首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
Low O2 levels in solid tumors are associated with increase in hypoxia-inducible factor 1α (HIF-1α). The present study examines functional changes involved in adaptation to hypoxia of the LMM3 mammary tumor cell line, using CoCl2 as hypoxic mimetic. Our results showed that LMM3 cells were not only tolerant to 150 μM CoCl2 but they can overgrowth in vitro respect to untreated cells. Hypoxia inhibited cell invasion, migration, MMP-9 activity and NO levels. Macrophage cytotoxicity augmented under hypoxia but was blunted by conditioned media from tumor cells. In vivo tumorigenicity of CoCl2-treated cells was greater than controls. Our results show stabilization of HIF-1α in LMM3 cells under CoCl2 and functional changes associated with enhanced cell survival and growth but not with tumor dissemination.  相似文献   

3.
Hypoxia-induced apoptosis of cementoblasts (OCCM-30) may be harmful to orthodontic treatment. Hypoxia-inducible factor 1-alpha (HIF-1α) mediates the biological effects during hypoxia. Little is known about the survival mechanism capable to counteract cementoblast apoptosis. We aimed to investigate the potential roles of HIF-1α, as well as the protein-protein interactions with ERK1/2, using an in-vitro model of chemical-mimicked hypoxia and adipokines. Here, OCCM-30 were co-stimulated with resistin, visfatin or ghrelin under CoCl2-mimicked hypoxia. In-vitro investigations revealed that CoCl2-induced hypoxia triggered activation of caspases, resulting in apoptosis dysfunction in cementoblasts. Resistin, visfatin and ghrelin promoted the phosphorylated ERK1/2 expression in OCCM-30 cells. Furthermore, these adipokines inhibited hypoxia-induced apoptosis at different degrees. These effects were reversed by pre-treatment with ERK inhibitor (FR180204). In cells treated with FR180204, HIF-1α expression was inhibited despite the presence of three adipokines. Using dominant-negative mutants of HIF-1α, we found that siHIF-1α negatively regulated the caspase-8, caspase-9 and caspase-3 gene expression. We concluded that HIF-1α acts as a bridge factor in lengthy hypoxia-induced apoptosis in an ERK1/2-dependent pathway. Gene expressions of the caspases-3, caspase-8 and caspase-9 were shown to be differentially regulated by adipokines (resistin, visfatin and ghrelin). Our study, therefore, provides evidence for the role of ERK1/2 and HIF-1α in the apoptotic response of OCCM-30 cells exposed to CoCl2-mimicked hypoxia, providing potential new possibilities for molecular intervention in obese patients undergoing orthodontic treatment.  相似文献   

4.
Small-molecule inhibition of hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs) is being explored for the treatment of anemia. Previous studies have suggested that HIF-P4H-2 inhibition may also protect the heart from an ischemic insult. Hif-p4h-2gt/gt mice, which have 76 to 93% knockdown of Hif-p4h-2 mRNA in endothelial cells, fibroblasts, and cardiomyocytes and normoxic stabilization of Hif-α, were subjected to ligation of the left anterior descending coronary artery (LAD). Hif-p4h-2 deficiency resulted in increased survival, better-preserved left ventricle (LV) systolic function, and a smaller infarct size. Surprisingly, a significantly larger area of the LV remained perfused during LAD ligation in Hif-p4h-2gt/gt hearts than in wild-type hearts. However, no difference was observed in collateral vessels, while the size of capillaries, but not their number, was significantly greater in Hif-p4h-2gt/gt hearts than in wild-type hearts. Hif-p4h-2gt/gt mice showed increased cardiac expression of endothelial Hif target genes for Tie-2, apelin, APJ, and endothelial nitric oxide (NO) synthase (eNOS) and increased serum NO concentrations. Remarkably, blockage of Tie-2 signaling was sufficient to normalize cardiac apelin and APJ expression and resulted in reversal of the enlarged-capillary phenotype and ischemic cardioprotection in Hif-p4h-2gt/gt hearts. Activation of the hypoxia response by HIF-P4H-2 inhibition in endothelial cells appears to be a major determinant of ischemic cardioprotection and justifies the exploration of systemic small-molecule HIF-P4H-2 inhibitors for ischemic heart disease.  相似文献   

