首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria isolated from the yeastSaccharomyces cerevisiae were negatively stained with ammonium molybdate. Extensive headpiece-stalk projections were observed lining the disrupted mitochondrial membranes. These observations represent the first clear demonstration of headpiecestalk particles on yeast mitochondrial membranes. Phosphotungstic acid was somewhat less satisfactory than ammonium molybdate in the visualization of the headpiece-stalk particles. Mitochondria isolated from glucose-repressed cells and oligomycin-resistant mutant cells were also examined by negative staining and found to show numerous headpiecestalk elements. Gross differences in the morphology of mitochondria from normal, glucose-repressed and oligomycin-resistant cells, as examined by negative staining, were not apparent in the present studies. The nature and expression of the oligomycin mutation is discussed in terms of possible changes in membrane protein and phospholipid.  相似文献   

2.
Biochemical analyses of mitochondrial marker substances, especially cardiolipin and oligomycin-sensitive ATPase [EC 3.6.1.3], as well as electron microscopic observations were carried out to eludicate the process of mitochondrial development in annaerobic yeast cells. Cardiolipin was found to be localized in the mitochondria in anaerobic cells. Its cellular content was a little higher in the stationary phase than in the exponential phase in glucose-grown cells and increased further in galactose-grown cells. The lipid content of the mitochondrial preparation obtained from glucose-grown stationary cells was nearly as high as that from galactose-grown cells. It was also comparable to that of aerobic cells in the stationary phase, where mitochondria are fully developed. Both cellular and mitochondrial levels of oligomycin-sensitive ATPase activity were also found to rise markedly in galactose-grown anaerobic cells, although not in stationary phase cells grown anaerobically on glucose. These high levels of the mitochondrial markers indicate a developmental change in mitochondrial structure even in anaerobically grown cells, which lack mitochondrial cytochromes. In the process of aerobic adaptation, respiratory system formation was observed to occur much faster in galactose-grown cells than in glucose-grown cells, and not to be inhibited by chloramphenicol and high concentrations of glucose structure in anaerobic cells. The developmental change was also corroborated by electron microscopic observations, which revealed the occurrence of two types of mitochondria in anaerobic cells. One was found in glucose-repressed cells and was characterized by the presence of numerous electron-dense granules in the matrix. In contrast, the other type, found in glucose-derepressed cells, had an electron-lucent matrix. No crista membrane was seen in either type of mitochondria in anaerobic cells, although the infoldings of the inner membrane, which partition the matrix into two parts and therefore are called "septum membranes," appeared frequently in the stationary phase cells. On the basis of these results, the process of mitochondrial development in yeast cells is discussed.  相似文献   

3.
Escherichia coli has several elaborate sensing mechanisms for response to the availability of oxygen and the presence of other electron acceptors. The adaptive responses are coordinated by a group of global regulators, which include the one-component Fnr protein, and the two-component Arc system. To quantitate the contribution of Arc and Fnr-dependent regulation in catabolism, arcA and fnr mutant strains were constructed using the recently developed lambda derived recombination system. The metabolic activity of wildtype E. coli, an arcA mutant, an fnr mutant, and a double arcA-fnr mutant, via the fermentative pathways in glucose-limited cultures and different oxygen concentrations was studied in chemostat cultures at steady state. It was found that the most significant role of ArcA is under microaerobic conditions, while that of FNR is under more strictly anaerobic conditions. The FNR protein is normally inactive during microaerobic conditions. However, our results indicate that in the arcA mutant strain the cells behave as if a higher level of the FNR regulator is in the activated form compared to the wildtype strain during the transition from aerobic to microanaerobic growth. The results show a significant increase in the flux through pyruvate formate lyase (PFL) in the presence of oxygen. The activity of FNR-regulated pathways in the arcA mutant strain is correlated with the high redox potential obtained under microaerobic growth.  相似文献   

