首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anemonefishes (Pomacentridae Amphiprioninae) are a group of 30 valid coral reef fish species with their phylogenetic relationships still under debate. The eight available mitogenomes of anemonefishes were used to reconstruct the molecular phylogenetic tree; six were obtained from this study (Amphiprion clarkii, A. frenatus, A. percula, A. perideraion, A. polymnus and Premnas biaculeatus) and two from GenBank (A. bicinctus and A. ocellaris). The seven Amphiprion species represent all four subgenera and P. biaculeatus is the only species from Premnas. The eight mitogenomes of anemonefishes encoded 13 protein-coding genes, two rRNA genes, 22 tRNA genes and two main non-coding regions, with the gene arrangement and translation direction basically identical to other typical vertebrate mitogenomes. Among the 13 protein-coding genes, A. ocellaris (AP006017) and A. percula (KJ174497) had the same length in ND5 with 1,866 bp, which were three nucleotides less than the other six anemonefishes. Both structures of ND5, however, could translate to amino acid successfully. Only four mitogenomes had the tandem repeats in D-loop; the tandem repeats were located in downstream after Conserved Sequence Block rather than the upstream and repeated in a simply way. The phylogenetic utility was tested with Bayesian and Maximum Likelihood methods using all 13 protein-coding genes. The results strongly supported that the subfamily Amphiprioninae was monophyletic and P. biaculeatus should be assigned to the genus Amphiprion. Premnas biaculeatus with the percula complex were revealed to be the ancient anemonefish species. The tree forms of ND1, COIII, ND4, Cytb, Cytb+12S rRNA, Cytb+COI and Cytb+COI+12S rRNA were similar to that 13 protein-coding genes, therefore, we suggested that the suitable single mitochondrial gene for phylogenetic analysis of anemonefishes maybe Cytb. Additional mitogenomes of anemonefishes with a combination of nuclear markers will be useful to substantiate these conclusions in future studies.  相似文献   

2.
The mitochondrial genome (mitogenome) has been extensively used for studying phylogenetic relationships at different taxonomic levels. Several molecular analyses have been performed, but the phylogenetic relationships among infraorders in Polyphaga have not been well resolved. In this work, three nearly complete mitogenomes of Coleoptera, Sitophilus oryzae, Oryzaephilus surinamensis and Callosobruchus chinensis, were determined. The O. surinamensis and S. oryzae mitogenomes harbor gene content typical of other Polyphaga mitogenomes, while a gene rearrangement (trnQ) was found in the C. chinensis mitogenome. The mitogenomes of these three Coleoptera species each consist of approximately 13 protein-coding genes, 22 tRNA genes, two rRNA genes and one A + T-rich region. Phylogenetic analysis within Polyphaga was carried out based on mitochondrial data. The phylogenetic results within Polyphaga support the basal position of Cyphon sp., which belonged to Scirtoidea, Elateriformia. Within Cucujiformia, monophyletic Curculionoidea, Chrysomeloidea and Tenebrionoidea were confirmed.  相似文献   

3.
《Genomics》2020,112(5):3056-3064
Here, the complete mitochondrial genome (mitogenome) of Drawida gisti was sequenced and compared with the mitogenomes of other Metagynophora species. The circular mitogenome was 14,648 bp in length and contained two ribosomal RNA genes (rRNAs), 13 protein-coding genes (PCGs), and 22 transfer RNA genes (tRNAs). The types of constitutive genes and the direction of the coding strand that appeared in Drawida mitogenome were identical to those observed in other Metagynophora species, except for a missing lengthy non-coding region. The conservative relationships between Drawida species were supported by the overall analyses of 13 PCGs, two rRNAs, and 22 tRNAs. A comparison of the Metagynophora mitogenomes revealed that the ATP8 gene possessed the highest polymorphism among the 13 PCGs and two rRNAs. Phylogenetic analysis suggested that the Moniligastridae contained Drawida, which is a primitive Metagynophora group. Our study provides a step forward toward elucidating the evolutionary linkages within Drawida and even Metagynophora.  相似文献   

