首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The polypeptide composition of the NO-3-sensitive H+-ATPase of vacuolar membrane (tonoplast) vesicles isolated from red beet (Beta vulgaris L.) storage root was investigated by affinity labeling with [alpha-32P]3-O-(4-benzoyl)benzoyladenosine 5'-triphosphate [( alpha-32P]BzATP) and [14C]N,N'-dicyclohexylcarbodiimide [( 14C]DCCD). The photoactive affinity analog of ATP, BzATP, is a potent inhibitor of the tonoplast ATPase (apparent KI = 11 microM) and the photolysis of [alpha-32P]BzATP in the presence of native tonoplast yields one major 32P-labeled polypeptide of 57 kDa. Photoincorporation into the 57-kDa polypeptide shows saturation with respect to [alpha-32P]BzATP concentration and is blocked by ATP. [14C]DCCD, a hydrophobic carboxyl reagent and potent irreversible inhibitor of the tonoplast ATPase (k50 = 20 microM) labels a 16-kDa polypeptide in native tonoplast. The tonoplast ATPase is purified approximately 12-fold by Triton X-100 solubilization and Sepharose 4B chromatography. Partial purification results in the enrichment of two prominent polypeptides of 67 and 57 kDa. Solubilization, chromatography, and sodium dodecylsulfate-polyacrylamide gel electrophoresis of tonoplast labeled with [alpha-32P]BzATP or [14C]DCCD results in co-purification of the 57- and 16-kDa labeled polypeptides with ATPase activity. It is concluded that the tonoplast H+-ATPase is a multimer containing structurally distinct BzATP- and DCCD-binding subunits of 57 and 16 kDa, respectively. The data also suggest the association of a 67-kDA polypeptide with the ATPase.  相似文献   

2.
Higher plant cells have one or more vacuoles important for maintaining cell turgor and for the transport and storage of ions and metabolites. One driving force for solute transport across the vacuolar membrane (tonoplast) is provided by an ATP-dependent electrogenic H+ pump. The tonoplast H+-pumping ATPase from oat roots has been solubilized with Triton X-100 and purified 16-fold by Sepharose 4B chromatography. The partially purified enzyme was sensitive to the same inhibitors (N-ethylmaleimide, N,N'-dicyclohexylcarbodiimide (DCCD), 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, 4,4'-diisothiocyano-2,2'-stilbene disulfonic acid, and NO-3) as the native membrane-bound enzyme. The partially purified enzyme was stimulated by Cl- (Km(app) = 1.0 mM) and hydrolyzed ATP with a Km(app) of 0.25 mM. Thus, the partially purified tonoplast ATPase has retained the properties of the native membrane-bound enzyme. [14C]DCCD labeled a single polypeptide (14-18 kDa) in the purified tonoplast ATPase preparation. Two major polypeptides, 72 and 60 kDa, that copurified with the ATPase activity and the 14-18-kDa DCCD-binding peptide are postulated to be subunits of a holoenzyme of 300-600 kDa (estimated by gel filtration). Despite several catalytic similarities with the mitochondrial H+-ATPase, the major polypeptides of the tonoplast ATPase differed in mass from the alpha and beta subunits (58 and 55 kDa) and the [14C] DCCD-binding proteolipid (8 kDa) of the oat F1F0-ATPase.  相似文献   

