首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The introgression of multiple genes into traditional cultivars using marker-assisted selection (MAS) in order to obtain favorable traits is an effective strategy to achieve improved rice lines. Genotyping of markers is a central component of the evaluation of germplasm and the selection of progeny lines. However, efficient DNA extraction and genotyping of large breeding populations still remain limiting factors in rice molecular breeding programs. This study has developed and validated a cost-effective, rapid (<1 h for 96 samples), and high-throughput (96-well format) total DNA-extraction method based on magnetic particle technology. To improve the grain-quality traits of two rice varieties, we have designed and employed an efficient codominant functional marker system (including Wx, ALK, Chalk5, and fgr genes), in combination with genotyping based on automated capillary electrophoresis. Rice lines with simultaneous improvement at multiple loci were obtained and found to have superior grain quality and to be fragrant. The genotyping pipeline established in this study represents an efficient, reliable, and precise platform for MAS.  相似文献   

2.
Based on blast pathogen population dynamics and lineage exclusion assays, we found that the major blast resistance genes Pi-1 and Piz-5 confer resistance against most Magnaporthe grisea lineages. Near-isogenic rice lines C101LAC and C101A51 carrying these two major genes for blast resistance in the background of a most blast-susceptible genotype were used for developing the pyramids. The closely linked RFLP marker RZ536 and NBS-LRR r10 marker for Pi-1 and a PCR-based SAP marker RG64 for Piz-5 were used to identify the genes in the parents and in marker-assisted breeding of the pyramided populations. To achieve multiple resistance against blast and blight in this cultivar, these blast-resistant pyramids were transformed with the cloned bacterial blight resistance gene Xa21 known to confer resistance to all races of Xanthomonas oryzae pv. oryzae (Xoo). Bioassays with six independent transformants showed that transgenic CO39 plants were resistant to both pathogens, M. grisea and Xoo. We report here the stacking of three major genes (Pi-1 + Piz-5 + Xa21) into rice using two different approaches of molecular breeding: marker-assisted selection (MAS) and genetic transformation.  相似文献   

3.
During the last decade, DNA mutations in the porcine ryanodine receptor 1 gene (RYR1, C1843T) and the estrogen receptor 1 gene (ESR1, T1665G), have been widely used in marker-assisted selection (MAS) for the pig industry. These 2 well-characterized SNPs in RYR1 and ESR1 are responsible for porcine stress syndrome (PSS) and litter size, respectively. Here, we describe a reliable, high-efficiency method for the genotyping of these 2 genes using the high-resolution melting (HRM) method. The HRM approach exhibited high-accuracy and repeatability, comparable with the classic PCR-restriction fragment length polymorphism (PCR-RFLP) approach, and is potentially suitable for large-scale genotyping in commercial pig farms.  相似文献   

4.
Rice blast is one of the most devastating diseases affecting the rice crop throughout the world. In molecular breeding for host plant resistance, functional markers are very useful for enhancing the precision and accuracy in marker-assisted selection (MAS) of target gene(s) with minimum effort, time and cost. Pi54 (which was earlier known as Pik h ) is one of the major blast resistance genes and has been observed to show resistance against many isolates of the blast pathogen in India. The gene has been cloned through map-based strategy and encodes a nucleotide-binding site?Cleucine-rich repeat (NBS?CLRR) domain-containing protein. In the present study, we carried out allele mining for this gene and identified a 144-bp insertion/deletion (InDel) polymorphism in the exonic region of the gene. A PCR-based co-dominant molecular marker targeting this InDel, named Pi54 MAS, was developed. Pi54 MAS was observed to perfectly co-segregate with blast resistance in a mapping population with no recombinants. Validation of this marker in 105 genotypes which are either susceptible or resistant to rice blast disease showed that the marker is polymorphic in most of the resistant?Csusceptible genotype combinations and is more accurate than the earlier reported markers for Pi54. Hence this functional, co-dominant marker is suggested for routine deployment in MAS of Pi54 in breeding programs.  相似文献   