4.
Complete sequences of two lineage-specific mitogenomes from mytilid bivalve Geukensia demissa are reported, confirming the existence of doubly uniparental inheritance system in this species. The reported mitogenomes show extreme sequence divergence; at protein level, it is in the range of 12%–55%, exceeding the highest values known from this family to date. Moreover, these mitogenomes are also extraordinarily AT-rich (~72%) making them the most compositionally biased mitogenomes from this family. The compositional bias is even more extreme at neutral sites, reaching 80% AT there. Despite high-sequence divergence, the mitogenomes are both compositionally and structurally similar, with only four trn genes relocated and overall gene order very similar to the phylogenetically close mitogenomes of Perumytilus purpuratus. Lineage-specific differences are limited to the non-coding regions and a short cox2 extension present in the paternally inherited M mitogenome. Phylogenetic analysis shows deeper separation of M and F lineages in Geukensia, than in Perumytilus consistent with higher protein divergence. It can be speculated that stronger mutational pressure in Geukensia is driving faster evolution of its mitogenomes.  相似文献   

5.
《Genomics》2022,114(2):110305
The subfamily Ototretinae represents an important and unusual lineage of fireflies. Here, we sequenced and annotated three mitogenomes for this subfamily, with two Stenocladius species and one Drilaster species as representatives. The mitogenome of Stenocladius exhibits a rearranged gene order between trnC and trnW caused by transposition, which is a novel finding in Lampyridae. Meanwhile, a long intergenic space (241 to 376 bp) exists between the two rearranged genes, and some remnants (23 bp) of trnW are present within this non-coding region. Moreover, phylogenetic analyses did not recover the monophyly of Ototretinae, in which Drilaster is shown at a basal lineage in Lampyridae, but Stenocladius seems more related to Luciolinae. Therefore, the gene rearrangement in Stenocladius is presumed to result from independent evolutionary events, suggesting that this genus should be placed in a separate lineage. Nevertheless, more representative mitogenomes from different groups are required to verify the present results.  相似文献   

6.
Cryptic species which improve our understanding of species diversity and evolutionary histories within marine animals have been increasingly revealed in the marine realm. Coelomactra antiquate is an important commercial bivalve species, but has been suffering from severe population decline due to over-exploitation and deterioration of environmental conditions. To test the hypothesis that cryptic species might exist in C. antiquate presented in previous study, four complete mitogenomes of C. antiquate from northern and southern China were determined here. Comprehensive comparative analysis of the mitochondrial genomes of C. antiquate between northern and southern population reveals significant differences in genome composition, protein coding genes, tRNA genes, non-coding regions, genetic divergence and phylogenetic analysis. The results provide strong mitogenome evidence for the existence of cryptic species in C. antiquate. Besides, our results also support that comprehensive comparative analysis of mtDNA represents an accessible and powerful tool to identify cryptic species.  相似文献   

7.
The complete mitogenome of Talpa occidentalis, the Iberian mole, was sequenced using a combination of the Illumina and Sanger methods. The 16,962 bp genome obtained contains 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs, and a control region. Thirty-seven identical repetitions of a 10-nucleotide (CACACGTACG) repeat element were identified in the non-coding control region (D-loop). The number, order, and orientation of the mitochondrial genes are the same as in T. europaea, the only mitogenome published so far for this genus. These two mitogenomes differ only at the repeat element included in the control region. The phylogeny obtained for the Talpidae species using the protein-coding genes of these mitogenomes agrees with the current classification of this family.  相似文献   

