首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 276 毫秒
1.
The immunosuppressive agents cyclosporine, tacrolimus, and sirolimus are naturally occurring products of environmental fungi or bacteria, so the fact that they possess intrinsic antifungal activity is not surprising. Both calcineurin and the target of rapamycin (TOR) are conserved across eukaryotes and share a common function, regulating the organism’s ability to react to environmental changes and response to stress. In the medically important fungi Candida, Cryptococcus, and Aspergillus, mutations in the calcineurin gene affect in vitro patterns of growth and serum sensitivity, and attenuate virulence in animal models. Notably, cyclosporine, tacrolimus, and sirolimus exhibit strong synergy with many classes of antifungal drugs including azoles, amphotericin B, and the echinocandins, with potentiation of fungicidal effects even against drug-resistant strains. Hopefully, future studies will realize the promise of exploiting the antifungal properties of the immunosuppressive drugs to help decrease the burden of these clinically important infections on patient survival.  相似文献   

2.
Penicillium marneffei, one of the most important thermal dimorphic fungi, is a severe threat to the life of immunocompromised patients. However, the pathogenic mechanisms of P. marneffei remain largely unknown. In this work, we developed a model host by using nematode Caenorhabditis elegans to investigate the virulence of P. marneffei. Using two P. marneffei clinical isolate strains 570 and 486, we revealed that in both liquid and solid media, the ingestion of live P. marneffei was lethal to C. elegans (P<0.001). Meanwhile, our results showed that the strain 570, which can produce red pigment, had stronger pathogenicity in C. elegans than the strain 486, which can’t produce red pigment (P<0.001). Microscopy showed the formation of red pigment and hyphae within C. elegans after incubation with P. marneffei for 4 h, which are supposed to be two contributors in nematodes killing. In addition, we used C. elegans as an in vivo model to evaluate different antifungal agents against P. marneffei, and found that antifungal agents including amphotericin B, terbinafine, fluconazole, itraconazole and voriconazole successfully prolonged the survival of nematodesinfected by P. marneffei. Overall, this alternative model host can provide us an easy tool to study the virulence of P. marneffei and screen antifungal agents.  相似文献   

3.
Calcineurin is a calcium-activated phosphatase that controls morphogenesis and stress responses in eukaryotes. Fungal pathogens have adopted the calcineurin pathway to survive and effectively propagate within the host. The difficulty in treating fungal infections stems from similarities between pathogen and host eukaryotic cells. Using calcineurin inhibitors such as cyclosporin A or tacrolimus (FK506) in combination with antifungal drugs, including azoles or echinocandins, renders these drugs fungicidal, even towards drug-resistant species or strains, making calcineurin a promising drug target. This article summarizes the current understanding of the calcineurin pathway and its roles in governing the growth and virulence of pathogenic fungi, and compares and contrasts the roles of calcineurin in fungal pathogens that infect humans (Candida albicans and Cryptococcus neoformans) or plants (Magnaporthe oryzae and Ustilago maydis). Further investigation of calcineurin biology will advance opportunities to develop novel antifungal therapeutic approaches and provide insight into the evolution of virulence.  相似文献   

4.

Objective

To investigate the clinical characteristics, diagnosis, treatment and prognosis of penicilliosis among the patients with acquired immunodeficiency syndrome (AIDS) in non-endemic areas of China, and then to discuss its incubation period and the diagnostic performance of serum galactomannan test for penicilliosis.

Methods

Medical records and travel histories of penicilliosis patients in Zhongnan hospital from January 2006 to December 2013, and the interval from when the patients left the endemic area to the onset of the disease was analyzed. Serum galactomannan levels of penicilliosis patients and AIDS patients with fever were measured by the Platelia Aspergillus Enzyme Immunoassay Kit.

Results

A total of 47 AIDS-associated penicilliosis were confirmed by fungal culture, which accounted for 4.8% of 981 AIDS-related admissions. The sensitivity and specificity of serum galactomannan test for penicilliosis were 95.8% (23/24) and 90.9% (30/33), respectively, (cutoff index = 1.0). Two independent predictors for early mortality (death within 12 weeks) of the patients (21.3%, 10/47) were a delayed diagnosis and no treatment with antifungal therapy. Among 14 patients who became ill after leaving endemic areas, ten patients presented with the onset symptoms within 12 months (from 11 days to 360 days). We found a patient living with asymptomatic P. marneffei fungemia who had not received any antifungal therapy until 18 months’ follow up.

