首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ferrous ion (Fe2+) has been considered to be a cause of neuronal oxidative injury. Since body fluids contain protein and serum is an essential component of tissue culture medium, we have examined the role of serum protein on Fe2+-mediated oxidative stress using PC12 cells and rat cerebral cortices. Fe2+ or the combination of ascorbate and Fe2+ increased concentrations of thiobarbituric acid reactive substances (TBARS) in PC12 cells and cerebrocortical homogenates in medium (RPMI 1640), but did not increase TBARS when the medium was supplemented with 10% fetal bovine serum. Treatment with ascorbate/Fe2+ in serum-free medium reduced endogenous glutathione (GSH) concentration in PC12 cells. However, the medium supplemented with serum did not reduce GSH concentrations. PC12 cell death induced by ascorbate/Fe2+ was alleviated by increasing serum or bovine albumin concentrations in the medium. These observations indicated that oxidative injury caused by the transition metal ion could be lessened by adding fetal bovine serum to culture medium.  相似文献   

2.
High concentrations of the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) are toxic to the catecholaminergic cell line PC12, derived from rat phenochromocytoma. Prolonged exposure of wild-type PC12 cells to 500 microM MPP+ yields toxin-resistant colonies at a frequency of 2 X 10(-4). These spontaneously arising MPP(+)-resistant cells are morphologically quite distinct from wild-type PC12 cells, and are lacking in most of their characteristic catecholaminergic properties. In contrast, among PC12 cells infected with the murine retrovirus ZIPNEOSV(X), 20% are resistant to the toxin MPP+, a resistance frequency approximately 1,000 times higher than for uninfected cells. The morphology and catecholaminergic phenotype of the virus-infected MPP+ resistant cells are quite similar to those of wild-type PC12 cells. The results presented in this study suggest a unique mechanism of MPP+ resistance in the infected PC12 cells which may be conferred by the presence and/or expression of the retrovirus ZIPNEOSV(X).  相似文献   

3.
In the present study, we investigated the neuroprotection of simvastatin in PC12 cells following 1-methyl-4-phenylpyridinium ion (MPP+) neurotoxicity. Simvastatin inhibited the decrease of cell viability induced by MPP+ in PC12 cells. The damage of PC12 cells in morphology was alleviated and the apoptotic rates were decreased due to simvatatin pretreatment against MPP+ cytotoxicity. The reactive oxygen species production exposure to MPP+ was inhibited by simvatatin in PC12 cells. So simvastatin may be of therapeutic benefit for PD patients.  相似文献   

4.
The neurotoxin 1-methy-4-phenylpyridinium (MPP+) is used for its’ capacity to induce Parkinsonism through its inhibitory effects on mitochondrial complex I. This inhibition disrupts cellular energy formation and aerobic glycolysis. The objective of this study was to demonstrate that the toxic effect of mitochondrial aerobic pathway inhibition with MPP+ can be reduced by stimulating anaerobic glycolysis using glucose supplementation. In this study, C6 Glioma cell viability was examined in the presence of different concentrations of MPP alone and with the addition of glucose. The results obtained indicate that there was a significant increase (P < 0.001) in cell viability in cells treated with glucose and MPP+ verses cells treated with MPP+ alone. Fluorometric analysis using 100 uM Rhodamine 123 indicated mitochondrial membrane potential was not restored in MPP+ treated cells with glucose; however, normal cell viability was confirmed using 2 ug/ml Fluorescein diacetate. This dual fluorescence indicated mitochondrial damage from MPP+ while glucose augmented cell survival. Further confirmation of cell survival upon damage to the mitochondria was evident in TUNEL staining. Positive staining was prominent only in MPP+ treatment groups alone, while control and co-treated groups exhibited little to no TUNEL staining. ATP measurements of all MPP+ treated groups exhibited a significant (P < 0.001) decrease verses control. Groups co-treated with MPP+ and glucose revealed a significant increase (250 μM group: P < 0.001) in ATP. It was concluded from this study that glucose supplementation was able to sustain cellular viability and ATP production through anaerobic glycolysis despite the inhibitory effect of MPP+ on aerobic glycolysis.  相似文献   