3.
Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots   总被引:10,自引:0,他引:10  
The subunit organization of the tonoplast H+-pumping ATPase from oat roots (Avena sativa L. var. Lang) was investigated. Tonoplast vesicles were treated with low ionic strength solutions (0.1 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer or 0.1 mM Na EDTA), carbonate, or a chaotropic reagent (KI), and then centrifuged to give a soluble fraction and a pellet. Treatments with low ionic strength solutions or KI resulted in 70-80% reduction in the membrane-associated ATPase activity, but did not affect the K+-stimulated pyrophosphatase activity. Polypeptides of 72, 60, and 41 kDa were solubilized from tonoplast vesicles by these wash treatments. These polypeptides reacted with polyclonal antibodies against the holoenzyme of tonoplast ATPase (anti-ATPase) and copurified with the tonoplast ATPase activity during gel filtration chromatography (Sepharose CL-6B). Mono-specific antibody against the 72- or 60-kDa polypeptide reacted with the solubilized 72- or 60-kDa polypeptide, respectively. However, the N,N-[14C]dicyclohexylcarbodiimide-binding 16-kDa polypeptide and a 13-kDa polypeptide that also reacted with anti-ATPase and copurified with the tonoplast ATPase activity during gel filtration remained in the pellets after the wash treatments. We conclude that the 72- and 60-kDa polypeptides appear to be peripheral subunits of the tonoplast ATPase and that the 16-kDa polypeptide is probably embedded in the membrane bilayer. Additional subunits of the ATPase complex may include a 41-kDa (peripheral) and a 13-kDa (integral) polypeptide. Based on these results, a working model of the tonoplast ATPase analogous to the F1F0-ATPase is proposed.  相似文献   

4.
The inhibitor N,N'-dicyclohexylcarbodiimide (DCCD) was used to probe the structure and function of the vacuolar H+-translocating ATPase from oat roots (Avena sativa var. Lang). The second-order rate constant for DCCD inhibition was inversely related to the concentration of membrane, indicating that DCCD reached the inhibitory site by concentrating in the hydrophobic environment. [14C]DCCD preferentially labeled a 16-kDa polypeptide of tonoplast vesicles, and the amount of [14C]DCCD bound to the 16-kDa peptide was directly proportional to inhibition of ATPase activity. A 16-kDa polypeptide had previously been shown to be part of the purified tonoplast ATPase. As predicted from the observed noncooperative inhibition, binding studies showed that 1 mol of DCCD was bound per mol of ATPase when the enzyme was completely inactivated. The DCCD-binding 16-kDa polypeptide was purified 12-fold by chloroform/methanol extraction. This protein was thus classified as a proteolipid, and its identity as part of the ATPase was confirmed by positive reaction with the antibody to the purified ATPase on immunoblots. From the purification studies, we estimated that the 16-kDa subunit was present in multiple (4-8) copies/holoenzyme. The purification of the proteolipid is a first step towards testing its proposed role in H+ translocation.  相似文献   

5.
The purified tonoplast H+-ATPase from oat roots (Avena sativa L. var. Lang) consists of at least three different polypeptides with masses 72, 60, and 16 kDa. We have used covalent modifiers (inhibitors) and polyclonal antibodies to identify the catalytic subunit of the H+-pumping ATPase. The inactivation of ATPase activity by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (Nbd-Cl, an adenine analog) was protected by MgATP or MgADP, and showed kinetic properties consistent with active site-directed inhibition. Under similar conditions, [14C]Nbd-Cl preferentially labeled the 72-kDa polypeptide of the purified ATPase. This binding was reduced by MgATP or 2' (3')-)O-(2,4,6-trinitrophenyl) ATP. Nbd-Cl probably modified cysteinyl--SH or tyrosyl--OH groups, as dithiothreitol reversed both ATPase inactivation and [14C]Nbd-Cl binding to the 72-kDa subunit. The finding that N-ethylmaleimide inhibition of ATPase activity was protectable by nucleotides is consistent with the idea of sulfhydryl groups in the ATP-binding site. Polyclonal antibody made to the 72-kDa polypeptide specifically reacted (Western blot) with a 72-kDa polypeptide from both tonoplast-enriched membranes and the purified tonoplast ATPase, but it did not cross-react with the mitochondrial or Escherichia coli F1-ATPase. The antibody inhibited tonoplast ATPase and H+-pumping activities. We conclude from these results that the 72-kDa polypeptide of the tonoplast H+-ATPase contains an ATP- (or nucleotide-) binding site that may constitute the catalytic domain.  相似文献   

