首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Inter-simple sequence repeat (ISSR) markers were employed to detect the genetic diversity among 70 grape accessions including 52 clones of 17 Chinese wild grape species, seven interspecific hybrids, 10 Vitis vinifera L. cultivars, and one strain of Vitis riparia L. A total of 119 polymorphic bands with an average of 11.9 per primer were observed. The unweighted pair-group method (UPGMA) analysis indicated that the 70 clones or accessions had a similarity range from 0.08 to 0.93, indicating that abundant diversities exist among these accessions. Based on cluster analysis and principal coordinate analysis, all accessions could be divided into two major groups, the Chinese wild grape group, and the American and European cultivar group. The largest distance was found among V. riparia MichX, Vitis piasezkii, V. vinifera L. interspecific hybrid (Vitis binifera × V. labrusca) and the wild grapes native to China.  相似文献   

2.
Retrotransposons are retrovirus-related mobile sequences that have the potential to replicate via RNA intermediates and increase the genome size by insertion into new sites. The retroelement, Gret1, has been identified as playing a key role in generating fruit color variation in cultivated grape (Vitis vinifera L.) due to its insertion into the promoter of VvMybA1. Fruit color variation is an important distinguishing feature of cultivated grapes and virtually no fruit color variation is observed in wild grape species. The presence and relative copy number of Gret1 was assessed using quantitative PCR on 22 different Vitis species, only four of which (plus interspecific hybrids) are known to contain white accessions. Gret1 copy number was observed to vary by species as well as by color within species and was significantly higher in white-fruited accessions across all taxa tested. Additionally, genomic regions surrounding Gret1 insertion were sequenced in white V. vinifera, hybrid, V. labrusca, V. aestivalis, and V. riparia accessions.  相似文献   

3.
Sequence-related amplified polymorphism (SRAP) markers were used to assess genetic relationships among 76 grape genotypes including Chinese indigenous and newly bred varieties, representatives of foreign grape varieties, and wild Vitis species. Nineteen informative primers were selected from 100 SRAP primer pairs due to their ability to produce clearly and repeatedly polymorphic and unambiguous bands among the varieties. A total of 228 bands were produced; 78.63% of them were polymorphic; the average polymorphism information content (PIC) is 0.76. Genetic relationships were obtained using Nei and Li similarity coefficients. Cluster analysis of SRAP markers through the unweighted pair-group method of arithmetic averages (UPGMA) analysis and principal coordinate analysis (PCoA) were largely consistent. The definition of clusters in the dendrogram and PCoA plot is the same and some degree of grouping by types of grape, ecogeographical origin, and taxonomic status of the varieties was revealed. Three main groups were found after cluster analysis, i.e., table grape of Vitis vinifera; table grape of Euro-America hybrid and wine grape of V. vinifera; wild Vitis species. Groupings indicated a divergence between the table and wine-type varieties of V. vinifera. The results showed that the wild Vitis species that originated from America and China could be clearly differentiated and Vitis hancockii is the most distant from the others of Asian Vitis species. The results also indicated that SRAP markers are informative and could distinguish bud sports of grape. The present analysis revealed that Chinese cultivated and wild grape germplasm are highly variable and have abundant genetic diversity.  相似文献   

