首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cadherins are transmembrane glycoproteins that mediate Ca2+-dependent homophilic cell–cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin–mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin–dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin–dependent contact formation, and myoblast fusion. We conclude that M-cadherin–dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.  相似文献   

2.
Myoblast fusion is an intricate process that is initiated by cell recognition and adhesion, and culminates in cell membrane breakdown and formation of multinucleate syncytia. In the Drosophila embryo, this process occurs asymmetrically between founder cells that pattern the musculature and fusion-competent myoblasts (FCMs) that account for the bulk of the myoblasts. The present studies clarify and amplify current models of myoblast fusion in several important ways. We demonstrate that the non-conventional guanine nucleotide exchange factor (GEF) Mbc plays a fundamental role in the FCMs, where it functions to activate Rac1, but is not required in the founder cells for fusion. Mbc, active Rac1 and F-actin foci are highly enriched in the FCMs, where they localize to the Sns:Kirre junction. Furthermore, Mbc is crucial for the integrity of the F-actin foci and the FCM cytoskeleton, presumably via its activation of Rac1 in these cells. Finally, the local asymmetric distribution of these proteins at adhesion sites is reminiscent of invasive podosomes and, consistent with this model, they are enriched at sites of membrane deformation, where the FCM protrudes into the founder cell/myotube. These data are consistent with models promoting actin polymerization as the driving force for myoblast fusion.  相似文献   

3.
The p21-activated kinases (PAKs) play essential roles in diverse cellular processes and are required for cell proliferation, apoptosis, polarity establishment, migration, and cell shape changes. Here, we have identified a novel function for the group I PAKs in cell–cell fusion. We show that the two Drosophila group I PAKs, DPak3 and DPak1, have partially redundant functions in myoblast fusion in vivo, with DPak3 playing a major role. DPak3 is enriched at the site of fusion colocalizing with the F-actin focus within a podosome-like structure (PLS), and promotes actin filament assembly during PLS invasion. Although the small GTPase Rac is involved in DPak3 activation and recruitment to the PLS, the kinase activity of DPak3 is required for effective PLS invasion. We propose a model whereby group I PAKs act downstream of Rac to organize the actin filaments within the PLS into a dense focus, which in turn promotes PLS invasion and fusion pore initiation during myoblast fusion.  相似文献   

4.
Loss of hyaluronate-dependent coat during myoblast fusion   总被引:2,自引:0,他引:2  
Cultured myoblasts were found to exhibit extensive, Streptomyces hyaluronidase-sensitive pericellular coats as revealed by exclusion of particles (fixed red blood cells). These coats are not discernible subsequent to fusion of the myoblasts to form myotubes. The myoblasts contained 2.5 times more hyaluronate attached to their cell surface than myotubes when the data was expressed per unit of protein, but no change in hyaluronate was evident on a per DNA basis. Hyaluronidase activities in the cultures were equivalent when expressed per unit of protein. We conclude that, although the myotubes accumulate larger amounts of protein than myoblasts, there is no compensatory increase in hyaluronate.  相似文献   

5.
6.
Syntrophins are modular adapter proteins that link ion channels and signaling proteins to dystrophin and its homologues. A yeast two-hybrid screen of a human brain cDNA library using the PDZ domain of gamma 1- syntrophin, a recently identified brain-specific isoform, yielded overlapping clones encoding the C terminus of diacylglycerol kinase-zeta (DGK-zeta), an enzyme that converts diacylglycerol into phosphatidic acid. In biochemical assays, the C terminus of DGK-zeta, which contains a consensus PDZ-binding motif, was found to be necessary and sufficient for association with gamma 1-syntrophin. When coexpressed in HeLa cells, DGK-zeta and gamma 1-syntrophin formed a stable complex that partitioned between the cytoplasm and nucleus. DGK-zeta translocates from the cytosol to the nucleus, a process negatively regulated by protein kinase C phosphorylation. We found that DGK-zeta recruits gamma 1-syntrophin into the nucleus and that the PDZ-binding motif is required. Disrupting the interaction altered the intracellular localization of both proteins; DGK-zeta accumulated in the nucleus, whereas gamma 1-syntrophin remained in the cytoplasm. The level of endogenous syntrophins in the nucleus of HeLa cells also reflected the amount of nuclear DGK-zeta. In the brain, DGK-zeta and gamma 1-syntrophin were colocalized in cell bodies and dendrites of cerebellar Purkinjie neurons and other neuronal cell types, suggesting that their interaction is physiologically relevant. Moreover, coimmunoprecipitation and pull-down experiments from brain extracts and cells suggest that DGK-zeta, gamma 1-syntrophin, and dystrophin form a ternary complex. Collectively, our results suggest that gamma 1-syntrophin participates in regulating the subcellular localization of DGK-zeta to ensure correct termination of diacylglycerol signaling.  相似文献   