6.
The clathrin-coated vesicle proton translocating complex is composed of a maximum of eight polypeptides. The function of the components of this system have not been defined. Proton pumping catalyzed by the reconstituted, 200-fold purified proton translocating complex of clathrin-coated vesicles is inhibited 50% at a dicyclohexylcarbodiimide (DCCD)/protein ratio of 0.66 mumol of DCCD/mg of protein. At an identical DCCD/protein ratio, the 17-kDa component of the proton pump is labeled by [14C]DCCD. Through toluene extraction, the 17-kDa subunit has been isolated from the holoenzyme. The 17-kDa polypeptide diminished proteoliposome acidification when coreconstituted with either bacteriorhodopsin or the intact clathrin-coated vesicle proton translocating ATPase. In both instances, treatment of the 17-kDa polypeptide with DCCD restored proteoliposome acidification. Moreover, the proton-conducting activity of the 17-kDa polypeptide is abolished by trypsin digestion. These results demonstrate that the 17-kDa polypeptide present in the isolated proton ATPase of clathrin-coated vesicles is a subunit which functions as a transmembranous proton pore.  相似文献   

7.
An N-ethylmaleimide-sensitive ATPase was purified 100-fold from chromaffin granule membranes. The purification procedure included solubilization with polyoxyethylene 9 lauryl ether, chromatography on hydroxylapatite and DEAE-cellulose columns, and glycerol gradient centrifugations. Inclusion of phosphatidylserine and a mixture of protease inhibitors during the purification procedure was necessary to maintain the activity of the preparation. The purified preparation contained four major polypeptides with molecular masses of about 115, 72, 57, and 39 kDa, which were copurified with the ATPase activity. The 115-kDa subunit binds [14C]dicyclohexylcarbodiimide and the subunits of 115 and 39 kDa bind [14C]N-ethylmaleimide. The ATP-dependent proton uptake activity of chromaffin granule membranes is inhibited 50% with about 20 microM N-ethylmaleimide, while over 5 mM concentrations of the inhibitor were required to block the ATPase activity of the membranes. The ATPase activity of the purified enzyme was inhibited via two different affinities: a high affinity site with a Ki in the microM range and a low affinity site in the mM range, each contributing to about 50% inhibition of the enzyme. It is concluded that the proton-ATPase of chromaffin granule membranes contains at least four subunits with the 115-kDa polypeptide being the main subunit having the active site for the ATPase activity of the enzyme.  相似文献   

8.
1. In isolated bovine heart mitochondria, the 14C-labelled dicyclohexylcarbodiimide (DCCD) induced inhibition of the ATPase activity is accompanied by labelling of three polypeptides of Mx 9000, 16 000 and 33 000. Of these, only the 9000 polypeptide reacts with [14C]DCCD proportionally to the inhibitory effect, being saturated when the enzyme is maximally inhibited. 2. The 9000 and 16 000 polypeptides are extracted by neutral chloroform/methanol (2 : 1 v/v) while the 33 000 polypeptide remains in the non-extractable residue. No disaggregation of the polypeptides takes place during the extraction. 3. In the ATPase complex immunoprecipitated with antibody against F1, the 9000 and 16 000 polypeptides are present, but the 33 000 polypeptide is absent. 4. The results obtained indicate that the 33 000 polypeptide is not a component of the ATPase complex. As far as F0 is concerned, two types of the binding sites for DCCD were demonstrated, corresponding to the 9000 and 16 000 polypeptides. Their existence is explained by a non-random arrangement among individual monomers of the DCCD-binding protein.  相似文献   