5.
Twenty-seven near-isogenic lines (NILs) with the genetic background of a blast-susceptible variety, CO 39, were developed by repeated backcrossing as a first set of a large number of differential varieties (DVs) with Indica-type genetic background. The NILs included 14 resistance genes—Pish, Pib, Piz-5, Piz-t, Pi5(t), Pik-s, Pik, Pik-h, Pik-m, Pik-p, Pi1, Pi7(t), Pita, and Pita-2—derived from 26 donor varieties. The reaction patterns of NILs against 20 standard isolates from the Philippines were similar to those of blast monogenic lines with the same resistance gene, except for those against two isolates that are avirulent to Pia in the genetic background of CO 39. A genome-wide DNA marker survey revealed that chromosome segments were introgressed in the regions where each resistance gene was previously mapped and most of the other chromosome regions in each NIL were CO 39 type. Segregation analysis of resistance and co-segregation analysis between resistance and DNA markers using F3 populations derived from the crosses between each NIL and the recurrent parent, CO 39, revealed a single-gene control of resistance and association between resistance and target introgressed segments. The morphological characters of each NIL were almost the same as those of the recurrent parent except for some lines, suggesting that these NILs can be used even under tropical conditions where Japonica-type DVs are not suitable for cropping. Thus, these NILs are useful not only as genetic tools for blast resistance study but also as sources of genes for breeding of Indica-type rice varieties.  相似文献   

6.
Experiments were conducted to identify blast-resistant fragrant genotypes for the development of a durable blast-resistant rice variety during years 2012–2013. The results indicate that out of 140 test materials including 114 fragrant germplasms, 25 differential varieties (DVs) harbouring 23 blast-resistant genes, only 16 fragrant rice germplasms showed comparatively better performance against a virulent isolate of blast disease. The reaction pattern of single-spore isolate of Magnaporthe oryzae to differential varieties showed that Pish, Pi9, Pita-2 and Pita are the effective blast-resistant genes against the tested blast isolates in Bangladesh. The DNA markers profiles of selected 16 rice germplasms indicated that genotype Chinigura contained Pish, Pi9 and Pita genes; on the other hand, both BRRI dhan50 and Bawaibhog contained Pish and Pita genes in their genetic background. Genotypes Jirakatari, BR5, and Gopalbhog possessed Pish gene, while Uknimodhu, Deshikatari, Radhunipagol, Kalijira (3), Chinikanai each contained the Pita gene only. There are some materials that did not contain any target gene(s) in their genetic background, but proved resistant in pathogenicity tests. This information provided valuable genetic information for breeders to develop durable blast-resistant fragrant or aromatic rice varieties in Bangladesh.  相似文献   

7.
Two alleles of the rice blast resistance (R) Pik locus, Pik-m and Pik, are each composed of a pair of nucleotide-binding site–leucine-rich repeat (NBS–LRR) genes, referred to as the first gene and the second gene. Pik-m and Pik are unique in that many of the amino acid substitutions between them are distributed in or near the N-terminal coiled-coil (CC) domain of the first gene, suggesting that the CC domain of the first gene plays an important role in determinating their R specificity. To examine this hypothesis, I investigated resistance phenotypes of transgenic plants carrying each of two kinds of domain-swapped Pik-m-based recombinant first genes. Replacement of the LRR domain of Pik-m with the equivalent region of Pik did not change the Pik-m-type specificity, indicating that regions outside the LRR domain are responsible for differentiating the R specificity of Pik-m from Pik. In contrast, replacement of both the NBS and LRR domains of Pik-m with the corresponding region of Pik resulted in loss of blast resistance, suggesting that co-adaptation of polymorphisms in the CC and NBS domains is necessary to maintain resistance.  相似文献   