5.
AIM:To study the effect of both acute and chronic alcohol exposure on heme oxygenases(HOs) in the brain,liver and duodenum.METHODS:Wild-type C57BL/6 mice,heterozygous Sod2 knockout mice,which exhibit attenuated manganese superoxide dismutase activity,and liver-specific ARNT knockout mice were used to investigate the role of alcohol-induced oxidative stress and hypoxia.For acute alcohol exposure,ethanol was administered in the drinking water for 1 wk.Mice were pair-fed with regular or ethanol-containing Lieber De Carli liquid diets for 4 wk for chronic alcohol studies.HO expression was analyzed by real-time quantitative polymerase chain reaction and Western blotting.RESULTS:Chronic alcohol exposure downregulated HO-1 expression in the brain but upregulated it in the duodenum of wild-type mice.It did not alter liver HO-1 expression,nor HO-2 expression in the brain,liver or duodenum.In contrast,acute alcohol exposure decreased both liver HO-1 and HO-2 expression,and HO-2 expression in the duodenum of wild-type mice.The decrease in liver HO-1 expression was abolished in ARNT+/-mice.Sod2+/-mice with acute alcohol exposure did not exhibit any changes in liver HO-1 and HO-2 expression or in brain HO-2 expression.However,alcohol inhibited brain HO-1 and duodenal HO-2 but increased duodenal HO-1 expression in Sod2+/-mice.Collectively,these findings indicate that acute and chronic alcohol exposure regulates HO expression in a tissue-specific manner.Chronic alcohol exposure alters brain and duodenal,but not liver HO expression.However,acute alcohol exposure inhibits liver HO-1 and HO-2,and also duodenal HO-2 expression.CONCLUSION:The inhibition of liver HO expression by acute alcohol-induced hypoxia may play a role in the early phases of alcoholic liver disease progression.  相似文献   

6.
Embryonic hypoxia/ischemia is a major cause of a poor fetal outcome and future neonatal and adult handicaps. However, biochemical cellular events in mouse embryonic stem (mES) cells during hypoxia remains unclear. This study investigated the underlying mechanism of apoptosis in mES cells under CoCl2-induced hypoxic/ischemic conditions. CoCl2 enhanced the expression of hypoxia-inducible factor-1α (HIF-1α) and the accumulation of reactive oxygen species in mES cells. The CoCl2-treated mES cells showed a decrease in cell viability as well as typical apoptotic changes, cell shrinkage, chromatin condensation, and nuclear fragmentation and an extended G2/M phase of the cell cycle. CoCl2 augmented the release of cytochrome c into the cytosol from the mitochondria with a concomitant loss of the mitochondrial transmembrane potential (ΔΨm) and upregulated the voltage-dependent anion channel. In addition, CoCl2-induced caspase-3, -8, and -9 activation and upregulation of p53 level, whereas downregulated Bcl-2 and Bcl-xL, a member of the anti-apoptotic Bcl-2 family in mES cells. Furthermore, CoCl2 led to the upregulation of Fas and Fas-ligand, which are the death receptor assemblies, as well as the cleavage of Bid in mES cells. These results suggest that CoCl2 induces apoptosis through both mitochondria- and death receptor-mediated pathways that are regulated by the Bcl-2 family in mES cells.  相似文献   

7.
Cu/Zn superoxide dismutase (SOD1), which is localized cytoplasmically and in the mitochondrial intermembrane space, is an enzyme that is critically important for superoxide free-radical elimination. Compared with age-matched wild-type littermates (Sod1 +/+ ), SOD1 homozygous knockout (Sod1 -/- ) mice have smaller body masses, heart and skeletal muscle masses, and muscle cross-sectional areas. At the light-microscopic level, cross sections of skeletal muscles from Sod1 -/- mice show no gross structural abnormalities. Following the staining of muscles of Sod1 -/- mice for succinate dehydrogenase (SDH) enzymatic activity, a grouping of SDH-positive fibers has been observed. Immunostaining for neural cell adhesion marker in the gastrocnemius muscle of Sod1 -/- mice has revealed a small number of atrophic denervated muscle fibers. No denervated fibers are observed in extensor digitorum longus (EDL), tibialis anterior, or plantaris muscles. An increase in mRNA expression levels of myogenin and acetylcholine receptor alpha has been detected in muscles in Sod1 -/- mice, but no changes in MyoD expression occur. Compared with fast oxidative fibers in EDL muscles of Sod1 +/+ mice, those of Sod1 -/- mice show increased accumulations of sub-sarcolemmal mitochondria. We conclude that the lack of SOD1 in adult Sod1 -/- mice does not result in extensive denervation of skeletal muscle fibers, although the distribution of fiber types is modified, and that fast oxidative fibers develop alterations in the amount and spatial distribution of sub-sarcolemmal mitochondria. This study was supported by NIA grant PO1-AG20591, by the Nathan Shock Center Contractility Core (NIA grant P30-AG13283), and by a Nathan Shock Center Pilot Award (to T. Kostrominova).  相似文献   

