首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Opium poppy (Papaver somniferum L.) is an important pharmaceutical crop with very few genetic marker resources. To expand these resources, we sequenced genomic DNA using pyrosequencing technology and examined the DNA sequences for simple sequence repeats (SSRs). A total of 1,244,412 sequence reads were obtained covering 474 Mb. Approximately half of the reads (52 %) were assembled into 166,724 contigs representing 105 Mb of the opium poppy genome. A total of 23,283 non-redundant SSRs were identified in 18,944 contigs (11.3 % of total contigs). Trinucleotide and tetranucleotide repeats were the most abundant SSR repeats, accounting for 49.0 and 27.9 % of all SSRs, respectively. The AAG/TTC repeat was the most abundant trinucleotide repeat, representing 19.7 % of trinucleotide repeats. Other SSR repeat types were AT-rich. A total of 23,126 primer pairs (98.7 % of total SSRs) were designed to amplify SSRs. Fifty-three genomic SSR markers were tested in 37 opium poppy accessions and seven Papaver species for determination of polymorphism and transferability. Intraspecific polymorphism information content (PIC) values of the genomic SSR markers were intermediate, with an average 0.17, while the interspecific average PIC value was slightly higher, 0.19. All markers showed at least 88 % transferability among related species. This study increases sequence coverage of the opium poppy genome by sevenfold and the number of opium poppy-specific SSR markers by sixfold. This is the first report of the development of genomic SSR markers in opium poppy, and the genomic SSR markers developed in this study will be useful in diversity, identification, mapping and breeding studies in opium poppy.  相似文献   

2.
Faba bean (Vicia faba L.) is an important food legume crop with a huge genome. Development of genetic markers for faba bean is important to study diversity and for molecular breeding. In this study, we used Next Generation Sequencing (NGS) technology for the development of genomic simple sequence repeat (SSR) markers. A total of 14,027,500 sequence reads were obtained comprising 4,208 Mb. From these reads, 56,063 contigs were assembled (16,367 Mb) and 2138 SSRs were identified. Mono and dinucleotides were the most abundant, accounting for 57.5 % and 20.9 % of all SSR repeats, respectively. A total of 430 primer pairs were designed from contigs larger than 350 nucleotides and 50 primers pairs were tested for validation of SSR locus amplification. Nearly all (96 %) of the markers were found to produce clear amplicons and to be reproducible. Thirty-nine SSR markers were then applied to 46 faba bean accessions from worldwide origins, resulting in 161 alleles with 87.5 % polymorphism, and an average of 4.1 alleles per marker. Gene diversity (GD) of the markers ranged from 0 to 0.48 with an average of 0.27. Testing of the markers showed that they were useful in determining genetic relationships and population structure in faba bean accessions.  相似文献   

3.
The tea plant (Camellia sinensis (L.) O. Kuntze) is one of the most popular non-alcoholic beverage crops worldwide. The availability of complete genome sequences for the Camellia sinensis var. ‘Shuchazao’ has provided the opportunity to identify all types of simple sequence repeat (SSR) markers by genome-wide scan. In this study, a total of 667,980 SSRs were identified in the ~?3.08 Gb genome, with an overall density of 216.88 SSRs/Mb. Dinucleotide repeats were predominant among microsatellites (72.25%), followed by trinucleotide repeats (15.35%), while the remaining SSRs accounted for less than 13%. The motif AG/CT (49.96%) and AT/TA (40.14%) were the most and the second most abundant among all identified SSR motifs, respectively; meanwhile, AAT/ATT (41.29%) and AAAT/ATTT (67.47%) were the most common among trinucleotides and tetranucleotides, respectively. A total of 300 primer pairs were designed to screen six tea cultivars for polymorphisms of SSR markers using the five selected repeat types of microsatellite sequences. The resulting 96 SSR markers that yielded polymorphic and unambiguous bands were further deployed on 47 tea cultivars for genetic diversity assessment, demonstrating high polymorphism of these SSR markers. Remarkably, the dendrogram revealed that the phylogenetic relationships among these tea cultivars are highly consistent with their genetic backgrounds or places of origin. The identified genome-wide SSRs and newly developed SSR markers will provide a powerful means for genetic researches in tea plant, including genetic diversity and evolutionary origin analysis, fingerprinting, QTL mapping, and marker-assisted selection for breeding.  相似文献   