5.
6.
7.
目的:探讨染料木素对铅诱导的细胞毒性的影响。方法:PC12细胞分为对照组、染铅组、染料木素组以及铅加染料木素组;MTT实验检测细胞活力的改变,流式细胞仪检测细胞凋亡水平的变化,荧光探针检测线粒体形态的改变,Western blot方法检测线粒体融合分裂相关蛋白表达水平的变化。结果:铅可诱导PC12细胞活力的下降以及细胞凋亡率的显著增高,染料木素可抑制铅的这些毒性效应。与此同时,铅可诱导线粒体形态的损伤性改变,线粒体融合减少,分裂增多;而加入染料木素之后,线粒体损伤程度显著下降,线粒体分裂减少,融合增多。此外,线粒体融合相关蛋白Mfn2的水平在铅暴露后显著下降,而线粒体分裂相关蛋白Drp1的水平在铅暴露后显著升高,染料木素干预后均有所恢复。结论:染料木素可抑制铅诱导的PC12细胞毒性,其作用可能与其对线粒体融合分裂过程的干预有关。  相似文献   

8.
目的:探讨染料木素对铅诱导的细胞毒性的影响。方法:PC12细胞分为对照组、染铅组、染料木素组以及铅加染料木素组;MTT实验检测细胞活力的改变,流式细胞仪检测细胞凋亡水平的变化,荧光探针检测线粒体形态的改变,Western blot方法检测线粒体融合分裂相关蛋白表达水平的变化。结果:铅可诱导PC12细胞活力的下降以及细胞凋亡率的显著增高,染料木素可抑制铅的这些毒性效应。与此同时,铅可诱导线粒体形态的损伤性改变,线粒体融合减少,分裂增多;而加入染料木素之后,线粒体损伤程度显著下降,线粒体分裂减少,融合增多。此外,线粒体融合相关蛋白Mfn2的水平在铅暴露后显著下降,而线粒体分裂相关蛋白Drp1的水平在铅暴露后显著升高,染料木素干预后均有所恢复。结论:染料木素可抑制铅诱导的PC12细胞毒性,其作用可能与其对线粒体融合分裂过程的干预有关。  相似文献   

9.
SU5416 was originally designed as a potent and selective inhibitor of vascular endothelial growth factor receptor-2 (VEGFR-2) for cancer therapy. In this study, we have found for the first time that SU5416 unexpectedly prevented 1-methyl-4-phenylpyridinium ion (MPP+)-induced neuronal apoptosis in cerebellar granule neurons, and decreased 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced loss of dopaminergic neurons and impairment of swimming behavior in zebrafish in a concentration-dependent manner. However, VEGFR-2 kinase inhibitor II, another specific VEGFR-2 inhibitor, failed to reverse neurotoxicity at the concentration exhibiting anti-angiogenic activity, strongly suggesting that the neuroprotective effect of SU5416 is independent from its anti-angiogenic action. SU5416 potently reversed MPP+-increased intracellular nitric oxide level with an efficacy similar to 7-nitroindazole, a specific neuronal nitric oxide synthase (nNOS) inhibitor. Western blotting analysis showed that SU5416 reduced the elevation of nNOS protein expression induced by MPP+. Furthermore, SU5416 directly inhibited the enzyme activity of rat cerebellum nNOS with an IC50 value of 22.7 µM. In addition, knock-down of nNOS expression using short hairpin RNA (shRNA) abolished the neuroprotective effects of SU5416 against MPP+-induced neuronal loss. Our results strongly demonstrate that SU5416 might exert its unexpected neuroprotective effects by concurrently reducing nNOS protein expression and directly inhibiting nNOS enzyme activity. In view of the capability of SU5416 to cross the blood-brain barrier and the safety for human use, our findings further indicate that SU5416 might be a novel drug candidate for neurodegenerative disorders, particularly those associated with NO-mediated neurotoxicity.  相似文献   