8.
Bacterial blight (BB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial disease of rice (Oryza sativa L.), a staple food crop that feeds half of the world’s population. In management of this disease, the most economical and effective approach is cultivating resistant varieties. Due to rapid change of pathogenicity in the pathogen, it is necessary to identify and characterize more host resistance genes for breeding new resistant varieties. We have previously identified the BB resistance (R) gene Xa23 that confers the broadest resistance to Xoo strains isolated from different rice-growing regions and preliminarily mapped the gene within a 1.7 cm region on the long arm of rice chromosome 11. Here, we report fine genetic mapping and in silico analysis of putative candidate genes of Xa23. Based on F2 mapping populations derived from crosses between Xa23-containing rice line CBB23 and susceptible varieties JG30 or IR24, six new STS markers Lj36, Lj46, Lj138, Lj74, A83B4, and Lj13 were developed. Linkage analysis revealed that the new markers were co-segregated with or closely linked to the Xa23 locus. Consequently, the Xa23 gene was mapped within a 0.4 cm region between markers Lj138 and A83B4, in which the co-segregating marker Lj74 was identified. The corresponding physical distance between Lj138 and A83B4 on Nipponbare genome is 49.8 kb. Six Xa23 candidate genes have been annotated, including four candidate genes encoding hypothetical proteins and the other two encoding a putative ADP-ribosylation factor protein and a putative PPR protein. These results will facilitate marker-assisted selection of Xa23 in rice breeding and molecular cloning of this valuable R gene.  相似文献   

9.
Sharka, caused by plum pox virus, is the most important viral disease of stone fruits. Important progresses have been recently achieved in apricot (Prunus armeniaca), identifying a major locus on chromosome 1 which explains most of the variability for plum pox virus (PPV) resistance trait. A set of molecular markers associated with the resistance has been developed and validated in different genetic backgrounds, endorsing their application for breeding purposes. Particularly for complex traits as the PPV resistance, requiring long and expensive phenotyping procedures, marker-assisted selection (MAS) bears a great potential to improve the efficiency of conventional breeding. In this work, novel HRM (high-resolution melting) assays were designed for the genotyping of resistant/susceptible alleles at PPV resistance (PPVres) locus. The assays were tested on 51 apricot cultivars and breeding selections already phenotyped for PPV resistance and cross-validated with standard short simple repeat marker data. We demonstrated that three HRM assays, PGS1.21_SNP, PGS1.24_SNP, and ZP002_DEL, represent a reliable, quick, and cost-effective genotyping approach, particularly suitable as high-throughput screening method for large-scale breeding programs.  相似文献   

10.
With the advent of next generation sequencing (NGS) technologies, single nucleotide polymorphisms (SNPs) have become the major type of marker for genotyping in many crops. However, the availability of SNP markers for important traits of bread wheat ( Triticum aestivum L.) that can be effectively used in marker-assisted selection (MAS) is still limited and SNP assays for MAS are usually uniplex. A shift from uniplex to multiplex assays will allow the simultaneous analysis of multiple markers and increase MAS efficiency. We designed 33 locus-specific markers from SNP or indel-based marker sequences that linked to 20 different quantitative trait loci (QTL) or genes of agronomic importance in wheat and analyzed the amplicon sequences using an Ion Torrent Proton Sequencer and a custom allele detection pipeline to determine the genotypes of 24 selected germplasm accessions. Among the 33 markers, 27 were successfully multiplexed and 23 had 100% SNP call rates. Results from analysis of "kompetitive allele-specific PCR" (KASP) and sequence tagged site (STS) markers developed from the same loci fully verified the genotype calls of 23 markers. The NGS-based multiplexed assay developed in this study is suitable for rapid and high-throughput screening of SNPs and some indel-based markers in wheat.  相似文献   

11.
The Pik-h gene in rice confers resistance to several races of rice blast fungus (Magnaporthe oryzae), and has been classified as a member of the Pik cluster, one of the most resistance (R) gene-dense regions in the rice genome. However, the loss of a key mutant isolate has long made it difficult to differentiate Pik-h from other Pik group genes especially from Pik-m. We identified new natural isolates enabling the differentiation between Pik-h and Pik-m genes, and first confirmed the authenticity of the International Rice Research Institute (IRRI) “monogenic” line IRBLkh-K3, and then fine-mapped the Pik-h gene in the Pik cluster. Using 701 susceptible individuals among 3,060 siblings from a cross of IRBLkh-K3×CO39, the Pik-h region was delimited to 270 kb, the narrowest interval among the Pik group genes reported to date, in the cv. Nipponbare genome. Annotation of this genome region first revealed 6 NBS-LRR type R-gene analogs (RGAs), clustered within the central 120 kb, as possible counterparts of Pik-h and 6 other Pik group R genes. Interestingly, the Pik-h region and the cluster of RGAs were shown to be located 130 kb and 230 kb apart from Xa4 and Xa2 bacterial blight resistance genes, respectively, once classified as belonging to the Pik cluster. The closest recombination events were limited to the margins of the Pik-h region, and recombination was suppressed in the core interval with the RGA cluster. This fine-mapping, performed in a short time using an HEGS system, will facilitate utilization of the cluster’s genetic resources and help to elucidate the mechanism of evolution of R-genes. The presence of natural isolates also confirmed that evolution of Pik-h corresponds to pathogen evolution.  相似文献   