4.
Polymorphism of microsatellite markers is often associated with the simple sequence repeat motif targeted. AT-rich microsatellites tend to be highly variable and this appears to be notable, especially in legume genomes. To analyze the value of AT-rich microsatellites for common bean (Phaseolus vulgaris L.), we developed a total of 85 new microsatellite markers, 74 of which targeted ATA or other AT-rich motif loci and 11 of which were made for GA, CA or CAC motif loci. We evaluated the loci for the level of allelic diversity in comparison to previously characterized microsatellites using a panel of 18 standard genotypes and genetically mapped any loci polymorphic in the DOR364 × G19833 population. The majority of the microsatellites produced single bands and detected single loci, however, 15 of the AT-rich microsatellites produced multiple or double banding patterns; while only one of the GA or CA-rich microsatellites did. The polymorphism information content (PIC) values averaged 0.892 and 0.600 for the AT and ATA motif microsatellites, respectively, but only 0.140 for the CA-rich microsatellites. GA microsatellites, which had a large average number of repeats, had high to intermediate PIC, averaging 0.706. A total of 45 loci could be genetically mapped and distribution of the loci across the genome was skewed towards non-distal locations with a greater prevalence of loci on linkage groups b02, b09 and b11. AT-rich microsatellites were found to be a useful source of polymorphic markers for mapping and diversity assessment in common bean that appears to uncover higher diversity than other types of simple sequence repeat markers.  相似文献   

5.
SSR allelic variation in almond (Prunus dulcis Mill.)   总被引:9,自引:0,他引:9  
Sixteen SSR markers including eight EST-SSR and eight genomic SSRs were used for genetic diversity analysis of 23 Chinese and 15 international almond cultivars. EST- and genomic SSR markers previously reported in species of Prunus, mainly peach, proved to be useful for almond genetic analysis. DNA sequences of 117 alleles of six of the 16 SSR loci were analysed to reveal sequence variation among the 38 almond accessions. For the four SSR loci with AG/CT repeats, no insertions or deletions were observed in the flanking regions of the 98 alleles sequenced. Allelic size variation of these loci resulted exclusively from differences in the structures of repeat motifs, which involved interruptions or occurrences of new motif repeats in addition to varying number of AG/CT repeats. Some alleles had a high number of uninterrupted repeat motifs, indicating that SSR mutational patterns differ among alleles at a given SSR locus within the almond species. Allelic homoplasy was observed in the SSR loci because of base substitutions, interruptions or compound repeat motifs. Substitutions in the repeat regions were found at two SSR loci, suggesting that point mutations operate on SSRs and hinder the further SSR expansion by introducing repeat interruptions to stabilize SSR loci. Furthermore, it was shown that some potential point mutations in the flanking regions are linked with new SSR repeat motif variation in almond and peach. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

6.
Microsatellites, or simple sequence repeats (SSRs), are highly polymorphic and universally distributed in eukaryotes. SSRs have been used extensively as sequence tagged markers in genetic studies. Recently, the functional and evolutionary importance of SSRs has received considerable attention. Here we report the mining and characterization of the SSRs in papaya genome. We analyzed SSRs from 277.4 Mb of whole genome shotgun (WGS) sequences, 51.2 Mb bacterial artificial chromosome (BAC) end sequences (BES), and 13.4 Mb expressed sequence tag (EST) sequences. The papaya SSR density was one SSR per 0.7 kb of DNA sequence in the WGS, which was higher than that in BES and EST sequences. SSR abundance was dramatically reduced as the repeat length increased. According to SSR motif length, dinucleotide repeats were the most common motif in class I, whereas hexanucleotides were the most copious in class II SSRs. The tri- and hexanucleotide repeats of both classes were greater in EST sequences compared to genomic sequences. In class I SSR, AT and AAT were the most frequent motifs in BES and WGS sequences. By contrast, AG and AAG were the most abundant in EST sequences. For SSR marker development, 9,860 primer pairs were surveyed for amplification and polymorphism. Successful amplification and polymorphic rates were 66.6% and 17.6%, respectively. The highest polymorphic rates were achieved by AT, AG, and ATG motifs. The genome wide analysis of microsatellites revealed their frequency and distribution in papaya genome, which varies among plant genomes. This complete set of SSRs markers throughout the genome will assist diverse genetic studies in papaya and related species.  相似文献   