4.
5.
Recombination rate data are presented for three populations of grape based on framework genetic linkage maps developed with simple-sequence repeat markers. These linkage maps were constructed from different Vitis species and represent three genetic backgrounds. The first population is pure Vitis vinifera, derived from a cross of the European cultivars Riesling and Cabernet Sauvignon. The second is an interspecific cross between two commercially used rootstock cultivars of different North American Vitis species parentage, Ramsey (Vitis champinii) and Riparia Gloire (Vitis riparia). The third population, D8909-15 (Vitis rupestris × (Vitis arizonica/Vitis girdiana form)) × F8909-17 (V. rupestris × (V. arizonica/Vitis candicans form)), is an F1 from two half-sibs. Genome-wide and chromosome-wide recombination rates varied across the three populations and among the six Vitis parents. Global recombination rates in the parents of the third F1 population, with a complex Vitis background, were significantly reduced. In the first and third populations, the recombination rate was significantly greater in the male parent. Specific genome locations with frequent heterogeneity in recombination were identified, suggesting that recombination rates are not equal across the Vitis genome. The identification of regions with suppressed or high recombination will aid grape breeders and geneticists who rely on recombination events to introgress disease resistance genes from the genomes of wild Vitis species, develop fine-scale genetic maps, and clone disease resistance genes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
Cultivars used for wine and table grape have self-fertile hermaphrodite flowers whereas wild European vines and American and Asian species are dioecious, having either male or female flowers. Consistent with previous studies, the flower sex trait was mapped as a single major locus on chromosome 2 based on a pure Vitis vinifera population segregating for hermaphrodite and female progeny, and a hybrid population producing all three flower sex types. The sex locus was placed between the same SSR and SNP markers on both genetic maps, although abnormal segregation hampered to fine map the genomic region. From a total of 55 possible haplotypes inferred for three SSR markers around the sex locus, in a population of 132 V. sylvestris accessions and 171 V. vinifera cultivars, one of them accounted for 66 % of the hermaphrodite individuals and may be the result of domestication. Specific size variants of the VVIB23 microsatellite sequence within the 3′-UTR of a putative YABBY1 gene were found to be statistically significantly associated with the sex alleles M, H and f; these markers can provide assistance in defining the status of wild grapevine germplasm.  相似文献   

8.
Grapevine trunk diseases (Eutypa dieback, esca and Botryosphaeria dieback) are caused by a complex of xylem-inhabiting fungi, which severely reduce yields in vineyards. Botryosphaeria dieback is associated with Botryosphaeriaceae. In order to develop effective strategies against Botryosphaeria dieback, we investigated the molecular basis of grapevine interactions with a virulent species, Neofusicoccum parvum, and a weak pathogen, Diplodia seriata. We investigated defenses induced by purified secreted fungal proteins within suspension cells of Vitis (Vitis rupestris and Vitis vinifera cv. Gewurztraminer) with putative different susceptibility to Botryosphaeria dieback. Our results show that Vitis cells are able to detect secreted proteins produced by Botryosphaeriaceae, resulting in a rapid alkalinization of the extracellular medium and the production of reactive oxygen species. Concerning early defense responses, N. parvum proteins induced a more intense response compared to D. seriata. Early and late defense responses, i.e., extracellular medium alkalinization, cell death, and expression of PR defense genes were stronger in V. rupestris compared to V. vinifera, except for stilbene production. Secreted Botryosphaeriaceae proteins triggered a high accumulation of δ-viniferin in V. vinifera suspension cells. Artificial inoculation assays on detached canes with N. parvum and D. seriata showed that the development of necrosis is reduced in V. rupestris compared to V. vinifera cv. Gewurztraminer. This may be related to a more efficient induction of defense responses in V. rupestris, although not sufficient to completely inhibit fungal colonization. Overall, our work shows a specific signature of defense responses depending on the grapevine genotype and the fungal species.  相似文献   

9.
Koshu is a grape cultivar native to Japan and is one of the country’s most important cultivars for wine making. Koshu and other oriental grape cultivars are widely believed to belong to the European domesticated grape species Vitis vinifera. To verify the domesticated origin of Koshu and four other cultivars widely grown in China and Japan, we genotyped 48 ancestry informative single nucleotide polymorphisms (SNPs) and estimated wild and domesticated ancestry proportions. Our principal components analysis (PCA) based ancestry estimation revealed that Koshu is 70% V. vinifera, and that the remaining 30% of its ancestry is most likely derived from wild East Asian Vitis species. Partial sequencing of chloroplast DNA suggests that Koshu’s maternal line is derived from the Chinese wild species V. davidii or a closely related species. Our results suggest that many traditional East Asian grape cultivars such as Koshu were generated from hybridization events with wild grape species.  相似文献   

