are operated by a plasma membrane depolarization and protein phosphorylations mediated by protein kinase C and tyrosine kinase protein. Part of the calcium increase could also be due to intracellular store release through IP3- and nucleotide (cAMP)-gated channels. Besides adenylate cyclase and phospholipase C activations, intracellular calcium increase also stimulates PLA2 activity and actin depolymerization, leading to membrane fusion. Evaluation of AR by staining or fluorescent probes can be useful to predict fertilization success and to direct the therapeutic strategy in male infertility.  相似文献   

17.
Adult female golden hamsters were induced to superovulate. When they were mated several hours prior to ovulation or artificially inseminated about the time of ovulation, nearly 100% of their eggs were subsequently fertilized monospermically. During the progression of fertilization when the eggs were still surrounded by compact cumulus oophorus, the contents of the ampullary region of the oviducts were collected and spermatozoa moving in the ampullary fluid, within the cumulus and on/in the zonae pellucidae of unfertilized eggs, were examined by light and electron microscopy to evaluate the status of their acrosomal caps. Most spermatozoa swimming in the ampullary fluid had apparently intact acrosomal caps, while the vast majority moving within the cumulus had distinctly modified acrosomal caps. Most spermatozoa that had passed through the cumulus and reached the zona surfaces had remnants of their acrosomal caps (“acrosomal ghosts”). When the ghosts were present around the sperm heads on the zona, the heads pivoted about a point roughly corresponding to the places where the ghosts were located. The ghosts seemed to firmly attach to the zona surfaces, then were split open by the sperm heads and left behind as the sperm heads advanced into the zona. A few spermatozoa on the zona surfaces had no acrosomal ghosts (at least not detectable by light microscopy). In this case, the sperm head pivoted about either the inner acrosomal membrane or the equatorial segment of the acrosome. In no instance were spermatozoa with intact acrosomal caps found on zona surfaces. We infer from these observations that most spermatozoa in vivo initiate their acrosome reactions while they are advancing through the cumulus. When they arrive at the zona surfaces, acrosomal ghosts are generally present on the sperm heads. These ghosts appear to hold sperm heads to zona surfaces as well as to restrict the direction of advancement of sperm head through the zona. In a minority of cases, ghostless spermatozoa reach the zona surfaces. As these spermatozoa appear to be able to penetrate the zona successfully, structures other than the acrosomal ghost (ie, the inner acrosomal membrane and the plasma membrane over the equatorial segment of the acrosome) may also attach to zona surfaces before spermatozoa penetrate into the zona.  相似文献   

18.
The ultrastructure of spermatozoa from the cauda epididymidis and vas deferens of Octodon degus-a Chilean hystricomorph rodent-is presented. The head of spermatozoa measured 7.7 micrometer long by 5.9 micrometer wide and the tail was 41 micrometer long. The head was flattened dorso-ventrally and ovate in outline. The acrosome was the most distinctive feature of O. degus spermatozoa. In a frontal view of the head, the rim of the acrosome surrounding the nucleus had the shape of an inverted U. The acrosomal region covering the plane of the flattened head exhibited dome-shaped protrusions. Transverse or sagittal sections of acrosomal protrusions showed that the plasma membrane and outer acrosomal membrane were evaginated, while the inner acrosomal membrane followed the contour of the nucleus. The protrusions were not distributed at random and they were absent in the equatorial segment and in the rim of the acrosome. In frontal views, near the boundary between the acrosome and post-acrosomal region, fine rods about 170 nm long ran obliquely on the caudal part of the equatorial segment. Behind the same boundary, the post-acrosomal region showed a serrated border. Phosphotungstic acid treatment at pH 0.3 produced staining at the surface of the sperm as well as within a superficial layer of the marginal thickening of the acrosome and on the acrosomal protuberances.  相似文献   

19.
Zonadhesin is the only sperm protein known to bind in a species-specific manner to the zona pellucida. The zonadhesin precursor is a mosaic protein with a predicted transmembrane segment and large extracellular region composed of cell adhesion, mucin, and tandem von Willebrand D domains. Because the precursor possesses a predicted transmembrane segment and localizes to the anterior head, the mature protein was presumed to be a sperm surface zona pellucida-binding protein. In this study of hamster spermatozoa, we demonstrate that zonadhesin does not localize to the sperm surface but is instead a constituent of the acrosomal matrix. Immunoelectron microscopy revealed that distinct targeting pathways during spermiogenesis and sperm maturation in the epididymis result in trafficking of zonadhesin to the acrosomal matrix. In round spermatids, zonadhesin localized specifically to the acrosomal membrane, where it appeared to be evenly distributed between the outer and inner membrane domains. Subsequent redistribution of zonadhesin resulted in its elimination from the inner acrosomal membrane and restriction to the outer acrosomal membrane of the apical and principal segments and the contents of the posterior acrosome. During sperm maturation in the epididymis, zonadhesin dissociated from the outer acrosomal membrane and became incorporated into the forming acrosomal matrix. These data suggest an important structural role for zonadhesin in assembly of the acrosomal matrix and further support the view that the species specificity of zona pellucida adhesion is mediated by egg-binding proteins contained within the acrosome rather than on the periacrosomal plasma membrane.  相似文献   

20.
Exocytosis is a highly regulated, multistage process consisting of multiple functionally definable stages, including recruitment, targeting, tethering, priming, and docking of secretory vesicles with the plasma membrane, followed by calcium-triggered membrane fusion. The acrosome reaction of spermatozoa is a complex, calcium-dependent regulated exocytosis. Fusion at multiple sites between the outer acrosomal membrane and the cell membrane causes the release of the acrosomal contents and the loss of the membranes surrounding the acrosome. Not much is known about the molecules that mediate membrane docking in this particular fusion model. In neurons, the formation of the ternary RIM/Munc13/Rab3A complex has been suggested as a critical component of synaptic vesicles docking. Previously, we demonstrated that Rab3A localizes to the acrosomal region in human sperm, stimulates acrosomal exocytosis, and participates in an early stage during membrane fusion. Here, we report that RIM and Munc13 are also present in human sperm and localize to the acrosomal region. Like Rab3A, RIM and Munc13 participate in a prefusion step before the efflux of intra-acrosomal calcium. By means of a functional assay using antibodies and recombinant proteins, we show that RIM, Munc13 and Rab3A interplay during acrosomal exocytosis. Finally, we report by electron transmission microscopy that sequestering RIM and Rab3A alters the docking of the acrosomal membrane to the plasma membrane during calcium-activated acrosomal exocytosis. Our results suggest that the RIM/Munc13/Rab3 A complex participates in acrosomal exocytosis and that RIM and Rab3A have central roles in membrane docking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号