8.
《Journal of Asia》2019,22(2):513-521
The complete mitochondrial genome (mitogenome) of Mahanta tanyae was sequenced and extensively compared with all seven additionally reported zygaenoid mitogenomes. The M. tanyae mitogenome is circular, double-stranded, and 15,323 bp long. Gene content, gene order, and orientation are all typical of Lepidoptera, despite the existence of gene rearrangements for some other zygaenoid mitogenomes. Comparative analyses further showed that the incomplete termination codon T is consistently recognized in the mitochondrial cox1, cox2 and nad4 genes of all zygaenoid species, as well as in the nad5 gene in two limacodid species. Among 13 protein-coding genes, nad6 exhibits the highest evolutionary rate. The structure for each tRNA is highly conserved, including loss of the dihydorouidine (DHU) arm in trnS1 (AGN), but remarkable nucleotide variation exists, primarily in the pseudouridine (TψC) loops. Interestingly, in four species of Zygaenidae, the anticodons for trnS1 (AGN) are consistently UCU, instead of the routinely used codon GCU, in all three species of Limacodidae. In the intergenic region between trnS2 and nad1, a short sequence before the motif “ATACTAA” is present in the M. tanyae mitogenome that is unique among reported zygaenoid mitogenomes. In the A + T-rich region between the motif “ATTTA” and the microsatellite (AT)n element, some nucleotides were present for most zygaenoid mitogenomes, which is, to our knowledge, rare even in reported lepidopteran mitogenomes. Phylogenetic analyses based on the combined 37 mitochondrial genes confirmed the position of M. tanyae in Limacodidae of the Zygaenoidea.  相似文献   

9.
The complete mitogenomes of Asiotmethis zacharjini, Filchnerella helanshanensis and Pseudotmethis rubimarginis are 15,660 bp, 15,657 bp and 15,661 bp in size, respectively. All three mitogenomes contain a standard set of 13 protein - coding genes, 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and an A + T-rich region in the same order as those of the other analysed caeliferan species, including the rearrangement of trnAsp and trnLys. The putative initiation codon for the cox1 gene in the three species is CCG. The long polythymine stretch (T-stretch) in the A + T-rich region of the three species is not adjacent to the trnIle but inside the stem–loop sequence in the majority strand. The mitogenomes of F. helanshanensis and P. rubimarginis have higher overall similarities. The characterization of the three mitogenomes will enrich our knowledge on the Pamphagidae mitogenome. The phylogenetic analyses indicated that within the Caelifera, Pyrgomorphoidea is a sister group to Acridoidea. The species from the Pamphagidae form a monophyletic group, as is the case for Acrididae. Furthermore, the two families cluster as sister groups, supporting the monophyly of Acridoidea. The relationships among eight acridid subfamilies were (Cyrtacanthacridinae + (Calliptaminae + (Catantopinae + (Oxyinae + (Melanopline + (Acridinae + (Oedipodinae + Gomphocerinae))))))).  相似文献   

10.

Background

Nabidae, a family of predatory heteropterans, includes two subfamilies and five tribes. We previously reported the complete mitogenome of Alloeorhynchus bakeri, a representative of the tribe Prostemmatini in the subfamily Prostemmatinae. To gain a better understanding of architecture and evolution of mitogenome in Nabidae, mitogenomes of five species representing two tribes (Gorpini and Nabini) in the subfamily Nabinae were sequenced, and a comparative mitogenomic analysis of three nabid tribes in two subfamilies was carried out.

Methodology/Principal Findings

Nabid mitogenomes share a similar nucleotide composition and base bias, except for the control region, where differences are observed at the subfamily level. In addition, the pattern of codon usage is influenced by the GC content and consistent with the standard invertebrate mitochondrial genetic code and the preference for A+T-rich codons. The comparison among orthologous protein-coding genes shows that different genes have been subject to different rates of molecular evolution correlated with the GC content. The stems and anticodon loops of tRNAs are extremely conserved, and the nucleotide substitutions are largely restricted to TψC and DHU loops and extra arms, with insertion-deletion polymorphisms. Comparative analysis shows similar rates of substitution between the two rRNAs. Long non-coding regions are observed in most Gorpini and Nabini mtDNAs in-between trnI-trnQ and/or trnS2-nad1. The lone exception, Nabis apicalis, however, has lost three tRNAs. Overall, phylogenetic analysis using mitogenomic data is consistent with phylogenies constructed mainly form morphological traits.