4.
The morphology of Mucor racemosus in cultures continuously sparged with nitrogen gas was investigated. When appropriate precautions were taken to prevent oxygen from entering the cultures, the morphology of the cells was uniformly yeastlike irrespective of the N2 flow rate. When small amounts of oxygen entered the cultures the resulting microaerobic conditions evoked mycelial development. Polypeptides synthesized by aerobic mycelia, microaerobic mycelia, anaerobic yeasts, and yeasts grown in a CO2 atmosphere were compared by two-dimensional gel electrophoresis. The results indicated that a large number of differences in polypeptide expression exist when microaerobic mycelia or anaerobic yeasts are compared with aerobic mycelia and that these alterations correlate with a change from an oxidative to a fermentative metabolic mode. Relatively few differences in polypeptide composition exist when microaerobic cells are compared with anaerobic cells, but these changes correlate with a change from the mycelial to the yeast morphology. We hypothesize that oxygen regulates the expression of polypeptides involved in both the metabolic mode and in morphogenesis.  相似文献   

5.
Summary The possibility that decreased mitochondrial function in anaerobic cultures of Saccharomyces cerevisiae is due to catabolite repression rather than anaerobiosis has been examined using a glucose-limited chemostat. Respiration, cytochromes, ubiquinone and a number of soluble and bound mitochondrial enzymes were measured in cells and cell-free homogenates. Derepression by growth in the chemostat under anaerobic conditions resulted in only small increases in the activity of bound enzymes, and in the amount of ubiquinone and respiration, compared with cells grown batch-wise (repressed). The extent of these increases was much smaller than that seen when cells were grown under aerobic conditions whether repressed or derepressed.  相似文献   

6.
7.
Mucor genevensis was grown in both glucose-limited and glucose-excess continuous cultures over a range of dissolved oxygen concentrations (<0.1 to 25 muM) to determine the effects of glucose and the influence of metabolic mode (fermentative versus oxidative) on dimorphic transformations in this organism. The extent of differentiation between yeast and mycelial phases has been correlated with physiological and biochemical parameters of the cultures. Under glucose limitation, oxidative metabolism increased as the dissolved oxygen concentration increased, and this paralleled the increase in the proportion of the mycelial phase in the cultures. Filamentous growth and oxidative metabolism were both inhibited by glucose even though mitochondrial development was only slightly repressed. However, the presence of chloramphenicol in glucose-limited aerobic cultures inhibited mitochondrial respiratory development but did not induce yeast-like growth, indicating that oxidative metabolism is not essential for mycelial development. Once mycelial cultures had been established under aerobic, glucose-limited conditions, subsequent reversal to anaerobic conditions or treatment with chloramphenicol caused only a limited reversal (<35%) to the yeast-like form. Glucose, however, induced a complete reversion to yeast-like form. It is concluded that glucose is the most important single culture factor determining the morphological status of M. genevensis; mitochondrial development and the functional oxidative capacities of the cell appear to be less important factors in the differentiation process.  相似文献   

8.
Rat liver mitochondria were incubated in vitro with radioactive leucine, and submitochondrial particles prepared by several methods. Analysis of the labeled mitochondrial membrane fractions by sodium dodecylsulfate gel electrophoresis revealed three labeled bands of molecular weights corresponding to 40,000; 27,000; and 20,000 daltons. Electrophoresis for longer times at higher concentrations of acrylamide revealed eight labeled bands, ranging in molecular weights from 48,000 to 12,000.Mitochondria were incubated for 5 min with [3H]leucine followed by a chase of unlabeled leucine. Gel electrophoresis of the membranes obtained after labeling for 5 min indicated significant synthesis of polypeptides in the 40,000 Mr, range and very little labeling of low molecular-weight polypeptides. After addition of the chase, increased synthesis of the high molecular-weight polypeptides was observed; however, no significant increase or decrease of radioactivity in the bands of low molecular-weight was observed, suggesting that rat liver mitochondria have the ability to synthesize complete proteins in the Mr 27,000–40,000 range.Approximately 16% of the total leucine incorporated into protein by isolated rat liver mitochondria in vitro could be extracted by chloroform: methanol. Gel electrophoresis of the chloroform: methanol extract revealed several bands containing radioactivity with the majority of counts in a band of 40,000 molecular weight. Gel electrophoresis of the chloroform: methanol extract of lyophilized submitochondrial particles indicated label in two broad bands in the low molecular-weight region of 14,000-10,000 with insignificant counts in the higher molecular-weight regions of the gel.Yeast cells were pulse labeled in vivo with [3H]leucine in the presence of cycloheximide and the submitochondrial particles extracted with chloroform:methanol. The extract separated after gel electrophoresis into four labeled bands ranging in molecular weight from 52,000 to 10,000. Preincubation of the yeast cells with chloramphenicol prior to the pulse labeling caused a 6-fold stimulation of labeling into the band of lowest molecular weight of the chloroform: methanol extract. These results suggest that the accumulation of mitochondrial proteins synthesized in the cytoplasm, when chloramphenicol is present in the medium, may stimulate the synthesis of certain specific mitochondrial proteins which are soluble in chloroform: methanol.  相似文献   

