共查询到20条相似文献,搜索用时 0 毫秒
1.
Matsuo Y 《Molecular phylogenetics and evolution》2000,15(2):283-291
The nucleotide divergence in the protein-coding region for replication-dependent and replication-independent histone 3 and 4 genes of Drosophila melanogaster and Drosophila hydei occurred mostly at the synonymous site. Therefore, the pattern of codon usage was analyzed in the two species, considering the genomic codon bias, which is proposed for estimating the genomic composition pressure in the protein-coding regions. The results indicated that the codon usage in the histone gene family could be explained mostly by the genomic codon bias. However, biases for Ala and Arg were commonly observed for the histone 3 and histone 4 gene families, and biases for Ser, Leu, and Glu were observed in a gene-specific manner. This suggests that both genomic codon bias and gene- or codon-specific bias are responsible for the nucleotide differentiation in the protein-coding region of the histone genes. 相似文献
2.
Patterns of synonymous codon usage in Drosophila melanogaster genes with sex-biased expression 下载免费PDF全文
The nonrandom use of synonymous codons (codon bias) is a well-established phenomenon in Drosophila. Recent reports suggest that levels of codon bias differ among genes that are differentially expressed between the sexes, with male-expressed genes showing less codon bias than female-expressed genes. To examine the relationship between sex-biased gene expression and level of codon bias on a genomic scale, we surveyed synonymous codon usage in 7276 D. melanogaster genes that were classified as male-, female-, or non-sex-biased in their expression in microarray experiments. We found that male-biased genes have significantly less codon bias than both female- and non-sex-biased genes. This pattern holds for both germline and somatically expressed genes. Furthermore, we find a significantly negative correlation between level of codon bias and degree of sex-biased expression for male-biased genes. In contrast, female-biased genes do not differ from non-sex-biased genes in their level of codon bias and show a significantly positive correlation between codon bias and degree of sex-biased expression. These observations cannot be explained by differences in chromosomal distribution, mutational processes, recombinational environment, gene length, or absolute expression level among genes of the different expression classes. We propose that the observed codon bias differences result from differences in selection at synonymous and/or linked nonsynonymous sites between genes with male- and female-biased expression. 相似文献
3.
The rate of synonymous substitution in enterobacterial genes is inversely related to codon usage bias 总被引:31,自引:14,他引:31
Genes sequences from Escherichia coli, Salmonella typhimurium, and other
members of the Enterobacteriaceae show a negative correlation between the
degree of synonymous-codon usage bias and the rate of nucleotide
substitution at synonymous sites. In particular, very highly expressed
genes have very biased codon usage and accumulate synonymous substitutions
very slowly. In contrast, there is little correlation between the degree of
codon bias and the rate of protein evolution. It is concluded that both the
rate of synonymous substitution and the degree of codon usage bias largely
reflect the intensity of selection at the translational level. Because of
the high variability among genes in rates of synonymous substitution,
separate molecular clocks of synonymous substitution might be required for
different genes.
相似文献
4.
The effect of context on synonymous codon usage in genes with low codon usage bias. 总被引:3,自引:6,他引:3 下载免费PDF全文
M Bulmer 《Nucleic acids research》1990,18(10):2869-2873
The effect of neighbouring bases on the usage of synonymous codons in genes with low codon usage bias in yeast and E. coli is examined. The codon adaptation index is employed to identify a group of genes in each organism with low codon usage bias, which are likely to be weakly expressed. A similar pattern is found in complementary sequences with respect to synonymous usage of A vs G or of U vs C. It is suggested that this may reflect an effect of context on mutation rates in weakly expressed genes. 相似文献
5.
Switch in codon bias and increased rates of amino acid substitution in the Drosophila saltans species group. 总被引:5,自引:0,他引:5
We investigated the nucleotide composition of five genes, Xdh, Adh, Sod, Per, and 28SrRNA, in nine species of Drosophila (subgenus Sophophora) and one of Scaptodrosophila. The six species of the Drosophila saltans group markedly differ from the others in GC content and codon use bias. The GC content in the third codon position, and to a lesser extent in the first position and the introns, is higher in the D. melanogaster and D. obscura groups than in the D. saltans group (in Scaptodrosophila it is intermediate but closer to the melanogaster and obscura species). Differences are greater for Xdh than for Adh, Sod, Per, and 28SrRNA, which are functionally more constrained. We infer that rapid evolution of GC content in the saltans lineage is largely due to a shift in mutation pressure, which may have been associated with diminished natural selection due to smaller effective population numbers rather than reduced recombination rates. The rate of GC content evolution impacts the rate of protein evolution and may distort phylogenetic inferences. Previous observations suggesting that GC content evolution is very limited in Drosophila may have been distorted due to the restricted number of genes and species (mostly D. melanogaster) investigated. 相似文献
6.