10.
11.
l-DOPA Cytotoxicity to PC12 Cells in Culture Is via Its Autoxidation   总被引:15,自引:1,他引:15  
Abstract: The mechanism of cytotoxicity of l -DOPA was studied in the rat pheochromocytoma PC12 cell line. The cytotoxicity of l -DOPA to PC12 cells was time and concentration dependent. Carbidopa, which inhibited the conversion of l -DOPA to dopamine, did not protect against l -DOPA cytotoxicity in PC12 cells. Furthermore, clorgyline, a selective inhibitor of monoamine oxidase type A, and pargyline, an inhibitor of both monoamine oxidase types A and B, both did not have an effect on l -DOPA toxicity. These findings suggest that cytotoxicity was not due to dopamine formed from l -DOPA. Catalase or superoxide dismutase each partially protected against l -DOPA toxicity in PC12 cells. In combination, the effects were synergistic and provided almost total protection against cytotoxicity. 6-Cyano-7-nitroquinoxaline-2,3-dione, an antagonist of non-NMDA receptors, did not protect against l -DOPA toxicity. These data suggest that toxicity of l -DOPA is most likely due to the action of free radicals formed as a result of its autoxidation. Furthermore, these findings suggest that patients on long-term l -DOPA therapy are potentially at risk from the toxic intermediates formed as a result of its autoxidation.  相似文献   

12.
Defects in mitochondrial function have been shown to participate in the induction of neuronal cell injury. The aim of the present study was to assess the influence of the mitochondrial membrane permeability transition inhibition against the toxicity of 1-methyl-4-phenylpyridinium (MPP+) and 6-hydroxydopamine (6-OHDA) in relation to the mitochondria-mediated cell death process and role of oxidative stress. Both MPP+ and 6-OHDA induced the nuclear damage, the changes in the mitochondrial membrane permeability, leading to the cytochrome c release and caspase-3 activation, the formation of reactive oxygen species and the depletion of GSH in differentiated PC12 cells. Cyclosporin A (CsA), trifluoperazine and aristolochic acid, inhibitors of mitochondrial permeability transition, significantly attenuated the MPP+-induced mitochondrial damage leading to caspase-3 activation, increased oxidative stress and cell death. In contrast to MPP+, the cytotoxicity of 6-OHDA was not reduced by the addition of the mitochondrial permeability transition inhibitors. The results show that the cytotoxicity of MPP+ may be mediated by the mitochondrial permeability transition formation, which is associated with formation of reactive oxygen species and the depletion of GSH. In contrast, the 6-OHDA-induced cell injury appears to be mediated by increased oxidative stress without intervention of the mitochondrial membrane permeability transition.  相似文献   

13.
Extracellular concentrations of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid were measured by microdialysis in rat striatum 1 month after a unilateral infusion via a dialysis probe of a high concentration (10 mM) of 1-methyl-4-phenylpyridinium ion (MPP+) into the substantia nigra. The basal extracellular DA concentration at the lesioned side was about 20% of the concentration at the nonlesioned side. However, basal DOPAC dialysate levels from the lesioned striatum represented only 2.4% of those from the contralateral side. Intrastriatal infusion with nomifensine increased the dialysate content of DA about twofold and eightfold at the lesioned and nonlesioned sides, respectively. Co-infusion of nomifensine with (-)-sulpiride caused an additional pronounced rise of the DA output on top of the nomifensine-induced increase at the nonlesioned side, whereas no effect was observed at the lesioned side. Finally, MPP+ (10 mM) was infused for 45 min into both striata. The increase in the dialysate content of DA in response to MPP+ (considered as an index of the total striatal DA content) from the lesioned side was only 0.6% of the MPP(+)-induced DA increase from the nonlesioned side. A strong compensatory response to increased extracellular dopamine was observed in the ipsilateral striatum. This effect was achieved by a severe suppression of reuptake mechanisms, as well as of the autoreceptor feedback response. It is concluded that infusion of MPP+ into the substantia nigra can be used as a chronic biochemical model for clinically manifest parkinsonism.  相似文献   

14.
The molecular mechanism of 1-methyl-4-phenylpyridinium (MPP+), a Parkinsonism-inducing neurotoxin, has been studied in PC12 cells. The cells treated with MPP+ (100 μM) induced a rapid increase in phosphorylation of tyrosine residues of several proteins, including synaptophysin, a major 38 kDa synaptic vesicle protein implicated in exocytosis. An accelerated release of dopamine by MPP+ correlated with phosphorylation of synaptophysin. Exposing the cells to MPP+ triggered reactive oxygen species (ROS) generation within 60 min of treatment and the said effect was blocked by mazindol, a dopamine uptake blocker. In addition, pretreatment with 50–100 μM of selegiline, a selective MAO-B inhibitor, significantly suppressed MPP+-mediated ROS generation. These effects of MPP+ result in the generation of ROS, which may be involved in neuronal degeneration seen in Parkinson’s disease.  相似文献   