10.
Wild Vitis species are dioecious plants, while the cultivated counterpart, Vitis vinifera subspec. vinifera, generally shows hermaphroditic flowers. In Vitis the genetic determinants of flower sex have previously been mapped to a region on chromosome 2. In a combined strategy of map-based cloning and the use of the publicly available grapevine reference genome sequence, the structure of the grapevine flower sex locus has been elucidated with the subsequent identification of candidate genes which might be involved in the development of the different flower sex types. In a fine mapping approach, the sex locus in grapevine was narrowed down using a population derived from a cross of a genotype with a Vitis vinifera background (‘Schiava Grossa’ × ‘Riesling’) with the male rootstock cv. ‘Börner’ (V. riparia × V. cinerea). A physical map of 143 kb was established from BAC clones spanning the 0.5 cM region defined by the closest flanking recombination break points. Sequencing and gene annotation of the entire region revealed several candidate genes with a potential impact on flower sex formation. One of the presumed candidate genes, an adenine phosphoribosyltransferase, was analysed in more detail. The results led to the development of a marker for the presence or absence of the female alleles, while the male and hermaphroditic alleles are still to be differentiated. The impact of other candidate genes is discussed, especially with regard to plant hormone actions. The markers developed will permit the selection of female breeding lines which do not require laborious emasculation thus considerably simplifying grapevine breeding. The genetic finger prints displayed that our cultivated grapevines frequently carry a female allele while homozygous hermaphrodites are rare.  相似文献   

11.
12.
13.
Vitis rupestris is used as rootstock or to obtain hybrids with Vitis vinifera, due to its resistance to certain pathogens. Its resistance mechanisms are poorly understood, while it is known that stilbene neo‐synthesis is a central defense strategy in V. vinifera. In the present study, the response to methyl jasmonate (MeJa) and light treatment in terms of stilbene biosynthesis and the expression of genes involved in polyphenol biosynthesis was investigated in V. vinifera and V. rupestris cells. The two species exhibited a similar constitutive stilbene content [2.50–2.80 mg g?1 dry weight (DW)], which greatly increased in response to elicitation (8.97–11.90 mg g?1 DW). In V. vinifera, continuous light treatment amplified the effect of MeJa, with a stilbene production that had never previously been obtained (26.49 mg g?1 DW). By contrast, it suppressed the effect of MeJa in V. rupestris. Gene expression was consistent with stilbene production in V. vinifera, whereas discrepancies were recorded in V. rupestris that could be explained by the synthesis of stilbenes that had never before been analyzed in this species.  相似文献   

14.
The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.  相似文献   

15.
Improved efficacy and durability of powdery mildew resistance can be enhanced via knowledge of the genetics of resistance and susceptibility coupled with the development of high-resolution maps to facilitate the stacking of multiple resistance genes and other desirable traits. We studied the inheritance of powdery mildew (Erysiphe necator) resistance and susceptibility of wild Vitis rupestris B38 and cultivated V. vinifera ‘Chardonnay’, finding evidence for quantitative variation. Molecular markers were identified using genotyping-by-sequencing, resulting in 16,833 single nucleotide polymorphisms (SNPs) based on alignment to the V. vinifera ‘PN40024’ reference genome sequence. With an average density of 36 SNPs/Mbp and uniform coverage of the genome, this 17K set was used to identify 11 SNPs on chromosome 7 associated with a resistance locus from V. rupestris B38 and ten SNPs on chromosome 9 associated with a locus for susceptibility from ‘Chardonnay’ using single marker association and linkage disequilibrium analysis. Linkage maps for V. rupestris B38 (1,146 SNPs) and ‘Chardonnay’ (1,215 SNPs) were constructed and used to corroborate the ‘Chardonnay’ locus named Sen1 (Susceptibility to Erysiphe necator 1), providing the first insight into the genetics of susceptibility to powdery mildew from V. vinifera. The identification of markers associated with a susceptibility locus in a V. vinifera background can be used for negative selection among breeding progenies. This work improves our understanding of the nature of powdery mildew resistance in V. rupestris B38 and ‘Chardonnay’, while applying next-generation sequencing tools to advance grapevine genomics and breeding.  相似文献   