7.
Most methods for estimating the rate of synonymous and nonsynonymous substitution per site define a site as a mutational opportunity: the proportion of sites that are synonymous is equal to the proportion of mutations that would be synonymous under the model of evolution being considered. Here we demonstrate that this definition of a site can give misleading results and that a physical definition of site should be used in some circumstances. We illustrate our point by reexamining the relationship between codon usage bias and the synonymous substitution rate. It has recently been shown that the rate of synonymous substitution, calculated using the Goldman-Yang method, which encapsulates the mutational-opportunity definition of a site at a high level of sophistication, is either positively correlated or uncorrelated to synonymous codon bias in Drosophila. Using other methods, which account for synonymous codon bias but define a site physically, we show that there is a negative correlation between the synonymous substitution rate and codon bias and that the lack of a negative correlation using the Goldman-Yang method is due to the way in which the number of synonymous sites is counted. We also show that there is a positive correlation between the synonymous substitution rate and third position GC content in mammals, but that the relationship is considerably weaker than that obtained using the Goldman-Yang method. We argue that the Goldman-Yang method is misleading in this context and conclude that methods that rely on a mutational-opportunity definition of a site should be used with caution. 相似文献
8.
9.
Analysis of synonymous codon usage bias in Chlamydia 总被引:9,自引:0,他引:9
Chlamydiae are obligate intracellular bacterial pathogens that cause ocular and sexuallytransmitted diseases,and are associated with cardiovascular diseases.The analysis of codon usage mayimprove our understanding of the evolution and pathogenesis of Chlamydia and allow reengineering of targetgenes to improve their expression for gene therapy.Here,we analyzed the codon usage of C.muridarum,C.trachomatis(here indicating biovar trachoma and LGV),C.pneumoniae,and C.psittaci using the codonusage database and the CUSP(Create a codon usage table)program of EMBOSS(The European MolecularBiology Open Software Suite).The results show that the four genomes have similar codon usage patterns,with a strong bias towards the codons with A and T at the third codon position.Compared with Homosapiens,the four chlamydial species show discordant seven or eight preferred codons.The ENC(effectivenumber of codons used in a gene)-plot reveals that the genetic heterogeneity in Chlamydia is constrained bythe G+C content,while translational selection and gene length exert relatively weaker influences.Moreover,mutational pressure appears to be the major determinant of the codon usage variation among the chlamydialgenes.In addition,we compared the codon preferences of C.trachomatis with those of E.coli,yeast,adenovirus and Homo sapiens.There are 23 codons showing distinct usage differences between C.trachomatisand E.coli,24 between C.trachomatis and adenovirus,21 between C.trachomatis and Homo sapiens,butonly six codons between C.trachomatis and yeast.Therefore,the yeast system may be more suitable for theexpression of chlamydial genes.Finally,we compared the codon preferences of C.trachomatis with those ofsix eukaryotes,eight prokaryotes and 23 viruses.There is a strong positive correlation between the differ-ences in coding GC content and the variations in codon bias(r=0.905,P<0,001).We conclude that thevariation of codon bias between C.trachomatis and other organisms is much less influenced by phylogeneticlineage and primarily determined by the extent of disparities in GC content. 相似文献
10.
Using mammalian gene sequences, the variances in the numbers of synonymous and nonsynonymous substitutions among genes were estimated together with the correlation coefficient between the two. The expected correlation coefficient can be obtained under the neutral theory using these estimated values of the variances. The expected coefficient is found to often be one-half to two-thirds of the observed value. Possible causes for the disagreement were discussed, such as correlated selective constraints on the two types of substitutions and excess doublet mutations. The variance of mutation rate and that of selective constraint were also estimated. The results show that the coefficient of variation of the former is 0.2–0.3, whereas that of the latter is 0.7–0.9.
Correspondence to: T. Ohta 相似文献
11.
Comparing patterns of molecular evolution between autosomes and sex chromosomes (such as X and W chromosomes) can provide insight into the forces underlying genome evolution. Here we investigate patterns of codon bias evolution on the X chromosome and autosomes in Drosophila and Caenorhabditis. We demonstrate that X-linked genes have significantly higher codon bias compared to autosomal genes in both Drosophila and Caenorhabditis. Furthermore, genes that become X-linked evolve higher codon bias gradually, over tens of millions of years. We provide several lines of evidence that this elevation in codon bias is due exclusively to their chromosomal location and not to any other property of X-linked genes. We present two possible explanations for these observations. One possibility is that natural selection is more efficient on the X chromosome due to effective haploidy of the X chromosomes in males and persistently low effective numbers of reproducing males compared to that of females. Alternatively, X-linked genes might experience stronger natural selection for higher codon bias as a result of maladaptive reduction of their dosage engendered by the loss of the Y-linked homologs. 相似文献
12.