7.
High resolution proton NMR was used to study the cell surface molecular events which take place during in vitro myoblast differentiation and fusion. The CH3 and (CH2)n spectral signals were followed throughout in vitro myogenic development. The results show that although both the T1 and T2 relaxation times of the CH3 and (CH2)n groups are sensitive to the fusion process, T1 is the most sensitive. Both T1 of CH3 and (CH2)n increased before fusion indicating a higher degree of molecular motion and then returned to their original values. These results demonstrate how mobile lipid domains observed with proton NMR can be used to study the changes taking place during myoblast differentiation, particularly myoblast membrane fusion.  相似文献   

8.
Prostaglandins and myoblast fusion   总被引:4,自引:0,他引:4  
Physiological concentrations of prostaglandin E1 (10?7 and 10?10M) provoke a discrete burst of cell fusion in cultures of primary chick myoblasts, 5 hr after their addition but well before the start of fusion, under control conditions. Two inhibitors of prostaglandin synthesis, aspirin (2-acetoxybenzoic acid) and indomethacin (1-[p-chlorobenzoyl]-5-methoxy-2-methylindole-3-acetic acid), have been used to examine the possibility of prostaglandin production by the undifferentiated myoblasts. Both inhibitors produce a marked inhibition of cell fusion which is possible to reverse by the further addition of 10?5M prostaglandin E. The findings provide evidence of prostaglandin synthesis in the cultures and suggest that prostaglandin E is required for the generation of a transient increase in intracellular cyclic AMP which brings about the cellular changes necessary for fusion to occur.  相似文献   

9.
The function of protein kinase C (PKC) is closely regulated by its subcellular localization. We expressed PKCalpha fused to green fluorescent protein (PKCalpha-GFP) and examined its translocation in living and permeabilized cells of the human parotid cell line, HSY-EB. ATP induced an oscillatory translocation of PKCalpha-GFP to and from the plasma membrane that paralleled the appearance of repetitive Ca2+ spikes. Staurosporine attenuated the relocation of PKCalpha-GFP to the cytosol and caused a stepwise accumulation of PKCalpha-GFP at the plasma membrane during ATP stimulation. Diacylglycerol enhanced the amplitude and duration of the ATP-induced oscillatory translocation of PKCalpha-GFP. Ionomycin induced a transient translocation of PKCalpha-GFP to the plasma membrane despite the continuous elevation of cytosolic Ca2+. The ionomycin-induced transient translocation of PKCalpha-GFP was prolonged by staurosporine, diacylglycerol, and phorbol myristate acetate. Experiments using permeabilized cells showed that staurosporine or the elimination of ATP and Mg2+ decreases the rate of dissociation of PKCalpha-GFP from the membrane. Diacylglycerol slowed the dissociation of PKCalpha-GFP from the membrane regardless of the Ca2+ concentration. The effect of diacylglycerol was attenuated by ATP plus Mg2+ at low concentrations of Ca2+ (<500 nm) but not at high concentrations of Ca2+ (>1000 nm). These data suggest a complex interplay between Ca2+, diacylglycerol, and phosphorylation in the regulation of the membrane binding of PKCalpha.  相似文献   