9.
Subunit composition of vacuolar membrane H(+)-ATPase from mung bean   总被引:11,自引:0,他引:11  
The vacuolar H(+)-ATPase from mung bean hypocotyls was solubilized from the membrane with lysophosphatidycholine and purified by QAE-Toyopearl column chromatography. The purified ATPase was active only in the presence of exogenous phospholipid and was inhibited by nitrate, dicyclohexyl carbodiimide and Triton X-100, but not by vanadate or azide. Dodecyl sulfate/polyacrylamide gel electrophoresis of the purified ATPase yielded ten polypeptides of molecular masses of 68 kDa, 57 kDa, 44 kDa, 43 kDa, 38 kDa, 37 kDa 32 kDa, 16 kDa, 13 kDa and 12 kDa. All polypeptides remained in the peak activity fraction after glycerol density gradient centrifugation. Nine of them, excluding the 43-kDa polypeptide, comigrated in a polyacrylamide gradient gel in the presence of 0.1% Triton X-100. The 16-kDa polypeptide could be labeled with [14C]dicyclohexylcarbodiimide. The amino-terminal amino acid sequence of the isolated 68-kDa polypeptide generally agreed with that deduced from the cDNA for the carrot 69-kDa subunit [Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H. & Taiz, L. (1988) J. Biol. Chem. 263, 9102-9112]. Thus, mung bean vacuolar H(+)-ATPase seems to consist of nine distinct subunits.  相似文献   

10.
Possible involvement of polypeptides of b-c1 complex of beef-heart mitochondria in its redox and protonmotive activity has been investigated, by means of chemical modification of amino acid residues in the soluble as well as in the phospholipid-reconstituted b-c1 complex. Treatment of the enzyme with tetranitromethane (C(NO2)4) or with ethoxyformic anhydride (EFA), that modify reversibly tyrosyl and hystidyl residues respectively, resulted in a marked inhibition of electron transport from reduced quinols to cytochrome c. This was accompanied, in b-c1 reconstituted into phospholipid vesicles, by a parallel inhibition of respiratory-linked proton translocation; the H+/e- stoichiometry remained unchanged. Treatment of b-c1 complex with DCCD, that specifically modifies carboxylic groups of glutammic or aspartic residues caused a marked depression of proton translocation in b-c1 vesicles, under conditions where the rate of electron flow in the coupled state, was enhanced. As a consequence the H+/e- stoichiometry was lowered. SDS gel electrophoresis and [14C]DCCD-labelling of the polypeptides of the b-c1 complex showed a major binding of 14C-DCCD to the 8-kDa subunit of the complex and possible cross-linking, induced by DCCD treatment, of polypeptide(s) in the 8-kDa band and the 12-kDa band, with the Fe-s protein of the complex, with the appearance of a new polypeptide band with an apparent molecular mass of about 40 kDa. Involvement of polypeptides of low molecular mass, for which no functional role was so far described, and possibly of the Fe-S protein in the redox-linked proton translocation in b-c1 complex is suggested.  相似文献   

11.
The H+-ATPase of Beta vacuolar membrane (tonoplast) comprises at least three functionally distinct subunits of Mr = 67,000, 57,000, and 16,000, respectively (Manolson, M. F., Rea, P. A., and Poole, R. J. (1985) J. Biol. Chem. 260, 12273-12279). The hydrophobic carboxyl reagent N,N'-dicyclohexylcarbodiimide (DCCD) inactivates the enzyme with pseudo-first order kinetics, and the concentration dependence of the reaction indicates that DCCD interacts with a single site on the enzyme to exert its inhibitory effect. The apparent pseudo-first order rate constant (k0) is reciprocally dependent on membrane protein concentration, which is expected if a large fraction of the DCCD partitions into the lipid phase. k0 has a nominal value of 1000 M-1 min-1 at a protein concentration of 250 micrograms/ml, although when phase partitioning is taken into account, the true, protein concentration-independent value of k0 is calculated to be about an order of magnitude lower. [14C]DCCD primarily labels the Mr = 16,000 polypeptide of native tonoplast vesicles. Binding is venturicidin-insensitive and occurs at a rate similar to the rate of enzyme inactivation, implying that inhibition is a direct result of covalent modification of the Mr = 16,000 polypeptide. Labeling of the containing Mr = 8,000 subunit of mitochondrial F0F1-ATPase is, on the other hand, faster by a factor of 5 and totally abolished by venturicidin. These results confirm that the Mr = 16,000 polypeptide which copurifies with tonoplast H+-ATPase activity is a subunit of the enzyme. Most of the DCCD-reactive Mr = 16,000 subunit is extracted from acetone:ethanol-washed tonoplast vesicles by chloroform:methanol. [14C]DCCD bound to the Mr = 16,000 polypeptide is enriched in the chloroform:methanol extract by 5-fold compared with native tonoplast and the specific activity (nmol of [14C]DCCD/mg of protein) can be increased a further 37-fold by chromatography on DEAE-Sephadex. It is concluded that the Mr = 16,000 subunit of the tonoplast H+-ATPase is a proteolipid.  相似文献   