7.
Microsatellites, also called simple sequence repeats (SSR), are very useful molecular genetic markers commonly used in crop breeding, species identification and linkage analysis. In the present study, we constructed a microsatellite-enriched genomic library of Panax ginseng, and identified 251 novel microsatellite sequences. Tri-nt repeat units were the most abundant (46.6%), followed by di-nt repeats (35.5%). The (AG)n motif was most common (23.1%), followed by the (AAC)n motif (22.3%). From the genotyping of 94 microsatellites using marker-specific primer sets, we identified 11 intraspecific polymorphic markers as well as 14 possible interspecific polymorphic markers differing between P. ginseng and P. quinquefolius. The exact allele structures of the polymorphic markers were determined and the alleles were named. This study represents the first report of the bulk isolation of microsatellites by screening a microsatellite-enriched genomic library in P. ginseng. The microsatellite markers could be useful for linkage analysis, genetic breeding and authentication of Panax species.  相似文献   

8.
Oil camellia trees are important woody plants for the production of high-quality cooking oil. On the contrary to their economic importance, their genetic and genomic resources are very limited, which greatly hamper the genetic studies on oil camellia trees. Microsatellites or simple sequence repeats (SSRs) have great value in many aspects of genetic analyses due to their high polymorphism and codominant inheritance. In this study, we report the large-scale development and characterization of SSR markers derived from genomic sequences of Camellia chekiangoleosa by high-throughput pyrosequencing technology. A total of 1,091,393 genomic shotgun reads were generated using Roche 454 FLX sequencer, the average read length was 319 bp, and the total sequence throughput was 347.9 Mb. These sequences were assembled into 35,315 contigs with total length of 14.8 Mb and the N50 contig size of 770 bp. By analyzing with microsatellite (MISA), a total of 5,844 perfect microsatellites were detected from the assembled sequences. Among them, tetranucleotide repeats were found to be the most frequent microsatellites in the genome of C. chekiangoleosa, and all the dominant repeat motifs for different types of SSRs were detected to be rich in A/T. Experimental analysis with 900 SSR primer pairs revealed that 66 % of them succeeded in PCR amplification. Further investigation with 345 SSR primer pairs showed that a relatively high percentage of primers amplified polymorphic loci (31.9 %). Experimental data also revealed that, overall, long microsatellite repeats (>20 bp) were more variable than the short ones (<20 bp) in the genome of oil camellia tree.  相似文献   

9.
Microsatellites, as the tracts of repetitive DNA, are an essential constituent of the plant genome that holds important evolutionary significance, and have been extensively used to develop molecular makers for genetic analysis. To understand the microsatellite dynamics of quinoa genome and its relatives, in this study we performed a genome‐wide analysis of microsatellites in five Amaranthaceae species using available genome sequences. The results demonstrated that the microsatellites of the five Amaranthaceae species were characterised by relatively high proportions of mono‐, di‐ and trinucleotide repeats with A/T rich motifs, implying conservative organisation and composition of microsatellites in this family. Furthermore, a significant negative correlation between microsatellite frequencies and GC contents (r = ?.87) were observed. In total, 533,961 (89.57%) and 542,601 (89.86%) microsatellite loci could be used to develop simple sequence repeat (SSR) molecular markers, of which 7,178 were found to be polymorphic between the two sequenced quinoa cultivars, QQ74 and Real Blanca, through in silico PCR analysis. Finally, 15 SSR markers were randomly selected to validate their polymorphism across 12 quinoa accessions by wet‐lab PCR amplification. The newly developed genome‐wide SSR markers provide a useful resource for population genetics, gene mapping and molecular breeding studies in quinoa and beyond.  相似文献   