10.
The mechanisms that regulate the formation of multinucleated muscle fibers from mononucleated myoblasts are not well understood. We show here that extracellular matrix (ECM) receptors of the beta1 integrin family regulate myoblast fusion. beta1-deficient myoblasts adhere to each other, but plasma membrane breakdown is defective. The integrin-associated tetraspanin CD9 that regulates cell fusion is no longer expressed at the cell surface of beta1-deficient myoblasts, suggesting that beta1 integrins regulate the formation of a protein complex important for fusion. Subsequent to fusion, beta1 integrins are required for the assembly of sarcomeres. Other ECM receptors such as the dystrophin glycoprotein complex are still expressed but cannot compensate for the loss of beta1 integrins, providing evidence that different ECM receptors have nonredundant functions in skeletal muscle fibers.  相似文献   

11.
L H Bowman  C P Emerson 《Cell》1977,10(4):587-596
The synthesis, accumulation and stability of rRNA were examined in embryonic quail myoblasts differentiating in cell culture. Quail myoblasts initially divide rapidly in culture, and accumulate 28S and 18S rRNA and ribosomes at a rate which maintains a constant ribosome content during cell division. After these myoblasts fuse, cell division ceases and ribosomes accumulate in fibers, but at a reduced rate which is only one fourth that in dividing myoblasts. Measurements of rRNA stability by 3H-methyl-methionine pulse-chase analysis show that 28S and 18S rRNA formed by fibers turn over with half-lives of 45 hr, and rRNA formed by myoblasts remains stable until fusion and then also turns over in fibers. Turnover of rRNA in fibers accounts for only half the reduction in ribosome accumulation following myoblast fusion. Measurements of the incorporation of 3H-adenosine into rRNA and ATP pools show that the rates of synthesis of rRNA precursor do not decrease after myoblast fuse, but half the rRNA molecules synthesized by fibers are degraded during processing. Degradation of rRNA during processing reduces the rate of formation of 28S and 18S rRNA, and together with rRNA turnover quantitatively accounts for the reduced rate of ribosome accumulation in fibers.  相似文献   

12.
Activation of PKC depends on the availability of DAG, a signaling lipid that is tightly and dynamically regulated. DAG kinase (DGK) terminates DAG signaling by converting it to phosphatidic acid. Here, we demonstrate that DGKzeta inhibits PKCalpha activity and that DGK activity is required for this inhibition. We also show that DGKzeta directly interacts with PKCalpha in a signaling complex and that the binding site in DGKzeta is located within the catalytic domain. Because PKCalpha can phosphorylate the myristoylated alanine-rich C-kinase substrate (MARCKS) motif of DGKzeta, we tested whether this modification could affect their interaction. Phosphorylation of this motif significantly attenuated coimmunoprecipitation of DGKzeta and PKCalpha and abolished their colocalization in cells, indicating that it negatively regulates binding. Expression of a phosphorylation-mimicking DGKzeta mutant that was unable to bind PKCalpha did not inhibit PKCalpha activity. Together, our results suggest that DGKzeta spatially regulates PKCalpha activity by attenuating local accumulation of signaling DAG. This regulation is impaired by PKCalpha-mediated DGKzeta phosphorylation.  相似文献   

13.
Cadherin-dependent epithelial cell-cell adhesion is thought to be regulated by Rho family small GTPases and PI 3-kinase, but the mechanisms involved are poorly understood. Using time-lapse microscopy and quantitative image analysis, we show that cell-cell contact in MDCK epithelial cells coincides with a spatio-temporal reorganization of plasma membrane Rac1 and lamellipodia from noncontacting to contacting surfaces. Within contacts, Rac1 and lamellipodia transiently concentrate at newest sites, but decrease at older, stabilized sites. Significantly, Rac1 mutants alter kinetics of cell-cell adhesion and strengthening, but not the eventual generation of cell-cell contacts. Products of PI 3-kinase activity also accumulate dynamically at contacts, but are not essential for either initiation or development of cell-cell adhesion. These results define a role for Rac1 in regulating the rates of initiation and strengthening of cell-cell adhesion.  相似文献   