8.
BackgroundFriedreich's ataxia results from a decreased expression of the nuclear gene encoding the mitochondrial protein, frataxin. Frataxin participates in the biosynthesis of iron-sulfur clusters and heme cofactors, as well as in iron storage and protection against oxidative stress. How frataxin interacts with the antioxidant defence components is poorly understood.MethodsTherefore, we have investigated by kinetic, thermodynamic and modelling approaches the molecular interactions between yeast frataxin (Yfh1) and superoxide dismutases, Sod1 and Sod2, and the influence of Yfh1 on their enzymatic activities.ResultsYfh1 interacts with cytosolic Sod1 with a dissociation constant, Kd = 1.3 ± 0.3 μM, in two kinetic steps. The first step occurs in the 200 ms range and corresponds to the Yfh1-Sod1 interaction, whereas the second is slow and is assumed to be a change in the conformation of the protein-protein adduct. Furthermore, computational investigations confirm the stability of the Yfh1-Sod1 complex. Yfh1 forms two protein complexes with mitochondrial Sod2 with 1:1 and 2:1 Yfh1/Sod2 stoichiometry (Kd1 = 1.05 ± 0.05 and Kd2 = 6.6 ± 0.1 μM). Furthermore, Yfh1 increases the enzymatic activity of Sod1 while slightly affecting that of Sod2. Finally, the stabilities of the protein-protein adducts and the effect of Yfh1 on superoxide dismutase activities depend on the nature of the mitochondrial metal.ConclusionsThis work confirms the participation of Yfh1 in cellular defence against oxidative stress.  相似文献   

9.
10.
Sustaining epinephrine‐elicited behavioral and physiological responses during stress requires replenishment of epinephrine stores. Egr‐1 and Sp1 contribute by stimulating the gene encoding the epinephrine‐synthesizing enzyme, phenylethanolamine N‐methyltransferase (PNMT), as shown for immobilization stress in rats in adrenal medulla and for hypoxic stress in adrenal medulla‐derived PC12 cells. Hypoxia (5% O2) also activates hypoxia inducible factor (HIF) 1α, increasing mRNA, nuclear protein and nuclear protein/hypoxia response element binding complex formation. Hypoxia and HIF1α over‐expression also elevate PNMT promoter‐driven luciferase activity in PC12 cells. Hypoxia may be limiting as HIF1α over‐expression increases luciferase expression to no greater extent than oxygen reduction alone. HIF1α inducers CoCl2 or deferoxamine elevate luciferase as well. PC12 cells harboring a HIF1α expression construct show markedly higher levels of Egr‐1 and Sp1 mRNA and nuclear protein and PNMT mRNA and cytoplasmic protein. Inactivation of Egr‐1 and Sp1 binding sites in the proximal ?893 bp of PNMT promoter precludes HIF1α stimulation while a potential hypoxia response element (?282 bp) in the promoter shows weak HIF1α affinity at best. These findings are the first to suggest that hypoxia activates the proximal rat PNMT promoter primarily via HIF1α induction of Egr‐1 and Sp1 rather than by co‐activation by Egr‐1, Sp1 and HIF1α. In addition, the rise in HIF1α protein leading to Egr‐1 and Sp1 stimulation of PNMT appears to include HIF1α gene activation rather than simply prevention of HIF1α proteolytic degradation.  相似文献   

11.
Calcium-independent phospholipase A2 group VIa (iPLA2β) preferentially releases docosahexaenoic acid (DHA) from the sn-2 position of phospholipids. Mutations of its gene, PLA2G6, are found in patients with several progressive motor disorders, including Parkinson disease. At 4 months, PLA2G6 knockout mice (iPLA2β?/?) show minimal neuropathology but altered brain DHA metabolism. By 1 year, they develop motor disturbances, cerebellar neuronal loss, and striatal α-synuclein accumulation. We hypothesized that older iPLA2β?/? mice also would exhibit inflammatory and other neuropathological changes. Real-time polymerase chain reaction and Western blotting were performed on whole brain homogenate from 15 to 20-month old male iPLA2β?/? or wild-type (WT) mice. These older iPLA2β?/? mice compared with WT showed molecular evidence of microglial (CD-11b, iNOS) and astrocytic (glial fibrillary acidic protein) activation, disturbed expression of enzymes involved in arachidonic acid metabolism, loss of neuroprotective brain derived neurotrophic factor, and accumulation of cytokine TNF-α messenger ribonucleic acid, consistent with neuroinflammatory pathology. There was no evidence of synaptic loss, of reduced expression of dopamine active reuptake transporter, or of accumulation of the Parkinson disease markers Parkin or Pink1. iPLA2γ expression was unchanged. iPLA2β deficient mice show evidence of neuroinflammation and associated neuropathology with motor dysfunction in later life. These pathological biomarkers could be used to assess efficacy of dietary intervention, antioxidants or other therapies on disease progression in this mouse model of progressive human motor diseases associated with a PLA2G6 mutation.  相似文献   