16.
Wild grapevine (Vitis vinifera subsp. sylvestris) is the dioecious ancestral form of grapevine, from which the domesticated cultivars have derived (V. vinifera subsp. vinifera). Little is known about the floral scent compounds of wild grapevine that is considered as being partly insect pollinated. The knowledge of volatiles released by male and female inflorescence may contribute to the understanding of the pollination biology of this endangered taxon. Inflorescence scents of male and female individuals were collected by dynamic headspace and analysed by thermal desorption-GC/MS. A total of 17 compounds of C5-branched chain alcohols, aliphatics, aromatics, and terpenoids were identified with benzyl alcohol being most abundant in both sexes. Eight of the compounds were sex-specific and differences in 1,2-dimethoxybenzene were most obvious. This aromatic compound was a main constituent in the scent of females (30%), but it did not occur in males. Some of the main compounds of the scent samples are known to be detected by beetles (Cerambycidae) or attract sweat bees (Halictidae) and honey bees (A. mellifera), all well-known inflorescence visitors in wild grapevine. The data presented here are an important step in understanding the chemical communication between wild grapevine and its inflorescence visitors/potential pollinators.  相似文献   

17.
Sugar content is a key feature of grape quality. The sugar content of grapes has been significantly improved after nearly a thousand years of artificial selection. However, the mechanism underlying the changes in the grape sugar content during the process of artificial selection remains largely unknown although several genes involved in sugar metabolism and transportation in grape have been identified. In this study, the genomes of 13 wild Vitis species and 14 cultivated Vitis vinifera accessions were resequenced to 2–5 X depth using the Illumina Hiseq2000 platform. Genetic variation of 138 genes involved in sugar biosynthesis and transport was investigated, and 7,690 and 12,717 single nucleotide polymorphisms/insertions and deletions (SNPs/InDel) were identified within the cultivated V. vinifera and wild Vitis species, respectively. The percentages of SNPs/InDels were 0.93 and 1.54 % in cultivated and wild species, respectively, and the wild Vitis species had 1.65-fold more SNPs/InDels than the cultivated V. vinifera. Moreover, the distribution of SNPs/InDels in gene regions was also investigated. Eight genes (HT4, PPFTK4, PPFTK6, PMT3, SPS1, HT8, HT15, SUSy1) showed low level of allelic diversity in cultivated species, suggesting they might have undergone purifying selection during the domestication process of grapes. Our genome DNA resequencing data provided a valuable resource for analyzing the effects of artificial selection on trait-related pathways in grape. The result that eight genes showed lower level of DNA variation in cultivated species than in wild species will be very helpful in understanding sugar accumulation in grapes.  相似文献   

18.
The genus Vitis (the grapevine) is a group of highly diverse, diploid woody perennial vines consisting of approximately 60 species from across the northern hemisphere. It is the world’s most valuable horticultural crop with ~8 million hectares planted, most of which is processed into wine. To gain insights into the use of wild Vitis species during the past century of interspecific grape breeding and to provide a foundation for marker-assisted breeding programmes, we present a principal components analysis (PCA) based ancestry estimation method to calculate admixture proportions of hybrid grapes in the United States Department of Agriculture grape germplasm collection using genome-wide polymorphism data. We find that grape breeders have backcrossed to both the domesticated V. vinifera and wild Vitis species and that reasonably accurate genome-wide ancestry estimation can be performed on interspecific Vitis hybrids using a panel of fewer than 50 ancestry informative markers (AIMs). We compare measures of ancestry informativeness used in selecting SNP panels for two-way admixture estimation, and verify the accuracy of our method on simulated populations of admixed offspring. Our method of ancestry deconvolution provides a first step towards selection at the seed or seedling stage for desirable admixture profiles, which will facilitate marker-assisted breeding that aims to introgress traits from wild Vitis species while retaining the desirable characteristics of elite V. vinifera cultivars.  相似文献   

19.