Jeffrey P Mower Pascal Touzet Julie S Gummow Lynda F Delph Jeffrey D Palmer 《BMC evolutionary biology》2007,7(1):135
Background
It has long been known that rates of synonymous substitutions are unusually low in mitochondrial genes of flowering and other land plants. Although two dramatic exceptions to this pattern have recently been reported, it is unclear how often major increases in substitution rates occur during plant mitochondrial evolution and what the overall magnitude of substitution rate variation is across plants. 相似文献13.
14.
Understanding the correlation between synonymous substitution rate and GC content is essential to decipher the gene evolution. However, it has been controversial on their relationship. We analyzed the GC content and synonymous substitution rate in 1092 paralogues produced by two large-scale duplication events in the rice genome. According to the GC content at the third codon sites (GC3), the paralogues were classified into GC3-rich and GC3-poor genes. By referring to their outgroup sequences, we inferred the last common ancestor of sister paralogues and, consequently, calculated the average synonymous substitution rate for two gene classes. The results suggest that average synonymous substitution rate is lower in GC3-rich genes than that in GC3-poor genes, indicating that the synonymous substitution rate is negatively correlated with GC content in the rice genome. Through characterizing the synonymous nucleotide substitution pattern, we found a strong synonymous nucleotide substitution frequency bias from AT to GC in GC3-rich genes. This indicates possible limitations of commonly used methods developed to estimate the synonymous substitution rate. Their estimates might produce misleading results on correlation between the synonymous substitution rate and GC content. 相似文献
15.
W. ARTHUR J. MIDDLECOTE 《Biological journal of the Linnean Society. Linnean Society of London》1984,23(2-3):167-176
Several experiments, each involving competition between Drosophila melanogaster and D. hydei in population cages, were set up and allowed to run for up to 50 weeks. The population sizes of both species, and hence the species frequencies, were monitored once a fortnight, i.e. approximately once per generation. Coexistence of the two species was observed in cages containing resource bottles with 5 g of food medium; cages whose resource bottles contained only 1.5 g resulted in competitive exclusion of D. hydei. Competitive abilities were frequency-dependent in the former case but not in the latter. Tests of larval depth distributions revealed that D. hydei larvae feed at a deeper level in the food medium than larvae of D. melanogaster. The explanation of the contrasting results of competition when bottles contained 5 g and 1.5 g of resources lies in the production of frequency-dependent competitive abilities by larval resource partitioning in the bottles with 5 g, and the preclusion of such partitioning in the 1.5 g bottles because of the very limited depth of food medium then available. The relevance of these results to a model of competition is discussed, and the potential generality of differential resource use as a stabilizing mechanism in both interspecific and intergenotypic competition is noted. 相似文献
16.
17.
18.
19.
Chromatin structure of the histone genes of D. melanogaster 总被引:37,自引:0,他引:37
We have examined the chromatin structure of the histone gene repeat of D. melanogaster using an indirect end-labeling technique. Our results show that each DNA segment of the repeat is packaged into a precisely defined and characteristic structure, as follows: the nontranscribed spacers display a "normal" chromatin arrangement, with each nucleosome precisely positioned on the underlying DNA sequence; the 5' ends of all five histone genes are in an exposed configuration, highly sensitive to both micrococcal nuclease and DNAase I; and the genes have an "altered" chromatin structure, as indicated by the weak and irregularly spaced nuclease cuts. This well-defined chromatin arrangement is established early in development and is stably maintained throughout the remainder of the D. melanogaster life cycle. 相似文献
20.
Nucleic acid composition,codon usage,and the rate of synonymous substitution in protein-coding genes
Summary Based on the rates of synonymous substitution in 42 protein-codin gene pairs from rat and human, a correlation is shown to exist between the frequency of the nucleotides in all positions of the codon and the synonymous substitution rate. The correlation coefficients were positive for A and T and negative for C and G. This means that AT-rich genes accumulate more synonymous substitutions than GC-rich genes. Biased patterns of mutation could not account for this phenomenon. Thus, the variation in synonymous substitution rates and the resulting unequal codon usage must be the consequence of selection against A and T in synonymous positions. Most of the varition in rates of synonymous substitution can be explained by the nucleotide composition in synonymous positions. Codon-anticodon interactions, dinucleotide frequencies, and contextual factors influence neither the rates of synonymous substitution nor codon usage. Interestingly, the nucleotide in the second position of codons (always a nonsynonymous position) was found to affect the rate of synonymous substitution. This finding links the rate of nonsynonymous substitution with the synonymous rate. Consequently, highly conservative proteins are expected to be encoded by genes that evolve slowly in terms of synonymous substitutions, and are consequently highly biased in their codon usage. 相似文献