12.
Race-specific seedling resistance genes are the primary means of controlling crown rust of oat caused by Puccinia coronata Corda f. sp. avenae Eriks in Canada. Pc91 is a seedling crown rust resistance gene that is highly effective against the current crown rust population in North America. A number of race-specific resistance genes have been mapped and markers that are closely linked to them have been identified. However, the use of these markers in oat breeding has been limited by the economics of marker-assisted selection (MAS). A crucial step in the successful application of MAS in breeding programs is the development of inexpensive and easy-to-use molecular markers. The primary objective of this study was to develop co-dominant KBioscience competitive allele-specific PCR (KASP) markers linked to Pc91 for deployment in high-throughput MAS in oat breeding programs. The allele-specific marker showed consistent diagnostic polymorphism between the selected 16 North American oat breeding lines. The developed co-dominant marker was also validated on three F2 populations (AC Morgan × Stainless; SW Betania × Stainless; AC Morgan × CDC Morrison) and one recombinant inbred line population (CDC Sol-Fi × HiFi) segregating for Pc91 using KASP genotyping technology. We recommend the simple, low-cost marker as a powerful tool for pyramiding Pc91 with other effective crown rust resistance loci into a single line. The mapping results indicate that crown rust resistance gene Pc91 resides on the translocated oat chromosome 7C-17A.  相似文献   

13.
Development of high-yielding cereal crops could meet increasing global demands for food, feed and bio-fuels. Wheat is one of the world??s most important cereal crops. The biosynthesis of starch is the major determinant of yield in wheat. Two starch biosynthesis genes, the waxy (Wx) genes and the starch synthase IIa (SSIIa) genes, were amplified and sequenced in 92 diverse wheat genotypes using genome-specific primers. Nucleotide diversity, haplotype analysis and association mapping were performed. The first exon (5??-UTR) and the first intron of the three homoeologous Wx genes were isolated using expressed sequence tag sequences. The Wx genes contained 12 exons separated by 11 introns. SNP (single nucleotide polymorphism) frequency ranged from 1 SNP/3,648?bp for Wx-D1 to 1 SNP/135?bp for SSIIa-A1, with an average of 1 SNP/230?bp. The average SNP frequencies in exon and intron regions were 1 SNP/322?bp and 1 SNP/228?bp, respectively. Thirty, 23 and 5 SNPs were identified and formed five, six and five haplotypes for SSIIa-A1, SSIIa-B1 and SSIIa-D1, respectively. However, no association was found between these SNPs and seven yield-related traits. Twenty-two, 15 and 1 SNPs were detected and formed nine, five and two haplotypes for Wx-A1, Wx-B1 and Wx-D1, respectively. Three unique nucleotides C+A+T at SNP5, SNP6 and SNP12 formed Wx-B1-H3, which was significantly associated with increased grain weight, thousand kernel weight, and total starch content in three spring wheat genotypes and five winter wheat genotypes. Cost-effective and co-dominant SNP markers were developed using temperature-switch (TS)-PCR and are being used for marker-assisted selection of doubled haploid lines with enhanced grain yield and starch content in winter wheat breeding programs.  相似文献   