Key message

Wild and loss-of-function alleles of the 5 - O - glucosyltransferase gene responsible for synthesis of diglucoside anthocyanins in Vitis were characterized. The information aids marker development for tracking this gene in grape breeding.

Abstract

Anthocyanins in red grapes are present in two glycosylation states: monoglucoside (3-O-glucoside) and diglucoside (3, 5-di-O-glucoside). While monoglucoside anthocyanins are present in all pigmented grapes, diglucoside anthocyanins are rarely found in the cultivated grape species Vitis vinifera. Biochemically 3-O-glucoside anthocyanins can be converted into 3,5-di-O-glucoside anthocyanins by a 5-O-glucosyltransferase. In this study, we surveyed allelic variation of the 5-O-glucosyltransferase gene (5GT) in 70 V. vinifera ssp. vinifera cultivars, 52 V. vinifera ssp. sylvestris accessions, 23 Vitis hybrid grapes, and 22 accessions of seven other Vitis species. Eighteen 5GT alleles with apparent loss-of-function mutations, including seven premature stop codon mutations and six frameshift indel mutations, were discovered in V. vinifera, but not in the other Vitis species. A total of 36 5GT alleles without apparent loss-of-function mutations (W-type) were identified. These W-type alleles were predominantly present in wild Vitis species, although a few of them were also found in some V. vinifera accessions. We further evaluated some of these 5GT alleles in producing diglucoside anthocyanins by analyzing the content of diglucoside anthocyanins in a set of representative V. vinifera cultivars. Through haplotype network analysis we revealed that V. vinifera ssp. vinifera and its wild progenitor V. vinifera ssp. sylvestris shared many loss-of-function 5GT alleles and extensive divergence of the 5GT alleles was evident within V. vinifera. This work advances our understanding of the genetic diversity of 5GT and provides a molecular basis for future marker-assisted selection for improving this important wine quality trait.  相似文献   

20.
Teleki rootstocks are used in grapevine-producing countries all over the world. They represent one of the largest groups of available rootstocks but their origin is still in dispute although they have been regarded as Vitis berlandieri × V. riparia hybrids. To investigate their possible origin, we amplified and sequenced three chloroplast regions, two non-coding spacers (trnL-F, trnS-G) and the trnL group I intron in a core collection of Teleki rootstocks representing widespread accessions and related wild North American grape species (V. berlandieri, V. riparia and V. rupestris). Concatenated sequence data coupled with microstructural changes discovered in the chloroplast regions provided data to trace the maternal ancestry of the Teleki lines. All chloroplast regions showed both nucleotide and length variation. Length mutations in the non-coding regions represented mostly simple sequence repeats of poly-A and -T stretches. These indel characters exhibited additional diversity comparable with the nucleotide diversity and increased resolution of the phylogenetic trees. We found that a group of Teleki accessions position together with the wild grape species V. riparia. Another group of Teleki rootstocks formed a sister group to the other North American species V. berlandieri. These clades had moderate support values, and they do not share ancestry with other accessions of Teleki rootstocks resolved with high support value in the V. riparia clade. It seems that Teleki-Kober 5BB and 125 AA accessions might have a V. berlandieri maternal background. We also found great differences within putative clones of Teleki 5C and Teleki-Kober 5BB suggesting that the selection of these accessions was performed on heterogenous or mislabeled plant material collectively maintained under these names.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号