10.
Simple sequence repeats (SSRs), or microsatellites, are a new class of PCR-based DNA markers for genetic mapping. The objectives of the present study were to develop SSR markers for barley and to integrate them into an existing barley linkage map. DNA sequences containing SSRs were isolated from a barley genomic library and from public databases. It is estimated that the barley genome contains one (GA)n repeat every 330 kb and one (CA)n repeat every 620 kb. A total of 45 SSRs were identified and mapped to seven barley chromosomes using doubled-haploid lines and/or wheat-barley addition-line assays. Segregation analysis for 39 of these SSRs identified 40 loci. These 40 markers were placed on a barley linkage map with respect to 160 restriction fragment length polymorphism (RFLP) and other markers. The results of this study demonstrate the value of SSRs as markers in genetic studies and breeding research in barley.  相似文献   

11.
Simple sequence repeats (SSRs) can be derived from the complete genome sequence. These markers are important for gene mapping as well as marker-assisted selection (MAS). To develop SSRs for cotton gene mapping, we selected the complete genome sequence of Gossypium raimondii, which consisted of 4447 non-redundant scaffolds. Out of 775.2 Mb sequence examined, a total of 136,345 microsatellites were identified with a density of 5.69 kb per SSR in the G. raimondii genome leading to development of 112,177 primer pairs. The distributions of SSRs in the genome were non-random. Among the different motifs ranging from 1 to 6 bp, penta-nucleotide repeats were most abundant (30.5%), followed by tetra-nucleotide repeats (18.2%) and di-nucleotide repeats (16.9%). Among all identified 457 motif types, the most frequently occurring repeat motifs were poly-AT/TA, which accounted for 79.8% of the total di-nt SSRs, followed by AAAT/TTTA with 51.5% of the total tetra-nucleotede. Further, 18,834 microsatellites were detected from the protein-coding genes, and the frequency of gene containing SSRs was 46.0% in 40,976 genes of G. raimondii. These genome-based SSRs developed in the present study will lay the groundwork for developing large numbers of SSR markers for genetic mapping, gene discovery, genetic diversity analysis, and MAS breeding in cotton.  相似文献   

12.
Kantartzi SK  Ulloa M  Sacks E  Stewart JM 《Genetica》2009,136(1):141-147
The cultivated diploid, Gossypium arboreum L., (A genome) is an invaluable genetic resource for improving modern tetraploid cotton (G. hirsutum L. and G. barbadense L.) cultivars. The objective of this research is to select a set of informative and robust microsatellites for studying genetic relationships among accessions of geographically diverse G. arboreum cultivars. From more than 1,500 previously developed simple sequence repeat (SSR) markers, 115 genomic (BNL) and EST-derived (MUCS and MUSS) markers were used to evaluate the allelic diversity of a core panel of G. arboreum accessions. These SSR data enabled advanced genome analyses. A set of 25 SSRs were selected based both upon their high level of informativeness (PIC ≥ 0.50) and the production of clear PCR bands on agarose gels. Subsequently, 96 accessions representing a wide spectrum of diversity of G. arboreum cultivars were analyzed with these markers. The 25 SSR loci revealed 75 allelic variants (polymorphisms) ranging from 2 to 4 alleles per locus. The Neighborjoining (NJ) method, based on genetic dissimilarities, revealed that cultivars from geographically adjacent countries tend to cluster together. Outcomes of this research should be useful in decreasing redundancy of effort and in constructing a core collection of G. arboreum, important for efficient use of this genetic resource in cotton breeding.  相似文献   

13.
Isolation and Characterization of Microsatellites in Snap Bean   总被引:1,自引:0,他引:1  
The objectives of this study were to isolate and characterize microsatellites from a heat tolerant variety of snap bean (Phaseolus vulgaris L.) in order to generate polymorphic genetic markers linked to quantitative trait loci for heat tolerance. A genomic library contained 400-800 bp inserts was constructed and screened for the presence of (GA/CT)n and (CA/GT)n repeats. The proportion of positive clones yielded estimated of 3.72×10 4 such dinucleotide repeats per genome, roughly comparable to the abundance reported in other eukaryotic genomes. Twenty-six positive clones were sequenced. In contrast to mammalian genomes, the (GA/CT)n motif was much more abundant than the (CA/GT)n motif in these clones. The (GA/CT)n repeats also showed longer average repeat length (mean n=10.4 versus 6.5), suggesting that they are better candidates for yielding polymorphic genetic markers in the snap bean genome.  相似文献   