12.
A fast protein liquid chromatography procedure for purification of the V-type H+-ATPase from higher plant vacuolar membrane to yield near-homogeneous enzyme with a specific activity of 20-25 mumol/mg.min is described. When precautions are taken to ensure the quantitative recovery of protein before sodium dodecyl sulfate-polyacrylamide gel electrophoresis, the preparation is found to be constituted of seven major polypeptides of 100, 67, 55, 52, 44, 32, and 16 kDa, respectively, and two minor components of 42 and 29 kDa. The 52-, 44-, and 32-kDa polypeptides do not cross-react with antisera raised to the 67- and 55-kDa subunits of the enzyme, and two independent sample preparation procedures yield the same apparent subunit composition. The additional polypeptides are not breakdown products or aggregates of the previously identified subunits of the ATPase. The ATPase of tonoplast vesicles is subject to MgATP-dependent cold inactivation, and the conditions for inactivation are identical to those for the bovine chromaffin granule H+-ATPase (Moriyama, Y., and Nelson, N. (1989) J. Biol. Chem. 264, 3577-3582). Cold inactivation is accompanied by the detachment of five major polypeptides of 67, 55, 52, 44, and 32 kDa from the membrane, and all five components co-migrate with the corresponding polypeptides of the purified ATPase upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 100- and 16-kDa polypeptides of the ATPase are not removed from the membrane during cold inactivation, but the latter can be purified to homogeneity by chloroform:methanol extraction of the fast protein liquid chromatography-purified enzyme. It is concluded that the tonoplast H+-ATPase is constituted of 6-7 major polypeptides organized into a peripheral sector comprising the 67-, 55-, 52-, 44-, and 32-kDa components and an integral sector consisting of the 100- and 16-kDa polypeptides. The V-type H+-ATPase from animal endomembranes and higher plant vacuolar membranes therefore have remarkably similar subunit compositions and gross topographies.  相似文献   

13.
Dicyclohexylcarbodi-imide (DCCD) inhibition of NADH: ubiquinone oxidoreductase was studied in submitochondrial particles and in the isolated form, together with the binding of the reagent to the enzyme. DCCD inhibited the isolated enzyme in a time- and concentration-dependent manner. Over the concentration range studied, a maximum inhibition of 85% was attained within 60 min. The time course for the binding of DCCD to the enzyme was similar to that of activity inhibition. The NADH:ubiquinone oxidoreductase activity of the submitochondrial particles was also sensitive to DCCD, and the locus of binding of the inhibitor was studied by subsequent resolution of the enzyme into subunit polypeptides. Only two subunits (molecular masses 13.7 and 21.5 kDa) were labelled by [14C]DCCD, whereas, when the enzyme in its isolated form was treated with [14C]DCCD, six subunits (13.7, 16.1, 21.5, 39, 43 and 53 kDa) were labelled. Comparison with the subunit labelling of F1F0-ATPase and ubiquinol:cytochrome c oxidoreductase indicated that the labelling pattern of NADH:ubiquinone oxidoreductase, and enzyme complex with a multitude of subunits, is unique and not due to contamination by other inner-membrane proteins. The correlation between the electron- and proton-transport functions and the DCCD-binding components remains to be established.  相似文献   