Conclusions

The co-infection of P. marneffei and HIV was not uncommon in the non-endemic areas of penicilliosis in China. There exists a latent form of infection for P. marneffei. The incubation period of penicilliosis may be quite different from one patient to another. In AIDS patients, the serum galactomannan test has utility for the diagnosis of penicilliosis. When patients with penicilliosis/AIDS were diagnosed early and treated with standardized antifungal therapy and combined antiretroviral therapy, their prognosis improved.  相似文献   

5.
Invasive mycoses are associated with a high mortality rate, and their incidence is increased in immunologically deficient patients. From a diagnostic and therapeutic perspective, these infections represent a significant challenge to medicine. In addition to new antifungal agents, drug combinations are an important therapeutic resource, which might be exploited clinically, owing to the multiplicity of fungal targets against which currently available agents are active. In this review, we examine the experimental data regarding the combination of conventional antifungal agents with cytokines, antibacterial agents, calcineurin inhibitors and drugs under development characterized by novel mechanisms of action.  相似文献   

6.
Penicillium marneffei (P. marneffei) is a human pathogen which persists in macrophages and threatens the immunocompromised patients. To elucidate the mechanisms involved, we investigated the role of extracellular signal-regulated kinases 1 and 2 (ERK1/2) and p38 mitogen-activated protein kinase (p38) pathways in cytokine expression, phagosome–lysosome fusion and replication of P. marneffei in P. marneffei-infected human macrophages. Analysis of both ERK1/2 and p38 showed rapid phosphorylation in response to P. marneffei. Using specific inhibitors of p38 (SB203580) and MAP kinase kinase-1 (PD98059), we found that ERK1/2 and p38 were essential for P. marneffei-induced tumor necrosis factor-α production, whereas p38, but not that of ERK, was essential for IL-10 production. Furthermore, the presence of PD98059 always decreased phagosomal acidification and maturation and increased intracellular multiplication of P. marneffei, whereas the use of SB203580 always increased phagosomal acidification and maturation and decreased intracellular replication. These data suggest that a proper balance of between ERK1/2 and p38 may play an important role in controlling the replication of P. marneffei. Our findings further indicate a novel therapeutic avenue for treating P. marneffei by stimulating ERK1/2 or activating ERK1/2-dependent mechanisms.  相似文献   

7.
《Fungal Biology Reviews》2014,28(2-3):56-69
Calcineurin signaling plays diverse roles in fungi in regulating stress responses, morphogenesis and pathogenesis. Although calcineurin signaling is conserved among fungi, recent studies indicate important divergences in calcineurin-dependent cellular functions among different human fungal pathogens. Fungal pathogens utilize the calcineurin pathway to effectively survive the host environment and cause life-threatening infections. The immunosuppressive calcineurin inhibitors (FK506 and cyclosporine A) are active against fungi, making targeting calcineurin a promising antifungal drug development strategy. Here we summarize current knowledge on calcineurin in yeasts and filamentous fungi, and review the importance of understanding fungal-specific attributes of calcineurin to decipher fungal pathogenesis and develop novel antifungal therapeutic approaches.  相似文献   

8.
Survival of lymphocytes and melanocyte stem cells critically depends on B cell lymphoma 2 (Bcl-2). In T lymphocytes, a basal calcineurin activity maintains Bcl-2 expression in naïve cells, and the activation of the calcineurin pathway orchestrates the regulation of the intrinsic apoptosis pathway after antigen recognition. Therefore, calcineurin inhibitors might potentiate the pro-apoptotic effect of pharmacological Bcl-2 inhibitors on lymphatic cells. In vitro, a reduced Bcl-2 expression in lymphocytes exposed to calcineurin inhibitors increased their sensitivity to the small molecule Bcl-2 inhibitor ABT-737. This correlated with an augmented pro-apoptotic activity of ABT-737 on lymphocytes in combination with cyclosporine A in naïve mice in vivo. Interestingly, similar processes were observed in melanocytes. ABT-737 induced a fur depigmentation at the site of injection, and this effect was expanded to a generalized depigmentation in combination with cyclosporine A. Thus, inhibiting calcineurin increases the pro-apoptotic potency of ABT-737 in cells depending on Bcl-2 for survival. The increased efficacy of Bcl-2 inhibitors in combination with cyclosporine A might be relevant to exploit their anti-neoplastic and immuno-modulatory properties.  相似文献   