14.
通过对桉树属(Eucalyptus)的10000条EST序列进行分析,在其中的1499条序列上共发现1775个微卫星重复序列。含有微卫星的EST序列约占序列总数的15%。此外,还发现桉树EST序列所含微卫星长度的变异速率与重复单元长度呈负相关;微卫星的丰度与重复单元长度也呈负相关(三碱基重复微卫星除外)。在桉树EST序列中,重复单元长度为三碱基的微卫星最为丰富。三碱基重复单元微卫星的过度富集可能是由于遗传密码选择所致。在微卫星的丰度及长度变异方面,桉树EST序列与杨树(Populus trichocarpa)基因组注释的转录序列随重复单元长度的变化呈现出相同的规律,但桉树EST序列中微卫星频率及三碱基重复微卫星的含量显著偏低,推测含微卫星的基因表达丰度极有可能低于不含微卫星的基因。通过对发现的所有微卫星位点进行引物设计,并对设计的引物进行PCR检测,结果表明所设计的引物具有极高的扩增成功率。  相似文献   

15.
桉树EST序列中微卫星含量及相关特征   总被引:6,自引:0,他引:6  
通过对桉树属(Eucalyptus)的10 000条EST序列进行分析, 在其中的1 499条序列上共发现1 775个微卫星重复序列。含有微卫星的EST序列约占序列总数的15%。此外, 还发现桉树EST序列所含微卫星长度的变异速率与重复单元长度呈负相关; 微卫星的丰度与重复单元长度也呈负相关(三碱基重复微卫星除外)。在桉树EST序列中, 重复单元长度为三碱基的微卫星最为丰富。三碱基重复单元微卫星的过度富集可能是由于遗传密码选择所致。在微卫星的丰度及长度变异方面, 桉树EST序列与杨树(Populus trichocarpa)基因组注释的转录序列随重复单元长度的变化呈现出相同的规律, 但桉树EST序列中微卫星频率及三碱基重复微卫星的含量显著偏低, 推测含微卫星的基因表达丰度极有可能低于不含微卫星的基因。通过对发现的所有微卫星位点进行引物设计, 并对设计的引物进行PCR检测, 结果表明所设计的引物具有极高的扩增成功率。  相似文献   

16.
Jun TH  Michel AP  Mian MA 《Génome》2011,54(5):360-367
Simple sequence repeats (SSRs) or microsatellites are very useful molecular markers, owing to their locus-specific codominant and multiallelic nature, high abundance in the genome, and high rates of transferability across species. The soybean aphid (Aphis glycines Matsumura) has become the most damaging insect pest of soybean (Glycine max (L.) Merr.) in North America, since it was first found in the Midwest of the United States in 2000. Biotypes of the soybean aphid capable of colonizing newly developed aphid-resistant soybean cultivars have been recently discovered. Genetic resources, including molecular markers, to study soybean aphids are severely lacking. Recently developed next generation sequencing platforms offer opportunities for high-throughput and inexpensive genome sequencing and rapid marker development. The objectives of this study were (i) to develop and characterize genomic SSR markers from soybean aphid genomic sequences generated by next generation sequencing technology and (ii) to evaluate the utility of the SSRs for genetic diversity or relationship analyses. In total 128 SSR primer pairs were designed from sequences generated by Illumina GAII from a reduced representation library of A. glycines. Nearly 94% (120) of the primer pairs amplified SSR alleles of expected size and 24 SSR loci were polymorphic among three aphid samples from three populations. The polymorphic SSRs were successfully used to differentiate among 24 soybean aphids from Ohio and South Dakota. Sequencing of PCR products of two SSR markers from four aphid samples revealed that the allelic polymorphism was due to variation in the SSR repeats among the aphids. These markers should be particularly useful for genetic differentiation among aphids collected from soybean fields at different localities and regions. These SSR markers provide the soybean aphid research community with the first set of PCR-based codominant markers developed from the genomic sequences of A. glycines.  相似文献   