14.
Neeraj Agarwal  Vijay K. Kalra 《BBA》1984,764(1):105-113
The F1-ATPase from Mycobacterium phlei is inactivated by dicyclohexylcarbodiimide (DCCD), 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) and quinacrine mustard. The inactivation is both time-and concentration-dependent and in the case of DCCD being more pronounced at acidic pH. The minimum inactivation half-time (t12) for DCCD, NBD-Cl and quinacrine mustard was observed to be 14, 6 and 7 min, respectively. Inactivation of F1-ATPase resulted in the incorporation of [14C]DCCD as well as [14C]NBD-Cl into α and γ subunits. The incorporation of label into α and γ subunits, utilizing [14C]NBD-Cl, was reversible by dithiothreitol. Complete inactivation, by linear extrapolation to zero activity, revealed that 4 mol [14C]DCCD and 4 mol [14C]NBD-Cl bind per mol F1-ATPase. Kinetic and binding studies show that these probes bind to site(s) distinct from ATP-binding site in F1-ATPase from M. phlei.  相似文献   

15.
Subunit structure of the lysosomal H+-ATPase was investigated using cold inactivation, immunological cross-reactivity with antibodies against individual subunits of the H+-ATPase from chromaffin granules and chemical modification with N,N'-dicyclohexyl[14C]carbodiimide. The lysosomal H+-ATPase was irreversibly inhibited when incubated at 0 degrees C in the presence of chloride or nitrate and MgATP. Inactivation in the cold resulted in the release of several polypeptides (72, 57, 41, 34 and 33 kDa) from the membrane, which had the same electrophoretic mobility as the corresponding subunits of chromaffin granule H+-ATPase. Cross-reactivity of antibodies revealed that the 72, 57 and 34 kDa polypeptides were immunologically identical to the corresponding subunits of chromaffin granule H+-ATPase. Dicyclohexylcarbodiimide, which inhibits proton translocation in the vacuolar ATPase, predominantly labeled two polypeptides of 18 and 15 kDa, which compose the membrane sector of the enzyme. These results suggest that the lysosomal H+-ATPase is a multimeric enzyme, whose subunit structure is similar to the chromaffin granule H+-ATPase. The subunit structure of other vacuolar H+-ATPases, revealed by cold inactivation and immunological cross-reactivity, is also presented.  相似文献   