9.
Fatty acid-acylated proteins in secretory mutants of Saccharomyces cerevisiae.   总被引:12,自引:0,他引:12  
Yeast secretory (sec) mutants that are blocked in the transport of secretory proteins and accumulate membrane organelles were used to study the biosynthesis of fatty acid-acylated proteins. Four proteins were labeled with [3H]palmitate in sec mutants accumulating endoplasmic reticulum membranes. Three of these (molecular weights approximately equal to 20,000, 50,000, and 120,000) were N-linked glycoproteins, based on their ability to be labeled with [3H]mannose and their sensitivity to endoglycosidase H. The fourth protein (molecular weight approximately equal to 30,000) also was labeled with [3H]mannose but was insensitive to endoglycosidase H; it appeared to contain O-linked sugars. In sec mutants accumulating Golgi membranes or post-Golgi vesicles, a 35-kilodalton protein was labeled with [3H]palmitate. Analysis of Staphylococcus aureus protease V8 digests and pulse-chase experiments indicated that the 30-kilodalton protein was a precursor of 35 kilodaltons. None of these proteins was labeled with [3H]palmitate in a sec mutant that blocked the penetration of nascent polypeptides into endoplasmic reticulum; thus, acylation occurred in endoplasmic reticulum. All four proteins could be recovered from fractions enriched for yeast membranes. Fatty acids were not released from proteins by boiling in sodium dodecyl sulfate or extraction with organic solvents but were recovered as methyl esters after proteins were treated with KOH-methanol, a reaction characteristic of an acyl ester linkage.  相似文献   

10.
The ability of mammalian cells in tissue culture to protect against oxygen toxicity for Treponema pallidum was examined. Addition of catalase to the incubation medium enhanced T. pallidum survival when co-incubation was carried out under aerobic conditions. When co-incubation was carried out under 3% oxygen, catalase had no enhancing effect on survival despite the fact it was still highly stimulatory when T. pallidum was incubated under 3% oxygen in the same medium with no tissue culture cells present. Inactivation of the catalase present endogenously in the mammalian cells by the addition of the catalase inhibitor 3-amino-1,2,4-triazole largely eliminated the enhancing effect of mammalian cells on the survival of T. pallidum under 3% oxygen. Increasing the oxygen consumption of the host mammalian cells with 0.1 mM 2,4-dinitrophenol enhanced T. pallidum under both aerobic and microaerobic conditions; a much greater effect was seen under aerobic conditions. The results indicated that mammalian cells offer significant protection against toxic oxygen reduction products for T. pallidum in vitro under microaerobic conditions.  相似文献   

11.
The microenvironments of organs with blood flow affect the metabolic profiles of cancer cells, which are influenced by mitochondrial functions. However, histopathological analyses of these aspects have been hampered by technical artifacts of conventional fixation and dehydration, including ischemia/anoxia. The purpose of this study was to combine the in vivo cryotechnique (IVCT) with fluorescent protein expression, and examine fluorescently labeled mitochondria in grafted melanoma tumors. The intensity of fluorescent proteins was maintained well in cultured B16-BL6 cells after cryotechniques followed by freeze-substitution (FS). In the subcutaneous tumors of mitochondria-targeted DsRed2 (mitoDsRed)-expressing cells, a higher number of cancer cells were found surrounding the widely opened blood vessels that contained numerous erythrocytes. Such blood vessels were immunostained positively for immunoglobulin M and ensheathed by basement membranes. MitoDsRed fluorescence was detected in scattering melanoma cells using the IVCT-FS method, and the total mitoDsRed volume in individual cancer cells was significantly decreased with the expression of markers of hypoxia. MitoDsRed was frequently distributed throughout the cytoplasm and in processes extending along basement membranes. IVCT combined with fluorescent protein expression is a useful tool to examine the behavior of fluorescently labeled cells and organelles. We propose that the mitochondrial volume is dynamically regulated in the hypoxic microenvironment and that mitochondrial distribution is modulated by cancer cell interactions with basement membranes.  相似文献   