9.
10.
Invasive aspergillosis, largely caused by Aspergillus fumigatus, is responsible for a growing number of deaths among immunosuppressed patients. Immunosuppressants such as FK506 (tacrolimus) that target calcineurin have shown promise for antifungal drug development. FK506-binding proteins (FKBPs) form a complex with calcineurin in the presence of FK506 (FKBP12-FK506) and inhibit calcineurin activity. Research on FKBPs in fungi is limited, and none of the FKBPs have been previously characterized in A. fumigatus. We identified four orthologous genes of FKBP12, the human FK506 binding partner, in A. fumigatus and designated them fkbp12-1, fkbp12-2, fkbp12-3, and fkbp12-4. Deletional analysis of the four genes revealed that the Δfkbp12-1 strain was resistant to FK506, indicating FKBP12-1 as the key mediator of FK506-binding to calcineurin. The endogenously expressed FKBP12-1-EGFP fusion protein localized to the cytoplasm and nuclei under normal growth conditions but also to the hyphal septa following FK506 treatment, revealing its interaction with calcineurin. The FKBP12-1-EGFP fusion protein didn’t localize at the septa in the presence of FK506 in the cnaA deletion background, confirming its interaction with calcineurin. Testing of all deletion strains in the Galleria mellonella model of aspergillosis suggested that these proteins don’t play an important role in virulence. While the Δfkbp12-2 and Δfkbp12-3 strains didn’t show any discernable phenotype, the Δfkbp12-4 strain displayed slight growth defect under normal growth conditions and inhibition of the caspofungin-mediated “paradoxical growth effect” at higher concentrations of the antifungal caspofungin. Together, these results indicate that while only FKBP12-1 is the bona fide binding partner of FK506, leading to the inhibition of calcineurin in A. fumigatus, FKBP12-4 may play a role in basal growth and the caspofungin-mediated paradoxical growth response. Exploitation of differences between A. fumigatus FKBP12-1 and human FKBP12 will be critical for the generation of fungal-specific FK506 analogs to inhibit fungal calcineurin and treat invasive fungal disease.  相似文献   

11.
Talaromyces (Penicillium) marneffei infection is a fatal disseminated mycosis caused by the dimorphic fungus Talaromyces marneffei; the therapeutic strategies for this infectious disease are limited. The aim of this retrospective study was to evaluate the efficacy and safety of voriconazole for treating patients with disseminated T. marneffei infection with or without HIV infection in a clinical setting. Patients who intravenously received voriconazole (6 mg/kg q12 h for the first 24 h followed by 4 mg/kg q12 h) as the initial antifungal treatment were enrolled. The duration of the following antifungal treatment varied at the discretion of the investigators according to the patient responses. The primary global response was evaluated at Week 16 or at the end of treatment (EOT). Follow-up evaluations were performed at 6 months and 1 year after the EOT. Seventeen patients were enrolled in this study, but three were not evaluable because the treatment was prematurely discontinued. Among the remaining fourteen patients, ten patients had complete response and three had partial response at Week 16. Only one patient was determined to have failed response. Follow-up assessments in eleven patients showed that eight patients were cured and the remaining three patients relapsed at 6 months after the EOT. These eight patients were assessed 1 year later, and none of them had relapsed. No adverse events associated with voriconazole were recorded during the treatment. The results from our study suggest that voriconazole is an effective, well-tolerated therapeutic option for disseminated T. marneffei infection.  相似文献   

12.
Penicillium marneffei infection is a deadly disease and early diagnosis leads to prompt and appropriate antifungal therapy. To develop a sensitive method to diagnose P. marneffei infection, a multiplex ligation-dependent probe amplification (MLPA) assay was adapted. This method can rapidly and specifically detect P. marneffei DNA in cultured cells and paraffin-embedded tissue samples. Three pairs of probes were designed for amplifying the internally (intergenic) transcribed spacer (ITS) region of P. marneffei rRNA using a systematic phylogenetic analysis. These three probe sets produced three amplicons of 198, 166, and 152 bp, respectively, specific for P. marneffei. In contrast, there was only one 198 bp amplicon produced for Talaromyces stipitatus, and one 152 bp amplicon for P. funiculosum, T. intermedius and T. derxii. The probes did not amplify any other reference strains. An array of 40 P. marneffei strains isolated from human patients, bamboo rat, and the local environment was tested by using MLPA, and all were positively identified. Most importantly, P. marneffei in paraffin-embedded tissue specimens from infected human patients was positively amplified by MLPA. The sensitivity and specificity of the MLPA assay could be a useful tool for prompt diagnosis, pathogen characterization, and epidemiological studies of fungal infections.  相似文献   