16.
H Arai  M Berne  G Terres  H Terres  K Puopolo  M Forgac 《Biochemistry》1987,26(21):6632-6638
The partially purified proton-translocating adenosinetriphosphatase [(H+)-ATPase] from clathrin-coated vesicles has been reported to contain eight polypeptides of molecular weights 15,000-116,000 [Xie, X.S., & Stone, D.K. (1986) J. Biol. Chem. 261, 2492-2495]. To determine whether these polypeptides form a single macromolecular complex, we have isolated three monoclonal antibodies which recognize the reconstitutively active (H+)-ATPase in the native, detergent-solubilized state. All three monoclonal antibodies precipitate the same set of polypeptides from either the partially purified enzyme or the detergent-solubilized coated vesicle membrane proteins. The immunoprecipitated polypeptides have molecular weights of 100,000, 73,000, 58,000, 40,000, 38,000, 34,000, 33,000, 19,000, and 17,000. These results thus indicate that this set of polypeptides forms a single macromolecular complex and suggest that they correspond to subunits of the coated vesicle (H+)-ATPase. To identify the ATP-hydrolytic subunit of the coated vesicle (H+)-ATPase, the purified enzyme was reacted with N-ethylmaleimide (NEM) and 7-chloro-4-nitro-2,1,3-benzoxadiazole (NBD-Cl), both of which inhibit activity in an ATP-protectable manner. Labeling was carried out by using [3H]NEM or [14C]NBD-Cl, and the specificity of the reaction was increased by prelabeling of the protein with the nonradioactive reagents in the presence of ATP and by taking advantage of the nucleotide specificity of protection. The principal polypeptide labeled by both [3H]NEM and [14C]NBD-Cl had a molecular weight of 73,000. In addition, this protein was the only polypeptide whose labeling was significantly reduced in the presence of ATP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Intact chloroplasts and vacuoles were isolated from mesophyll protoplasts of barley. The chloroplasts occupied about 15% of the cellular volume and contained 75% of the protein, whereas the vacuoles occupied about 80% of the volume and contained less than 4% of total cellular protein. Contamination of the vacuolar fraction by foreign protein is included in these values. Chlorophyll was absent from the vacuolar fraction, but less than 1% of several extra-vacuolar marker proteins were still present. The vacuoles contained hydrolytic enzymes. Several of them (-mannosidase, -galactosidase, N-acetylglucosaminidase) were soluble, whereas part of the activity of others semimented with the tonoplasts during centrifugation. Attached proteins could be released from the membranes during freezing in the presence of NaCl. One-dimensional gel electrophoretic separation of soluble vacuolar proteins under non-denaturing conditions yielded more than 10 protein bands. A comparative analysis was performed of thylakoids and vacuoles which were subfractionated into tonoplasts and soluble vacuolar constituents. Sodium dodecyl sulfate gel electrophoresis separated about 15 polypeptides of the soluble fraction which reacted with silver reagent. The tonoplast fraction yielded about 20 bands. A similar number of bands was observed when vacuoles incubated with the 14C-labelled SH-reagent N-ethylmaleimide were analysed for radioactive polypeptides. Silverstaining of the polypeptides and their SH-content did not correlate. Several polypeptides of the vacuolar fraction had molecular weights very similar to the molecular weights of known chloroplast proteins. However, with the exception of the two subunits of ribulose-1,5-bisphosphate carboxylase, contamination of the vacuolar fraction by chloroplast proteins could be ruled out as a possible cause of the close correspondence. The lipophilic carboxylic-group reagent N,N-dicyclohexylcarbodiimide ([14C]DCCD) reacted with several polypeptides of thylakoids and tonoplasts. However, the labelling patterns were different. The most heavily labelled polypeptide of thylakoids was the 8-kDa polypeptide of the basal part of the coupling factor CF0. Tonoplast polypeptides heavily labelled with [14C]DCCD had molecular weights of 24, 28, and 56 kDa. The vacuolar 8-kDa polypeptide remained unlabelled.Abbreviations DCCD N,N-dicyclohexylcarbodiimide - IA iodoacetamide - NEM N-ethylmaleimide - PAGE polyacrylamide gel electrophoresis - PMSF phenylmethylsulfonylfluoride - SDS sodium dodecyl sulfate  相似文献   

18.
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits 100% of proton transport and 80-85% of (Mg2+)-ATPase activity in clathrin-coated vesicles. Half-maximum inhibition of proton transport is observed at 10 microM DCCD after 30 min. Although treatment of the coated vesicle (H+)-ATPase with DCCD has no effect on ATP hydrolysis in the detergent-solubilized state, sensitivity of proton transport and ATPase activity to DCCD is restored following reconstitution into phospholipid vesicles. In addition, treatment of the detergent-solubilized enzyme with DCCD followed by reconstitution gives a preparation that is blocked in both proton transport and ATP hydrolysis. These results suggest that although the coated vesicle (H+)-ATPase can react with DCCD in either a membrane-bound or detergent-solubilized state, inhibition of ATPase activity is only manifested when the pump is present in sealed membrane vesicles. To identify the subunit responsible for inhibition of the coated vesicle (H+)-ATPase by DCCD, we have labeled the partially purified enzyme with [14C]DCCD. A single polypeptide of molecular weight 17,000 is labeled. The extremely hydrophobic nature of this polypeptide is indicated by its extraction with chloroform:methanol. The 17,000-dalton protein can be labeled to a maximum stoichiometry of 0.99 mol of DCCD/mol of protein with 100% inhibition of proton transport occurring at a stoichiometry of 0.15-0.20 mol of DCCD/mol of protein. Amino acid analysis of the chloroform:methanol extracted 17,000-dalton polypeptide reveals a high percentage of nonpolar amino acids. The similarity in properties of this protein and the DCCD-binding subunit of the coupling factor (H+)-ATPases suggests that the 17,000-dalton polypeptide may function as part of a proton channel in the coated vesicle proton pump.  相似文献   