Conclusions/Significance

This comparative mitogenomic analysis sheds light on the architecture and evolution of mitogenomes in the family Nabidae. Nucleotide diversity and mitogenomic traits are phylogenetically informative at subfamily level. Furthermore, inclusion of a broader range of samples representing various taxonomic levels is critical for the understanding of mitogenomic evolution in damsel bugs.  相似文献   

11.
Wang X  Xu X 《Gene》2012,494(1):17-23
The extreme variability of the mitochondrial (mito) genomes of bivalves makes it difficult to understand their evolutionary dynamics, given that species from different families do not share comparable features. We compared the mitogenomes from four Paphia clams (three of them were firstly sequenced) and found that mitogenome reorganization among the four congeneric species is not random but follows phylogenetic trends. Start/stop codon variations are species-correlated rather than gene-correlated, and bear useful phylogenetic information. Unique start/stop codon usage in P. euglypta and A+T content in P. amabilis indicates that these mitogenome-level characters, usually considered to be conservative features in other lineages, may not be phylogenetically evolved, but may have evolved via species-specific mitogenomic maintenance mechanisms. Variable divergence of two trnM genes in different lineages may demonstrate differences in mechanisms by which paralogous trnM genes are maintained. Sequence alignment analysis indicates that the VNTRs in the four mitogenomes have a common origin. The rationale of the subgenus Neotapes Kuroda and Habe, 1971 was supported by evidence from morphological characters, mitogenomic features, as well as phylogenetic analyses using cox1 and rrnS genes. The data suggest that the taxonomic basis of the subgenus should be “smooth surface” but not “undulated lines,” and P. textile should be classified to the Neotapes subgenus.  相似文献   

12.
《Genomics》2020,112(6):3893-3902
This study presented 96 cox1 and 76 cox3 genes of Amphioctopus neglectus populations. Three distinct lineages were formed from phylogenetic trees and networks constructed using haplotypes. Mitogenomes of A. neglectus-a and A. neglectus-b as the representatives of two lineages separated from population genetics were sequenced to compare with A. neglectus at the genome-level. Amphioctopus neglectus-a showed significant differences with A. neglectus, mainly reflected in gene length, intergenic regions and the secondary structure of tandem repeat motifs. Notably, two sequence deletions in mitogenomes of the two representative species were detected in different positions of major non-coding regions, which were the most distinct differences with A. neglectus. Pairwise genetic distances and the phylogenetic analysis supported the relationship of (A. neglectus-a + (A. neglectus + A. neglectus-b)). This study suggested that A. neglectus-a should be considered as a potential cryptic species of this complex, while A. neglectus-b needed further verification to be defined.  相似文献   

13.
Insect mitochondrial genomes (mitogenomes) are of great interest in exploring molecular evolution, phylogenetics and population genetics. Only two mitogenomes have been previously released in the insect group Aphididae, which consists of about 5,000 known species including some agricultural, forestry and horticultural pests. Here we report the complete 16,317 bp mitogenome of Cavariella salicicola and two nearly complete mitogenomes of Aphis glycines and Pterocomma pilosum. We also present a first comparative analysis of mitochondrial genomes of aphids. Results showed that aphid mitogenomes share conserved genomic organization, nucleotide and amino acid composition, and codon usage features. All 37 genes usually present in animal mitogenomes were sequenced and annotated. The analysis of gene evolutionary rate revealed the lowest and highest rates for COI and ATP8, respectively. A unique repeat region exclusively in aphid mitogenomes, which included variable numbers of tandem repeats in a lineage-specific manner, was highlighted for the first time. This region may have a function as another origin of replication. Phylogenetic reconstructions based on protein-coding genes and the stem-loop structures of control regions confirmed a sister relationship between Cavariella and pterocommatines. Current evidence suggest that pterocommatines could be formally transferred into Macrosiphini. Our paper also offers methodological instructions for obtaining other Aphididae mitochondrial genomes.  相似文献   