14.
Characterization of the rice blast resistance gene Pik cloned from Kanto51   总被引:1,自引:0,他引:1  
To study similar, but distinct, plant disease resistance (R) specificities exhibited by allelic genes at the rice blast resistance locus Pik/Pikm, we cloned the Pik gene from rice cultivar Kanto51 and compared its molecular features with those of Pikm and of another Pik gene cloned from cv. Kusabue. Like Pikm, Pik is composed of two adjacent NBS-LRR (nucleotide-binding site, leucine-rich repeat) genes: the first gene, Pik1-KA, and the second gene, Pik2-KA. Pik from Kanto51 and Pik from Kusabue were not identical; although the predicted protein sequences of the second genes were identical, the sequences differed by three amino acids within the NBS domain of the first genes. The Pik proteins from Kanto51 and Kusabue differed from Pikm in eight and seven amino acids, respectively. Most of these substituted amino acids were within the coiled-coil (CC) and NBS domains encoded by the first gene. Of these substitutions, all within the CC domain were conserved between the two Pik proteins, whereas all within the NBS domain differed between them. Comparison of the two Pik proteins and Pikm suggests the importance of the CC domain in determining the resistance specificities of Pik and Pikm. This feature contrasts with that of most allelic or homologous NBS-LRR genes characterized to date, in which the major specificity determinant is believed to lie in the highly diverged LRR domain. In addition, our study revealed high evolutionary flexibility in the genome at the Pik locus, which may be relevant to the generation of new R specificities at this locus.  相似文献   

15.
Rice blast caused by Magnaporthe oryzae is the most devastating disease of rice and poses a serious threat to world food security. In this study, the distribution and effectiveness of 18 R genes in 277 accessions were investigated based on pathogenicity assays and molecular markers. The results showed that most of the accessions exhibited some degree of resistance (resistance frequency, RF >50%). Accordingly, most of the accessions were observed to harbor two or more R genes, and the number of R genes harbored in accessions was significantly positively correlated with RF. Some R genes were demonstrated to be specifically distributed in the genomes of rice sub-species, such as Pigm, Pi9, Pi5 and Pi1, which were only detected in indica-type accessions, and Pik and Piz, which were just harbored in japonica-type accessions. By analyzing the relationship between R genes and RF using a multiple stepwise regression model, the R genes Pid3, Pi5, Pi9, Pi54, Pigm and Pit were found to show the main effects against M. oryzae in indica-type accessions, while Pita, Pb1, Pik, Pizt and Pia were indicated to exhibit the main effects against M. oryzae in japonica-type accessions. Principal component analysis (PCA) and cluster analysis revealed that combination patterns of major R genes were the main factors determining the resistance of rice varieties to M. oryzae, such as ‘Pi9+Pi54’, ‘Pid3+Pigm’, ‘Pi5+Pid3+Pigm’, ‘Pi5+Pi54+Pid3+Pigm’, ‘Pi5+Pid3’ and ‘Pi5+Pit+Pid3’ in indica-type accessions and ‘Pik+Pib’, ‘Pik+Pita’, ‘Pik+Pb1’, ‘Pizt+Pia’ and ‘Pizt+Pita’ in japonica-type accessions, which were able to confer effective resistance against M. oryzae. The above results provide good theoretical support for the rational utilization of combinations of major R genes in developing rice cultivars with broad-spectrum resistance.  相似文献   

16.
High resolution melt (HRM) is gaining considerable popularity as a simple and robust method for genotyping sequence variants. However, accurate genotyping of an unknown sample for which a large number of possible variants may exist will require an automated HRM curve identification method capable of comparing unknowns against a large cohort of known sequence variants. Herein, we describe a new method for automated HRM curve classification based on machine learning methods and learned tolerance for reaction condition deviations. We tested this method in silico through multiple cross-validations using curves generated from 9 different simulated experimental conditions to classify 92 known serotypes of Streptococcus pneumoniae and demonstrated over 99% accuracy with 8 training curves per serotype. In vitro verification of the algorithm was tested using sequence variants of a cancer-related gene and demonstrated 100% accuracy with 3 training curves per sequence variant. The machine learning algorithm enabled reliable, scalable, and automated HRM genotyping analysis with broad potential clinical and epidemiological applications.  相似文献   