14.
1. During fusion of chick-embryo myoblasts in culture, the surface membrane is affected as follows. Uptake of 2-aminoisobutyrate and 2-deoxyglucose, each of which is concentrated 20-fold relative to its concentration in the medium, is unaltered; uptake of alpha-methyl glucoside and choline (15 mM), each of which equilibrates relative to its concentration in the medium, approximately doubles. An approximate doubling also occurs in iodinatable surface protein (and in total protein) and in cell surface area as judged by light-microscopy. Adenylate cyclase (in the absence or the presence of fluoride) increases by more than 2-fold. 2. It is concluded that, during myoblast fusion cells increase in size, and this is reflected in an increased rate of simple diffusion; the rate of facilitated processes such as the uptake of amino acids and sugars, on the other hand, remains unaltered, though the activity of certain enzymes is increased. These results indicate that specific changes in the function of surface membrane occur during myoblast fusion in vitro.  相似文献   

15.
Myoblast fusion is a highly regulated process that is key for forming skeletal muscle during development and regeneration in mammals. Much remains to be understood about the molecular regulation of myoblast fusion. Some molecules that influence mammalian muscle fusion display specific cellular localization during myogenesis. Such molecules can be localized to the contact region between two fusing cells either in both cells or only in one of the cells. How distinct localization of molecules contributes to fusion is not clear. Further complexity exists as other molecules are functionally restricted to myoblasts at later stages of myogenesis to regulate their fusion with multinucleated myotubes. This review examines these three categories of molecules and discusses how spatial and functional restriction may contribute to the formation of a multinucleated cell. Understanding how and why molecules become restricted in location or function is likely to provide further insights into the mechanisms regulating mammalian muscle fusion.  相似文献   

16.
R B Devlin  C P Emerson 《Cell》1978,13(4):599-611
The synthesis of contractile proteins has been studied during the differentiation of quail skeletal muscle myoblasts in culture. Myoblast differentiation was synchronized by transferring secondary cultures of rapidly dividing myoblasts into medium lacking cell division-promoting factors. Cultures at various stages of differentiation were then pulse-labeled with 35S-methionine, and cell extracts were resolved by electrophoresis on two-dimensional gels. Incorporation into specific proteins was quantitated by autoradiography and fluorography using a scanning densitometer. Contractile proteins synthesized by muscle cultures were identified by their co-electrophoresis on two-dimensional gels with contracile proteins purified from quail breast muscle. Our results show that the synthesis of myosin heavy chain, two myosin light chains, two subunits of troponin and two subunits of tropomyosin is first detected at the time of myoblast fusion and then rapidly increase at least 500 fold to maximum rates which remain constant in muscle fibers. Both the kinetics of activation and the molar rates of synthesis of these contractile proteins are virtually identical. Muscle-specific actin (alpha) synthesis also increases at the time of myoblast fusion, but this actin (alpha) is synthesized at 3 times the rate of other contractile proteins. The synthesis of 30 other muscle cell proteins was quantitated, and most of these are shown to follow different patterns of regulation. From these results, we conclude that the contractile proteins are regulated coordinately during myoblast differentiation.  相似文献   

17.
The small G proteins Cdc42, Rac1, and Rac2 regulate the rearrangements of actin and membrane necessary for Fcgamma receptor-mediated phagocytosis by macrophages. Activated, GTP-bound Cdc42, Rac1, and Rac2 bind to the p21-binding domain (PBD) of PAK1, and this interaction provided a basis for microscopic methods to localize activation of these G proteins inside cells. Fluorescence resonance energy transfer-based stoichiometry of fluorescent chimeras of actin, PBD, Cdc42, Rac1, and Rac2 was used to quantify G protein activation relative to actin movements during phagocytosis of IgG-opsonized erythrocytes. The activation dynamics of endogenous G proteins, localized using yellow fluorescent protein-labeled PBD, was restricted to phagocytic cups, with a prominent spike of activation over an actin-poor region at the base of the cup. Refinements of fluorescence resonance energy transfer stoichiometry allowed calculation of the fractions of activated GTPases in forming phagosomes. Cdc42 activation was restricted to the leading margin of the cell, whereas Rac1 was active throughout the phagocytic cup. During phagosome closure, activation of Rac1 and Rac2 increased uniformly and transiently in the actin-poor region of phagosomal membrane. These distinct roles for Cdc42, Rac1, and Rac2 in the component activities of phagocytosis indicate mechanisms by which their differential regulation coordinates rearrangements of actin and membranes.  相似文献   