17.
Public sequence databases provide a rapid, simple and cost-effective source of microsatellite markers. We analyzed 1,532 bamboo (Phyllostachys pubescens) sequences available in public domain DNA databases, and found 3,241 simple sequence repeat (SSR) loci comprising repeats of two or more nucleotides in 920 genomic survey sequences (GSSs) and 68 cDNA sequences. This corresponded to one SSR per 336 bp of GSS DNA and one SSR per 363 bp of cDNA. The SSRs consisted of 76.6 and 74.5% dinucleotide repeats, 20.0 and 22.3% trinucleotide repeats, and 3.4 and 3.2% higher-number repeats in the GSS DNA and cDNA sequences, respectively. The repeat motif AG/CT (or GA/TC) was the most abundant. Nineteen microsatellite markers were developed from Class I and Class II SSRs, showing that the limited polymorphism in Ph. pubescens cultivars and provenances could be attributed to clonal propagation of the bamboo plant. The transferability of the microsatellites reached 75.3%, and the polymorphism of loci successfully transferred was 66.7% for six additional Phyllostachys species. Microsatellite PBM014 transferred successfully to all six species, showed rich polymorphism, and could serve as species-specific alleles for the identification of Phyllostachys interspecies hybrids.  相似文献   

18.
Microsatellite or single sequence repeat (SSR) markers have been commonly used in genetic research in many crop species, including common bean (Phaseolus vulgaris L.). A limited number of existing SSR markers have been designed from high-throughput sequencing of the genome, warranting the exploitation of new SSR markers from genomic regions. In this paper, we sequenced total DNA from the genotype Hong Yundou with a 454-FLX pyrosequencer and found numerous SSR loci. Based on these, a large number of SSR markers were developed and 90 genomic-SSR markers with clear bands were tested for mapping and diversity detection. The new SSR markers proved to be highly polymorphic for molecular polymorphism, with an average polymorphism information content value of 0.44 in 131 Chinese genotypes and breeding lines, effective for distinguishing Andean and Mesoamerican genotypes. In addition, we integrated 85 primers of the 90 polymorphism markers into the bean map using an F2 segregating population derived from Hong Yundou crossed with Jingdou. The distribution of SSR markers among 11 chromosomes was not random and tended to cluster on the linkage map, with 14 new markers mapped on chromosome Pv01, whereas only four loci were located on chromosome Pv04. Overall, these new markers have potential for genetic mapping, genetic diversity studies and map-based cloning in common bean.  相似文献   

19.
20.
Tartary buckwheat is an important edible crop as well as medicinal plant in China. More and more research is being focused on this minor grain crop because of its medicinal functions, but there is a paucity of molecular markers for tartary buckwheat due to the lack of genomics. In this study, a genome survey was carried out in tartary buckwheat, from which SSR markers were developed for analysis of genetic diversity. The survey generated 21.9 Gb raw sequence reads which were assembled into 348.34 Mb genome sequences included 204,340 contigs. The genome size was estimated to be about 497 Mb based on K-mer analysis. In total, 24,505 SSR motifs were identified and characterised from this genomic survey sequence. Most of the SSR motifs were di-nucleotide (67.14 %) and tri-nucleotide (26.05 %) repeats. AT/AT repeat motifs were the most abundant, accounting for 78.60 % of di-nucleotide repeat motifs. SSR fingerprinting of 64 accessions yielded 49.71 effective allele loci from a total of 63 with the 23 polymorphic SSR primer combinations. Analyses of the population genetic structure using SSR data strongly suggested that the 64 accessions of tartary buckwheat clustered into two separate subgroups. One group was mainly distributed in Nepal, Bhutan and the Yunnan-Guizhou Plateau regions of China; the other group was mainly derived from the Loess Plateau regions, Hunan and Hubei of China and USA. The cluster analysis of these accession’s genetic similarity coefficient by UPMGA methods strongly supported the two subgroup interpretation. However accessions from Qinghai of China could be grouped into either of the two subgroups depending on which classification method was used. This region is at the intersection of the two geographical regions associated with the two subgroups. These results and information could be used to identify and utilize germplasm resources for improving tartary buckwheat breeding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号