17.
Cucurbita pepo (squash, pumpkin, gourd), a worldwide cultivated vegetable of American origin, is extremely variable in fruit characteristics. Most of its widely grown commercial types are known as summer squashes and belong to the elongated forms of C. pepo ssp. pepo (Cocozelle, Vegetable marrow and Zucchini groups). Here, we have integrated the high-resolution-melting (HRM) analysis method with expressed sequence tags–simple sequence repeat (EST–SSR) marker genotyping, in order to facilitate the identification of 36 summer squash landraces originated from Greece. The six EST–SSR loci used were informative and generated a unique melting curve profile of EST-derived microsatellites for each accession allowing their comparison and classification. Moreover, HRM was highly informative, as by using only four microsatellite markers we were able to discriminate 36 summer squash landraces and by using six EST–SSRs. We were able to construct a highly informative and discriminative dendrogram where the 36 genotypes were classified in six distinct clusters. Furthermore, we acquired information about the genes containing the EST–SSRs using bioinformatics tools. We found that the EST–SSRs used in this study were hybridizing to genes involved in stress response to heavy metals and biotic stresses or the production of flavonoids or symporters of important nitrogen sources, like xanthine and uric acid amongst others. The results presented here suggest that the panel of EST–SSR markers used in combination with HRM analysis could be useful in a variety of applications, like squash biodiversity assessment but most importantly in managing squash germplasm to improve breeding programs.  相似文献   

18.
19.
Monogenic lines, which carried 23 genes for blast resistance were tested and used donors to transfer resistance genes by crossing method. The results under blast nursery revealed that 9 genes from 23 genes were susceptible to highly susceptible under the three locations (Sakha, Gemmeza, and Zarzoura in Egypt); Pia, Pik, Pik-p, Piz-t, Pita, Pi b, Pi, Pi 19 and Pi 20. While, the genes Pii, Pik-s, Pik-h, Pi z, Piz-5, Pi sh, Pi 3, Pi 1, Pi 5, Pi 7, Pi 9, Pi 12, Pikm and Pita-2 were highly resistant at the same locations. Clustering analysis confirmed the results, which divided into two groups; the first one included all the susceptible genes, while the second one included the resistance genes. In the greenhouse test, the reaction pattern of five races produced 100% resistance under artificial inoculation with eight genes showing complete resistance to all isolates. The completely resistant genes: Pii, Pik-s, Piz, Piz-5 (=bi2) (t), Pita (=Pi4) (t), Pita, Pi b and Pi1 as well as clustering analysis confirmed the results. In the F1 crosses, the results showed all the 25 crosses were resistant for leaf blast disease under field conditions. While, the results in F2 population showed seven crosses with segregation ratio of 15 (R):1 (S), two cross gave segregated ratio of 3 R:1 S and one gave 13:3. For the identi- fication of blast resistance genes in the parental lines, the marker K3959, linked to Pik-s gene and the variety IRBLKS-F5 carry this gene, which was from the monogenic line. The results showed that four genotypes; Sakha 105, Sakha 103, Sakha 106 and IRBLKS-F5 were carrying Pik-s gene, while was absent in the Sakha 101, Sakha 104, IRBL5-M, IRBL9-W, IRBLTACP1 and IRBL9-W(R) genotypes. As for Pi 5 gene, the results showed that it was present in Sakha 103 and Sakha 104 varieties and absent in the rest of the genotypes. In addition, Pita-Pita- 2 gene was found in the three Egyptian genotypes (Sakha 105, Sakha 101 and Sakha 104) plus IRBLTACP1 monogenetic. In F2 generation, six populations were used to study the inheritance of blast resistance and specific primers to confirm the ratio and identify the resistance genes. However, the ratios in molecular markers were the same of the ratio under field evaluation in the most population studies. These findings would facilitate in breeding programs for gene pyramiding and gene accumulation to produce durable resistance for blast using those genotypes.  相似文献   

20.
The granule-bound starch synthase (GBSS) proteins were widely considered as one of the most important enzymes in plant amylose synthesis. However, understanding of the molecular basis of the GBSS protein in lotus remains fragmented. In this work, a lotus Wx gene, encoding a GBSS (GenBank accession no. EU938541), was isolated and characterized. This gene comprises 13 exons and 12 introns and covers 4152?bp (GenBank accession no. FJ602702). The exons of Wx gene have similar lengths, while the introns vary greatly. Phylogenetic tree indicated that the lotus GBSS protein belongs to a GBSS I subgroup. The expression of the Wx gene varies in different organs of the lotus during its development process and is also expressed differently in different cultivars. The Wx gene is expressed at a higher level in the rhizomes of cultivar Meirenhong than in those of cultivar Elian 4. This study elucidates more molecular information about the Wx gene in lotus and provides a theoretical foundation for the genes regulation and the modification of starch quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号