13.
Biliary pancreatitis is the leading cause of acute pancreatitis in both children and adults. A proposed mechanism is the reflux of bile into the pancreatic duct. Bile acid exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca2+. Thus, it would be clinically relevant to know the targets of this aberrant Ca2+ signal. We hypothesized that the Ca2+-activated phosphatase calcineurin is such a Ca2+ target. To examine calcineurin activation, we infected primary acinar cells from mice with an adenovirus expressing the promoter for a downstream calcineurin effector, nuclear factor of activated T-cells (NFAT). The bile acid taurolithocholic acid-3-sulfate (TLCS) was primarily used to examine bile acid responses. TLCS caused calcineurin activation only at concentrations that cause acinar cell injury. The activation of calcineurin by TLCS was abolished by chelating intracellular Ca2+. Pretreatment with 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (acetoxymethyl ester) (BAPTA-AM) or the three specific calcineurin inhibitors FK506, cyclosporine A, or calcineurin inhibitory peptide prevented bile acid-induced acinar cell injury as measured by lactate dehydrogenase leakage and propidium iodide uptake. The calcineurin inhibitors reduced the intra-acinar activation of chymotrypsinogen within 30 min of TLCS administration, and they also prevented NF-κB activation. In vivo, mice that received FK506 or were deficient in the calcineurin isoform Aβ (CnAβ) subunit had reduced pancreatitis severity after infusion of TLCS or taurocholic acid into the pancreatic duct. In summary, we demonstrate that acinar cell calcineurin is activated in response to Ca2+ generated by bile acid exposure, bile acid-induced pancreatic injury is dependent on calcineurin activation, and calcineurin inhibitors may provide an adjunctive therapy for biliary pancreatitis.  相似文献   

14.
Pregnancy puts a significant additional strain on kidneys. The aim of our study was to investigate the impact of immunosuppressive drugs on changes in native kidneys in female Wistar rats after exposure during pregnancy. The study was conducted on 32 dams, subjected to immunosuppressive regimens commonly used in the therapy of human kidney transplant recipients (cyclosporine A, mycophenolate mofetil and prednisone; tacrolimus, mycophenolate mofetil and prednisone; cyclosporine A, everolimus and prednisone). The animals received drugs for 2 weeks before pregnancy and during 3 weeks of pregnancy. In all treated dams lower body weight (but not kidney mass) and alterations in serum sodium and chloride ions were found; serum creatinine concentration was increased in dams treated with cyclosporine A, everolimus and prednisone. All treatment groups of dams showed increased apoptosis in the distal tubules. In histological examination the changed intensity of acidophilic or basophilic cytoplasm of epithelial cells was found in kidneys of rats treated with calcineurin inhibitors, mycophenolate mofetil and prednisone. All immunosuppressive regimens caused abnormalities affecting nephron tubules. Regimens containing calcineurin inhibitors and mycophenolate mofetil caused higher rate of apoptosis and more pronounced histopathological changes. Regimen based on everolimus despite the lower rate of apoptosis in the proximal tubules and lower accumulation of kidney injury markers revealed higher serum creatinine concentration. Thus, interpretation which combination of drugs is better or worse for long-lasting functioning of kidneys in pregnant females requires further studies.  相似文献   

15.
The biosynthesis of melanin has been linked with virulence in diverse pathogenic fungi. Penicillium marneffei, a dimorphic fungus, is capable of melanization in both mycelial and yeast phases, and the pigment may be produced during infection to protect the fungus from the host immune system. To investigate the impact of yeast morphological transformation on antifungal susceptibility, P. marneffei was cultured on various media including minimal medium, 1 % tryptone, brain heart infusion broth, and malt extract broth by using the standardized susceptibility protocol (the M27-A protocol, RPMI medium) for yeasts. We also investigated whether P. marneffei melanization affected its susceptibility to antifungal drugs by adding l-DOPA into culture broths. There were no differences in the minimum inhibitory concentrations of P. marneffei yeast cells previously grown in various culture broths with or without l-DOPA using the M27A protocol (into which no melanin substrate can be added due to a rapid colour change of the RPMI medium to black) for testing amphotericin B, clotrimazole, fluconazole, itraconazole and ketoconazole. However, both melanized and non-melanized P. marneffei displayed increased resistance to antifungal drugs when l-DOPA was added into a selected assay medium, 0.17 % yeast nitrogen base, 2 % glucose, and 1.5 % agar. Hence, active melanin formation appears to protect P. marneffei by enhancing its resistance to antifungal drugs.  相似文献   