19.
M J Nalecz  R P Casey  A Azzi 《Biochimie》1983,65(8-9):513-518
N,N'-Dicyclohexylcarbodiimide (DCCD) inhibits the activity of ubiquinol-cytochrome c reductase in the isolated and reconstituted mitochondrial cytochrome b-c1 complex. In proteoliposomes containing b-c1 complex DCCD inhibits equally electron flow and proton translocation catalyzed by the enzyme. In both isolated and reconstituted systems the inhibitory effect is accompanied by structural alterations in the polypeptide pattern of the enzyme consistent with cross-linking between subunits V and VII. The kinetics of inhibition of enzymic activity correlates with that of the cross-linking, suggesting that the two phenomena may be coupled. Binding of [14C] DCCD to both isolated and reconstituted enzyme was also observed, though it was not correlated kinetically with the inhibition.  相似文献   

20.
Reconstituted proteoliposomes of tonoplast ATPase are formedon solubilization of tonoplast membranes from mung bean (Vignaradiata L.) with deoxycholate (DOC) in the presence of a mixtureof soybean phospholipids (asolectin), after removal of DOC bypassage through a PD-10 column (Pharmacia). This method is idealbecause of its simplicity and rapidity. Selective insertionof sets of tonoplast H+-ATPase polypeptides (68 kDa, 60 kDa,16 kDa and several minor polypeptides) into liposomes usingthis method was confirmed by SDS-PAGE and immuno-blotting withantibodies raised against 68-kDa and 60-kDa polypeptides. Pumping of protons across the membranes of the proteoliposomeswas demonstrated by quinacrine-fluorescence quenching in thepresence of ATP-Mg2+. ATP-Mg2+ was shown to be the preferredsubstrate in both reconstituted and native tonoplast vesicles,and its optimum concentration was 0.75 to 3.0 mM. Quenchingwas completely abolished by a channel-forming ionophore, gramicidinD, and an inhibitor of tonoplast H+-ATPase, KNO3. Antibodiesto 68-kDa and 60-kDa peptides partially inhibited the pumpingof protons. The rate of pumping of protons increased with thenumber of proteoliposomes, the maximal concentration of whichwas equivalent to 250 µg of protein per reaction mixture.The optimum pH for pumping was 6.5 when inside of proteoliposomeswere loaded pH at 7.2. The rate of pumping of protons was reducedwhen proteoliposomes were made using asolectin and cholesterolat 3 : 1 (w/w), as compared with those made with asolectin alone. The ATPase activity in reconstituted proteoliposomes was inhibitedby KNO3, with half-maximal inhibition at approximately 7 mM.The enzyme actively hydrolyzed ATP in preference to GTP, CTP,UTP, and ADP, but it did not hydrolyze pNPP or AMP. Antibodiesagainst the 60-kDa polypeptide strongly inhibited ATPase activityas compared to antibodies against the 68-kDa polypeptide. Theresults obtained in this study demonstrate directly that functionaltonoplast H+-ATPase can be inserted selectively into liposomes. (Received August 31, 1990; Accepted April 18, 1991)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号