14.
To date, the taxonomic status and phylogenetic affinities within Hyphessobrycon, even among other genera in Characidae, remain unclear. Here, we determined five new mitochondrial genomes (mitogenomes) of Hyphessobrycon species (H. elachys, H. flammeus, H. pulchripinnis, H. roseus, and H. sweglesi). The mitogenomes were all classical circular structures, with lengths ranging from 16,008 to 17,224 bp. The type of constitutive genes and direction of the coding strand that appeared in the mitogenomes were identical to those of other species in Characidae. The highest value of the Ka/Ks ratio within 13 protein‐coding genes (PCGs) was found in ND2 with 0.83, suggesting that they were subject to purifying selection in the Hyphessobrycon genus. Comparison of the control region sequences among seven Hyphessobrycon fish revealed that repeat units differ in length and copy number across different species, which led to sharp differences in mitogenome sizes. Phylogenetic trees based on the 13 PCGs did not support taxonomic relationships, as the Hyphessobrycon fish mixed with those from other genera. These data were combined to explore higher level relationships within Characidae and could aid in the understanding of the evolution of this group.  相似文献   

15.
16.
Allactaga sibirica (Dipodidae) is widely distributed in the northwestern arid regions of China. The complete mitochondrial genome (mitogenome) of A. sibirica was 16,685 bp in length; included 13 protein-coding genes, 2 ribosome genes, 22 tRNA genes, and one control region; and had a structure that was typical of vertebrates. The base composition and codon usage of the mitogenome are described, and the structure of the non-coding sequence in the A. sibirica is reported for the first time. The putative origin of replication for the light strand of A. sibirica was approximately 45 bp long, and was highly conserved in the stem-loop and adjacent sequences. Phylogenetic analyses showed high resolution in each of the main divergent clades within Dipodoidea using mitogenomes data. The results indicated that the Zapodidae group was a representative of very basal taxon in Dipodoidea, and shared a common ancestor with Dipodidae species. Within Dipodidae clade, Allactaginae species was at basal position, and this result was in line with previous molecular systematic and morphological studies. Furthermore, Euchoreutes naso and A. sibirica had a close relationship could implicate a sister-group relationship between Euchoreutinae and Allactaginae. Meanwhile, this work also provided a set of useful data on phylogeny and molecular evolution in Dipodidae species.  相似文献   

17.
Mitochondrion is a kind of cell organelle known as the engine house of the cells in the performance of the production of energy in the form of ATP, and the regulation of cellular metabolism in programmed cell death. Plant mitochondria are involved in the formation of cytoplasm male sterility and the mechanism of restoration. Its genomes offer useful information in analysis of the evolution dynamics. The mitogenomes (mitochondrial genomes) of 2074A, a cytoplasmic male sterile line of Gossypium harknessii cytoplasm, was sequenced by Solexa strategy and assembled by SOAP de novo. Combined with public data, the sequences of nine mitochondrial functional genes in 20 taxa were used to reconstruct phylogenetic trees and further to demonstrate the variations of mitogenomes in higher plants. The sequence size, genome composition, and the number of genes varied in mitogenomes, while the genes related to oxidative respiratory chain remain conserved. In examined mitogenomes, the number of protein-coding genes of higher plants varied from 24 to 42. And gene conservatism was quite different. Gene gain or loss entirely existed widely; genes insertion and loss of intron (s), and some altered as pseudogenes were checked; loss of tRNAs and insertion of cp-DNA transferring happened frequently; and syntenic gene clusters were found. More than 50 % of intergenic regions were mainly accumulated by repeats and non-coding sequences. The variable mitogenomes existed conservatism, but it demonstrated that the linear relationship was not parallel to that in mitogenomes of different species in evolution. The mitogenome of 2074A harbored 56 functional genes and changed quite a lot in sequences, while there were a few linear gene clusters and conserved flanking sequences of functional genes. Generally, the information was helpful for understanding the results in mitogenome evolution.  相似文献   