12.
Induction of HIF-1α by oxygen limitation promotes increased phosphorylation and catalytic depression of mitochondrial pyruvate dehydrogenase (PDH) and an enhanced glycolytic poise in cells. Cobalt chloride and desferrioxamine are widely used as mimics for hypoxia because they increase the levels of HIF-1α. We evaluated the ability of these agents to elicit selected physiological responses to hypoxia as a means to metabolically precondition mammalian cells, but without the detrimental effects of hypoxia. We show that, while CoCl2 does increase HIF-1α in a dose-dependent manner, it unexpectedly and strikingly decreases PDH phosphorylation at E1α sites 1, 2, and 3 (Ser293, Ser300, and Ser232, respectively) in HepG2 cells. This same effect is also observed for site 1 in mouse NIH/3T3 fibroblasts and J774 macrophages. CoCl2 unexpectedly decreases the mRNA expression for PDH kinase-2 in HepG2 cells, which likely explains the dephosphorylation of PDH observed. And nor does desferrioxamine promote the expected increase in PDH phosphorylation. Dimethyloxaloylglycine (a prolyl hydroxylase inhibitor) performs better in this regard, but failed to promote the stronger effects seen with hypoxia. Consequently, CoCl2 and desferrioxamine are unreliable mimics of hypoxia for physiological events downstream of HIF-1α stabilization. Our study demonstrates that mimetic chemicals must be chosen with caution and evaluated thoroughly if bona fide cellular outcomes are to be promoted with fidelity.  相似文献   

13.
14.
15.
16.
17.
18.
Exercise is an effective approach for primary and secondary prevention of cardiovascular diseases (CVD) and loss of muscular mass and function. Its benefits are widely documented but incompletely characterized. It has been reported that exercise can induce changes in the expression of antioxidant enzymes including Sod2, Trx1, Prdx3 and Gpx1 and limits the rise in oxidative stress commonly associated with CVD. These enzymes can be subjected to epigenetic regulation, such as DNA methylation, in response to environmental cues. The aim of our study was to determine whether in the early stages of atherogenesis, in young severely dyslipidemic mice lacking LDL receptors and overexpressing human ApoB100 (LDLR-/-; hApoB+/+), exercise regulates differentially the expression of antioxidant enzymes by DNA methylation in the skeletal muscles that consume high levels of oxygen and thus generate high levels of reactive oxygen species. Expression of Sod2, Txr1, Prdx3 and Gpx1 was altered by 3 months of exercise and/or severe dyslipidemia in 6-mo dyslipidemic mice. Of these genes, only Gpx1 exhibited changes in DNA methylation associated with dyslipidemia and exercise: we observed both increased DNA methylation with dyslipidemia and a transient decrease in DNA methylation with exercise. These epigenetic alterations are found in the second exon of the Gpx1 gene and occur alongside with inverse changes in mRNA expression. Inhibition of expression by methylation of this specific locus was confirmed in vitro. In conclusion, Gpx1 expression in the mouse skeletal muscle can be altered by both exercise and dyslipidemia through changes in DNA methylation, leading to a fine regulation of free radical metabolism.  相似文献   

19.
《Epigenetics》2013,8(5):402-409
Increased oxidative stress and concordant DNA methylation changes are found during aging and in many malignant processes including prostate cancer. Increased oxidative stress has been shown to inhibit DNA methyltransferase in in vitro assays, but whether this occurs in vivo is unknown. To generate increased oxidative stress we utilized mice containing mutations in the CuZnSOD (Sod1) gene, a major superoxide dismutase in mammals. Increased 8-hydroxy-2'-deoxyguanosine, an adduct indicating oxidative damage, was found in liver and prostate tissues at 2 and 12 mo Sod1+/- mice compared to controls. Prostate tissues from Sod1+/- mice demonstrated decreased weight at 2 mo compared to controls, but this difference was not significant at 12 mo. Histologic changes were not seen. Global DNA methylation was significantly decreased at 2 mo in the prostate in Sod1+/- mice. 11p15 containing the epigenetically modulated insulin-like growth factor 2 (Igf2) and H19 genes, both which display oncogenic functions, may be particularly sensitive to oxidative stress. CpG island methylation at an intergenic CTCF binding site and the Igf2 P3 promoter was decreased in Sod1 mutants compared to controls. This is the first in vivo study to show that a deficiency of Sod1 leads to a decrease in DNA methylation. These studies indicate that increased oxidative stress, a factor implicated in neoplasia, can induce DNA hypomethylation in prostate tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号