12.
1. In non-fermentable substrates growth of mutant tsm-8 cells of Saccharomyces cerevisiae is restricted to about one generation after shift from 23 to 35 degrees C. Non-permissive conditions (35 degrees C, glycerol) cause a gradual decrease in respiration to about 20% of the activity at permissive temperature 23 degrees C). 2. Anaerobically grown and glucose-repressed mutant cells exhibit a decreased adaptation rate of mitochondrial functions to aerobic growth and non-fermentative growth, even at 23 degrees C, as revealed by determination of respiratory rates and mitochondrial protein synthesis. 3. At 35 degrees C, rho+ cells of mutant tsm-8 are converted to p- cells within 6-8 generations of growth, in all fermentable substrates tested. Drugs or antibiotics as nalidixic acid, acriflavin, chloramphenicol and erythromycin, bongkrecic acid, antimycin and FCCP, as well as anaerobiosis, have little or no influence on this kinetics. A heat shock does not yield rho- petites to a significant extent. 4. Reversion of tsm-8 cells to wild type function, which occurs spontaneously with a frequency of 10(-8), is found to be due to a mitochondrial mutational event.  相似文献   

13.
Hexamita sp. is an amitochondriate free-living diplomonad which inhabits O(2)-limited environments, such as the deep waters and sediments of lakes and marine basins. C nuclear magnetic resonance spectroscopy reveals ethanol, lactate, acetate, and alanine as products of glucose fermentation under microaerobic conditions (23 to 34 muM O(2)). Propionic acid and butyric acid were also detected and are believed to be the result of fermentation of alternative substrates. Production of organic acids was greatest under microaerobic conditions (15 muM O(2)) and decreased under anaerobic (<0.25 muM O(2)) and aerobic (200 to 250 muM O(2)) conditions. Microaerobic incubation resulted in the production of high levels of oxidized end products (70% acetate) compared to that produced under anoxic conditions (20% acetate). In addition, data suggest that Hexamita cells contain the arginine dihydrolase pathway, generating energy from the catabolism of arginine to citrulline, ornithine, NH(4), and CO(2). The rate of arginine catabolism was higher under anoxic conditions than under microaerobic conditions. Hexamita cells were able to grow in the absence of a carbohydrate source, albeit with a lower growth rate and yield.  相似文献   

14.
Effects of growth conditions on mitochondrial morphology were studied in livingSaccharomyces cerevisiae cells by vital staining with the fluorescent dye dimethyl-aminostyryl-methylpyridinium iodine (DASPMI), fluorescence microscopy, and confocal-scanning laser microscopy. Cells from respiratory, ethanol-grown batch cultures contained a large number of small mitochondria. Conversely, cells from glucose-grown batch cultures, in which metabolism was respiro-fermentative, contained small numbers of large, branched mitochondria. These changes did not significantly affect the fraction of the cellular volume occupied by the mitochondria. Similar differences in mitochondrial morphology were observed in glucose-limited chemostat cultures. In aerobic chemostat cultures, glucose metabolism was strictly respiratory and cells contained a large number of small mitochondria. Anaerobic, fermentative chemostat cultivation resulted in the large, branched mitochondrial structures also seen in glucose-grown batch cultures. Upon aeration of a previously anaerobic chemostat culture, the maximum respiratory capacity increased from 10 to 70 µmole.min–1.g weight–1 within 10 h. This transition resulted in drastic changes of mitochondrial number, morphology and, consequently, mitochondrial surface area. These changes continued for several hours after the respiratory capacity had reached its maximum. Cyanide-insensitive oxygen consumption contributed ca. 50% of the total respiratory capacity in anaerobic cultures, but was virtually absent in aerobic cultures. The response of aerobic cultures to oxygen deprivation was qualitatively the reverse of the response of anaerobic cultures to aeration. The results indicate that mitochondrial morphology inS. cerevisiae is closely linked to the metabolic activity of this yeast: conditions that result in repression of respiratory enzymes generally lead to the mitochondrial morphology observed in anaerobically grown, fermenting cells.  相似文献   