18.
《Genomics》2020,112(2):1716-1725
Both Cricetus cricetus and Phodopus sungorus mitochondrial genomes (mitogenomes) were sequenced and elaborated for the first time in the present study. Their mitogenomes contained 37 genes and showed typical characteristics of the vertebrate mitogenome. Comparative analysis of 10 cricetine mitogenomes indicated that they shared similar characteristics with those of other cricetines in terms of genes arrangement, nucleotide composition, codon usage, tRNA structure, nucleotide skew and the origin of replication of light strand. Phylogenetic relationship of the subfamily Cricetinae was reconstructed using mitogenomes data with the methods of Bayesian Inference and Maximum Likelihood. Phylogenetic analysis indicated that Cricetulus kamensis was at basal position and phylogenetically distant from all other Cricetulus species but had a close relationship with the group of Phodopus, and supported that the genus Urocricetus deserved as a separate genus rank. The phylogenetic status of Tscherskia triton represented a separate clade corresponding to a diversified cricetine lineage (Cricetulus, Allocricetulus, and Cricetus).  相似文献   

19.
《Journal of Asia》2021,24(4):1257-1265
The dobsonfly genus Neoneuromus van der Weele, 1909 represents one of the megalopteran lineages with large body-size, and comprises 13 species all endemic to the Oriental region. In the present study, the mitochondrial genomes (mitogenomes) of 12 species of this genus were determined and analyzed for the first time. The mitogenome of the genus-type, Neoneuromus fenestralis (McLachlan, 1869), as a representative of these congeneric species, is herein described in detail. All of the mitogenomes of Neoneuromus are composed of 37 encoded genes and a control region. The evolutionary rates of the protein coding genes (PCGs) of the 13 species of Neoneuromus as well as different genera of Corydalinae are estimated. All the transfer RNA genes (tRNAs) have the typical clover-leaf secondary structure except trnS1 (AGN). Interspecific relationships within Neoneuromus were reconstructed based on different datasets generated from mitogenomic sequences. Our results indicate that tRNA and ribosomal RNA genes (rRNAs) of Neoneuromus species contribute phylogenetic signal when being concatenated with the PCGs, thus should be kept during phylogenetic analysis. The results sheds light on understanding the evolution of these aquatic and predatory insects.  相似文献   

20.
《Genomics》2021,113(3):1378-1385
Mitogenomes of five leafhopper species, Chudania hellerina and Concaveplana rufolineata in Nirvanini, Carinata rufipenna, Evacanthus danmainus and E. heimianus representing Evacanthini, were sequenced. The lengths of these five mitogenomes range from 15,044 (C. hellerina) to 15,680 bp (E. heimianus). All five mitogenomes exhibit similar base composition, gene size and codon usage of protein-coding genes. All 22 tRNA genes have typical cloverleaf secondary structures, except for trnS1 (AGN) which appears to lack the dihydrouridine arm. The two included Nirvanini species employ the anticodon TCT instead of the commonly used GCT in trnS1 (AGN). Genes nad2, atp8 and nad6 were highly variable while cox1 and cob showed the lowest nucleotide diversity. Phylogenetic analyses of two concatenated nucleotide datasets, incorporating the newly sequenced taxa and other available membracoid mitogenomes, recovered each included leafhopper subfamily as monophyletic with evacanthine tribes Nirvanini and Evacanthini forming monophyletic sister clades. A relationship among Evacanthinae, Cicadellinae and Typhlocybinae received moderate branch support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号