15.
Sphingosine kinases (Sphk1/2) are crucial enzymes in regulation of the biostat between sphingosine-1-phosphate (S1P) and ceramide and play an important role in the pathogenesis/pathomechanism of Alzheimer’s disease (AD). These enzymes synthesise S1P, which regulates neurotransmission, synaptic function and neuron cell proliferation, by activating five G protein-coupled receptors (S1P1-5). However, S1P synthesised by Sphk2 could be involved in amyloid β (Aβ) release by stimulation of Aβ precursor protein degradation. The significance of this bioactive sphingolipid in the pathogenesis of Parkinson’s disease (PD) is unknown. The aim of our study was to investigate the expression level of Sphk1 and its role in human dopaminergic neuronal cell (SH-SY5Y) viability under oxidative stress, evoked by 1-methyl-4-phenylpyridinium (MPP+). Moreover, the mechanism of S1P action on the death signalling pathway in these experimental conditions was evaluated. Our study indicated marked downregulation of Sphk1 expression in this cellular PD model. Inhibition of Sphk1 decreased SH-SY5Y cell viability and concomitantly enhanced the reactive oxygen species (ROS) level. It was found that exogenous S1P (1 μM) exerted the neuroprotective effect by activation of Sphk1 and S1P1 receptor gene expression. Moreover, S1P downregulated Bax and harakiri, death protein 5 (Hrk/DP5) expression and enhanced cell viability in MPP+-treated cells. The neuroprotective mechanism of S1P is mainly dependent on S1P1 receptor signalling, which was indicated by using specific agonists and antagonists of S1P1 receptor. The results show that S1P and S1P1 receptor agonists protected a significant population of neuronal cells against death.  相似文献   

16.
The toxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-methyl-4-(2'-ethylphenyl)-1,2,3,6-tetrahydropyridine (2'Et-MPTP), and their corresponding pyridinium species was studied in the rat pheochromocytoma PC12 cell line. MPTP and its analogues are known to be metabolized by monoamine oxidase (MAO) to dihydropyridinium intermediates which are further transformed, either enzymatically or spontaneously, into pyridinium species. MAO activity in PC12 cells is almost exclusively of the A form, and 2'Et-MPTP is a good substrate for both MAO-A and MAO-B. In contrast, MPTP is a poor substrate for MAO-A, but a good substrate for MAO-B. 2'Et-MPTP caused considerably more cell death than MPTP in the PC12 cells. However, 1-methyl-4-(2'-ethylphenyl)pyridinium and 1-methyl-4-phenylpyridinium, the corresponding pyridinium species formed from 2'Et-MPTP and MPTP, respectively, were equipotent as toxins. The toxic effects of the tetrahydropyridines and their corresponding pyridiniums were both concentration- and time-dependent. Measurements of the levels of the pyridinium species formed and the remaining tetrahydropyridine in the media indicated that 2'Et-MPTP was converted about five to seven times more readily into its toxic pyridinium species than was MPTP. There was, moreover, an excellent correlation between amount of pyridinium formed and cell death. There was also a parallel between the capacity of clorgyline and pargyline, irreversible MAO inhibitors, to decrease the formation of the pyridinium species and their capacity to protect against the toxic actions of the tetrahydropyridines. These data are consistent with the concept that the MAO-A-dependent formation of the pyridinium species from the tetrahydropyridine is a prerequisite for toxicity in PC12 cells.  相似文献   

17.
l-Glutamate plays a crucial role in neuronal cell death, which is known to be associated with various neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. In this study, we investigated the protective effects of biochanin A, a phytoestrogen compound found mainly in Trifolium pratense, against l-glutamate-induced cytotoxicity in a PC12 cell line. Exposure of the cells to 10 mM l-glutamate was found to significantly increase cell viability loss and apoptosis, whereas pretreatment with various concentrations of biochanin A attenuated the cytotoxic effects of l-glutamate. Specifically, the pretreatment led to not only decreases in the release of lactate dehydrogenase, the number of apoptotic cells, and the activity of caspase-3 but also an increase in the total glutathione level in the l-glutamate-treated PC12 cells. These results indicate that biochanin A may be able to exert neuroprotective effects against l-glutamate-induced cytotoxicity. Furthermore, our findings also imply that biochanin A may act as an antiapoptotic agent in order to perform its protective function.  相似文献   