16.
17.
The oligosaccharide OligoG, an alginate derived from seaweed, has been shown to have anti-bacterial and anti-biofilm properties and potentiates the activity of selected antibiotics against multi-drug resistant bacteria. The ability of OligoG to perturb fungal growth and potentiate conventional antifungal agents was evaluated using a range of pathogenic fungal strains. Candida (n = 11) and Aspergillus (n = 3) spp. were tested using germ tube assays, LIVE/DEAD staining, scanning electron microscopy (SEM), atomic force microscopy (AFM) and high-throughput minimum inhibition concentration assays (MICs). In general, the strains tested showed a significant dose-dependent reduction in cell growth at ≥6% OligoG as measured by optical density (OD600; P<0.05). OligoG (>0.5%) also showed a significant inhibitory effect on hyphal growth in germ tube assays, although strain-dependent variations in efficacy were observed (P<0.05). SEM and AFM both showed that OligoG (≥2%) markedly disrupted fungal biofilm formation, both alone, and in combination with fluconazole. Cell surface roughness was also significantly increased by the combination treatment (P<0.001). High-throughput robotic MIC screening demonstrated the potentiating effects of OligoG (2, 6, 10%) with nystatin, amphotericin B, fluconazole, miconazole, voriconazole or terbinafine with the test strains. Potentiating effects were observed for the Aspergillus strains with all six antifungal agents, with an up to 16-fold (nystatin) reduction in MIC. Similarly, all the Candida spp. showed potentiation with nystatin (up to 16-fold) and fluconazole (up to 8-fold). These findings demonstrate the antifungal properties of OligoG and suggest a potential role in the management of fungal infections and possible reduction of antifungal toxicity.  相似文献   

18.
Eugenol is a plant-derived phenolic compound which has recognised therapeutical potential as an antifungal agent. However little is known of either its fungicidal activity or the mechanisms employed by fungi to tolerate eugenol toxicity. A better exploitation of eugenol as a therapeutic agent will therefore depend on addressing this knowledge gap. Eugenol initiates increases in cytosolic Ca2+ in Saccharomyces cerevisiae which is partly dependent on the plasma membrane calcium channel, Cch1p. However, it is unclear whether a toxic cytosolic Ca2+elevation mediates the fungicidal activity of eugenol. In the present study, no significant difference in yeast survival was observed following transient eugenol treatment in the presence or absence of extracellular Ca2+. Furthermore, using yeast expressing apoaequorin to report cytosolic Ca2+ and a range of eugenol derivatives, antifungal activity did not appear to be coupled to Ca2+ influx or cytosolic Ca2+ elevation. Taken together, these results suggest that eugenol toxicity is not dependent on a toxic influx of Ca2+. In contrast, careful control of extracellular Ca2+ (using EGTA or BAPTA) revealed that tolerance of yeast to eugenol depended on Ca2+ influx via Cch1p. These findings expose significant differences between the antifungal activity of eugenol and that of azoles, amiodarone and carvacrol. This study highlights the potential to use eugenol in combination with other antifungal agents that exhibit differing modes of action as antifungal agents to combat drug resistant infections.  相似文献   

19.
20.
The calcineurin pathway regulates antifungal drug resistance and the virulence of several major human-pathogenic fungi, including the recalcitrant Mucorales. We hypothesized that the fungistatic triazoles posaconazole (PCZ) and itraconazole (ICZ) become fungicidal in the setting of the calcineurin inhibitor tacrolimus (TCR) and that such an effect is mediated through apoptosis. Fungicidal activity and apoptosis were studied using standard microbiological techniques and hyphal metabolic and vital dye reduction assays at 37°C in RPMI 1640. Apoptosis was characterized by detecting intracellular Ca2+, phosphatidylserine (PS) externalization, DNA fragmentation, plasma membrane integrity, chromatin condensation, reactive oxygen species (ROS) generation, caspase-like activity, ATP, and cytochrome c release. MICs for PCZ and ICZ alone were significantly higher (8 to 128 μg/ml) than those of PCZ or ICZ plus TCR (0.25 to 4 μg/ml) for Rhizopus oryzae, Cunninghamella bertholletiae, and Mucor circinelloides. Both PCZ and ICZ in combination with TCR became fungicidal, and their activity was mediated through increased apoptotic cell death of R. oryzae (10 to 50%), C. bertholletiae (5 to 50%), and M. circinelloides (5 to 55%) germlings, with morphological apoptotic changes characterized by externalization of PS, nuclear condensation, and DNA fragmentation. Moreover, activation of the caspase-like activity was correlated with cell death induced by TCR plus PCZ or ICZ. These changes correlated with elevated intracellular Ca2+ and ROS levels and disturbance of mitochondrial potential. We found that PCZ or ICZ in combination with TCR renders Mucorales sensitive to triazoles via apoptotic death. These observations could serve as a new paradigm for the development of new therapeutic strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号