18.
Protein arginine methylation is a major posttranslational modification that regulates various cellular functions, such as RNA processing and DNA repair. A recent report showed the involvement of protein arginine methyltransferase (PRMT) 4 in chromatin remodeling and gene expression during muscle differentiation in C2C12 cells. Because the fusion of myoblasts is a unique phenomenon observed in skeletal muscle differentiation, the present study focused on the expression and activities of PRMTs during myoblast fusion in primary rat skeletal muscle. N(G), N(G)-asymmetric dimethylarginines (aDMA) and N(G), N'(G)-symmetric dimethylarginines (sDMA) were both found consistently throughout myoblast fusion. However, PRMT1 exhibited the highest activity during myoblast fusion and maintained the elevated activity thereafter, whereas PRMT5 reached its highest activity only after myoblast fusion. To identify the proteins modified by such PRMTs, we conducted 2-dimensional electrophoresis (2-DE) of total proteins before and after myoblast fusion, and protein spots on the 2-DE gel immunoreactive for aDMA and sDMA were identified by mass spectrometric analysis. Among the proteins identified, lamin C2 was in particular observed to be dimethylated. Arginine methylation of lamin may therefore be important for muscle development and maintenance.  相似文献   

19.
Myoblast differentiation and fusion is a well-orchestrated multistep process that is essential for skeletal muscle development and regeneration. Phospholipase D1 (PLD1) has been implicated in the initiation of myoblast differentiation in vitro. However, whether PLD1 plays additional roles in myoblast fusion and exerts a function in myogenesis in vivo remains unknown. Here we show that PLD1 expression is up-regulated in myogenic cells during muscle regeneration after cardiotoxin injury and that genetic ablation of PLD1 results in delayed myofiber regeneration. Myoblasts derived from PLD1-null mice or treated with PLD1-specific inhibitor are unable to form mature myotubes, indicating defects in second-phase myoblast fusion. Concomitantly, the PLD1 product phosphatidic acid is transiently detected on the plasma membrane of differentiating myocytes, and its production is inhibited by PLD1 knockdown. Exogenous lysophosphatidylcholine, a key membrane lipid for fusion pore formation, partially rescues fusion defect resulting from PLD1 inhibition. Thus these studies demonstrate a role for PLD1 in myoblast fusion during myogenesis in which PLD1 facilitates the fusion of mononuclear myocytes with nascent myotubes.  相似文献   

20.
Formation of the Drosophila larval body wall muscles requires the specification, coordinated cellular behaviors and fusion of two cell types: Founder Cells (FCs) that control the identity of the individual muscle and Fusion Competent Myoblasts (FCMs) that provide mass. These two cell types come together to control the final size, shape and attachment of individual muscles. However, the spatial arrangement of these cells over time, the sequence of fusion events and the contribution of these cellular relationships to the fusion process have not been addressed. We analyzed the three-dimensional arrangements of FCs and FCMs over the course of myoblast fusion and assayed whether these issues impact the process of myoblast fusion. We examined the timing of the fusion process by analyzing the fusion profile of individual muscles in wild type and fusion mutants. We showed that there are two temporal phases of myoblast fusion in wild type embryos. Limited fusion events occur during the first 3 h of fusion, while the majority of fusion events occur in the remaining 2.5 h. Altogether, our data have led us to propose a new model of myoblast fusion where the frequency of myoblast fusion events may be influenced by the spatial arrangements of FCs and FCMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号