18.
The effects of the neurotoxin N-methyl-4-phenylpyridinium ion (MPP+) on the enzymes involved in synthesis and catabolism of catecholamines were examined using a clonal rat pheochromocytoma cell line, PC12h, as a model of dopaminergic neurons. MPP+ added in the culture medium was found to be accumulated in PC12h cells after 30-min incubation. Monoamine oxidase (MAO) activity in PC12h cells was inhibited by MPP+ in a dose-dependent way from 10 nM to 10 microM, but concentrations of MPP+ higher than 100 microM were found to increase the MAO activity. At the lower concentrations MPP+ inhibited MAO noncompetitively with respect to the substrate, kynuramine, and at the higher concentrations it increased both the Km and the Vmax values of MAO toward the substrate. On the other hand, tyrosine hydroxylase activity and the dopamine concentrations in PC12 cells were not changed by incubation with MPP+ for 30 min, 60 min, or 24 h.  相似文献   

19.
Parkinson''s disease (PD) is the most common neurodegenerative movement disorder, characterized by loss of dopominergic (DA) neurons in substantia nigra pars compacta (SNpc), and can be experimentally mimicked by the neurotoxin MPP+ in vitro models. In this study, we investigated the potential protective effect of SKF-96365, a non-specific inhibitor of SOCE (store-operated calcium entry), on MPP+ induced cytotoxicity in PC12 cells. We found that pretreatment with SKF-96365 (10 µM and 50 µM) 30 min before injury significantly increased cell viability, decreased LDH release, prevented nuclear damage, and inhibited apoptotic cell death in MPP+ stressed PC12 cells. The results of calcium image using the ratiometric calcium indicator Fura-2-AM also showed that SKF-96365 reduced the intracellular calcium overload induced by MPP+ in PC12 cells. In addition, SKF-96365 decreased the expression of Homer1, a more recently discovered postsynaptic scaffolding protein with calcium modulating function, following MPP+ administration in PC12 cells, while had no statistically significant effects on endoplasmic reticulum (ER) calcium concentration. Furthermore, overexpression of Homer1 by using recombinant lentivirus partly reversed protective effects of SKF-96365 against MPP+ injury. The ER Ca2+ release was further amplified and ER calcium recovery was delayed by Homer1 upregulation in PC12 cells following MPP+ insult. Taken together, these data suggest that SKF-96365 protects PC12 cells against MPP+ induced cytotoxicity, and this protection may be at least in part on the inhibition of intracellular calcium overload and suppression of Homer1-mediated ER Ca2+ release.  相似文献   

20.
Peroxiredoxin 2 (Prdx2) is a ubiquitous antioxidant enzyme in mammalian brain. Although a protective role of Prdx2 has been established in cerebral ischemia and several neurodegenerative diseases, its contribution against iron-induced neurocytotoxicity still remains to be determined. Accordingly, in this study, we aimed to investigate the effects of Prdx2 on iron-induced cytotoxicity using an in vitro model in which PC12 cells are exposed to ferrous sulfate (FS). The FS treatment increased Prdx2 expression, and promoted lactate dehydrogenase (LDH) release and cell apoptosis in PC12 cells, accompanied by the increase in the Bax/Bcl2 ratio, cytochrome c release, and caspase-3 cleavage. FS exposure also increased the malondialdehyde content (lipid peroxidation), 3′-nitrotyrosine expression (protein nitration), γ-H2A.X formation (DNA oxidation), and promoted nuclear factor kappa B nuclear translocation, cyclooxygenase-2 expression, and release of tumor necrosis factor-α and interleukin-1β. Lentivirus-mediated Prdx2 knockdown intensified the FS-induced LDH release and cell apoptosis by aggravating the oxidative and inflammatory damage. In conclusion, our findings demonstrated that Prdx2 played a vital role in the protection against iron-induced cytotoxicity in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号