15.
16.
The degradation of proteins in Escherichia coli was investigated in cells grown under steady-state conditions in a glucose-limited chemostat. During the first 24 h, approximately 25% of pulse-labeled proteins were degraded and after 72 h up to 58% of the proteins were broken down. To examine the stability of subcellular components steady-state cultures were labeled with an initial pulse of [14C]leucine, 24 h were allowed for turnover of these proteins, and the cells were then labeled with a short pulse of [3H]leucine. By this double-label protocol, the labile proteins were preferentially labeled with [H]leucine and had high 3H/14C ratios, while the more stable proteins had lower 3//14C ratios. The 3/-labeled proteins were degraded approximately five times as rapidly as the 14C-labeled proteins in exponentially growing cells. The relative stability of subcellular fractions was determined by comparing their 3H/14C ratios to the ratio of the cells at harvest. The soluble fraction contained the most labile proteins, while the ribosomal and membrane fractions were at least as stable as the average cell protein.  相似文献   

17.
The products of mitochondria-bound cytoplasmic polysomes in yeast   总被引:15,自引:0,他引:15  
Experiments were undertaken to examine the fate and composition of polypeptides synthesized on cytoplasmic polysomes associated with the outer mitochondrial membrane of Saccharomyces cerevisiae. Mitochondria with their associated cytoplasmic polysomes were isolated from growing yeast spheroplasts and placed in a polypeptide chain completion system together with [35S]methionine. Of the total products synthesized in the readout system, 80 to 85% remain associated with the mitochondria after sucrose gradient centrifugation. Most of the labeled products are resistant to papain digestion unless the membranes are disrupted by treatment with detergent or shaking with glass beads. When free cytoplasmic polysomes were translated in the presence of [35S]methionine and incubated with mitochondria, only about 20% of the labeled polypeptides remain associated with the mitochondria; furthermore, most of these products are equally sensitive to papain digestion in the presence or absence of detergent. These results support the view that the cytoplasmic polysomes associated with the outer mitochondrial membrane of yeast facilitate the segregation of newly synthesized proteins into the organelle. The proportion of the alpha, beta, and gamma subunits of the F1-ATPase was determined among the products synthesized by mitochondria-bound and free cytoplasmic polysomes. By double antibody precipitation and immunoreplicate electrophoresis, we find that the proportion of the subunits of F1-ATPase is much greater among the products of the mitochondria-bound polysomes than those synthesized on free polysomes.  相似文献   

18.
Advances in the understanding of the pathogenesis of enterohaemorrhagic Escherichia coli (EHEC) have greatly benefited from the use of human epithelial cell lines under aerobic conditions. However, in the target site of EHEC infection, the human intestine, conditions are microaerobic. In our study we used polarized human colon carcinoma cells in a vertical diffusion chamber system to investigate the influence of reduced apical oxygen levels on EHEC colonization. While apical microaerobiosis did not affect cell integrity and barrier function, numbers of adherent bacteria were significantly increased under low compared with high apical oxygen concentrations. In addition, expression and translocation of EHEC type III secreted (T3S) effector proteins was considerably enhanced under microaerobic conditions and dependent on the presence of host cells. Increased colonization was mainly mediated via EspA as adherence levels of an isogenic deletion mutant were not influenced by low oxygen levels. Other potential adherence factors (E. coli common pilus and flagella) were only minimally expressed under high and low oxygen levels. Addition of nitrate and trimethylamine N‐oxide as terminal electron acceptors for anaerobic respiration failed to further increase bacterial colonization or T3S under microaerobiosis. This study indicates that EHEC T3S and colonization are enhanced by the microaerobic environment in the gut and therefore might be underestimated in conventional aerobic cell culture systems.  相似文献   

19.
20.
Candida parapsilosis grows oxidatively under aerobic conditions and fermentatively in micro-aerobic (0.2 M oxygen) continuous culture. The amount of unsaturated fatty acids and sterol in cells and mitochondria, and the aerobic cytochromes are decreased in micro-aerobic cultures. In aerobic cells mitochondrial protein synthesis accounts for the formation of more than one-third of the proteins of the organelles; in micro-aerobic cultures, this declines to 5%. At the same time, minor but significant differences in the nature of the protein products formed by the mitochondrial system are evident in micro-aerobic and aerobic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号