首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accurate automated cell fate analysis of immunostained human stem cells from 2- and 3-dimensional (2D-3D) images would improve efficiency in the field of stem cell research. Development of an accurate and precise tool that reduces variability and the time needed for human stem cell fate analysis will improve productivity and interpretability of the data across research groups. In this study, we have created protocols for high performance image analysis software Volocity? to classify and quantify cytoplasmic and nuclear cell fate markers from 2D-3D images of human neural stem cells after in vitro differentiation. To enhance 3D image capture efficiency, we optimized the image acquisition settings of an Olympus FV10i? confocal laser scanning microscope to match our quantification protocols and improve cell fate classification. The methods developed in this study will allow for a more time efficient and accurate software based, operator validated, stem cell fate classification and quantification from 2D and 3D images, and yield the highest ≥94.4% correspondence with human recognized objects.  相似文献   

2.
Transfection of primary mammalian neural cells, such as human neural stem/precursor cells (hNSPCs), with commonly used cationic lipid transfection reagents has often resulted in poor cell viability and low transfection efficiency. Other mechanical methods of introducing a gene of interest, such as a "gene gun" or microinjection, are also limited by poor cell viability and low numbers of transfected cells. The strategy of using viral constructs to introduce an exogenous gene into primary cells has been constrained by both the amount of time and labor required to create viral vectors and potential safety concerns. We describe here a step-by-step protocol for transfecting hNSPCs using Amaxa's Nucleofector device and technology with electrical current parameters and buffer solutions specifically optimized for transfecting neural stem cells. Using this protocol, we have achieved initial transfection efficiencies of ~35% and ~70% after stable transfection. The protocol entails combining a high number of hNSPCs with the DNA to be transfected in the appropriate buffer followed by electroporation with the Nucleofector device.  相似文献   

3.
The field of Regenerative Biology as it applies to Regenerative Medicine is an increasingly expanding area of research with hopes of providing therapeutic treatments for diseases and/or injuries that conventional medicines and even new biologic drug therapies cannot effectively treat. Extensive research in the area of Regenerative Medicine is focused on the development of cells, tissues and organs for the purpose of restoring function through transplantation. The general belief is that replacement, repair and restoration of function is best accomplished by cells, tissues or organs that can perform the appropriate physiologic/metabolic duties better than any mechanical device, recombinant protein therapeutic or chemical compound. Several strategies are currently being investigated and include, cell therapies derived from autologous primary cell isolates, cell therapies derived from established cell lines, cell therapies derived from a variety of stem cells, including bone marrow/mesenchymal stem cells, cord blood stem cells, embryonic stem cells, as well as cells tissues and organs from genetically modified animals. This mini-review is not meant to be exhaustive, but aims to highlight clinical applications for the four areas of research listed above and will address a few key advances and a few of the hurdles yet to be overcome as the technology and science improve the likelihood that Regenerative Medicine will become clinically routine.  相似文献   

4.
In the field of stem cell research, there is a strong requirement for the discovery of new biomarkers that more accurately define stem and progenitor cell populations, as well as their differentiated derivatives. The very-low-molecular-weight (<5?kDa) proteome/peptidome remains a poorly investigated but potentially rich source of cellular biomarkers. Here we describe a label-free LC-MALDI-TOF/TOF quantification approach to screen the very-low-molecular-weight proteome, i.e. the peptidome, of neural progenitor cells and derivative populations to identify potential neural stem/progenitor cell biomarkers. Twelve different proteins were identified on the basis of MS/MS analysis of peptides, which displayed differential abundance between undifferentiated and differentiated cultures. These proteins included major cytoskeletal components such as nestin, vimentin, and glial fibrillary acidic protein, which are all associated with neural development. Other cytoskeletal proteins identified were dihydropyrimidinase-related protein 2, prothymosin (thymosin α-1), and thymosin β-10. These findings highlight novel stem cell/progenitor cell marker candidates and demonstrate proteomic complexity, which underlies the limitations of major intermediate filament proteins long established as neural markers.  相似文献   

5.
The surface plasmon resonance (SPR) technique is a well-established method for the measurement of molecules binding to surfaces and the quantification of binding constants between surface-immobilized proteins and proteins in solution. In this paper we describe an extension of the methodology to study bacteriophage-bacterium interactions. A two-channel microfluidic SPR sensor device was used to detect the presence of somatic coliphages, a group of bacteriophages that have been proposed as fecal pollution indicators in water, using their host, Escherichia coli WG5, as a target for their selective detection. The bacterium, E. coli WG5, was immobilized on gold sensor chips using avidin-biotin and bacteriophages extracted from wastewater added. The initial binding of the bacteriophage was observed at high concentrations, and a separate, time-delayed cell lysis event also was observed, which was sensitive to bacteriophage at low concentrations. As few as 1 PFU/ml of bacteriophage injected into the chamber could be detected after a phage incubation period of 120 min, which equates to an approximate limit of detection of around 10(2) PFU/ml. The bacteriophage-bacterium interaction appeared to cause a structural change in the surface-bound bacteria, possibly due to collapse of the cell, which was observed as an increase in mass density on the sensor chip. These results suggest that this methodology could be employed for future biosensor technologies and for quantification of the bacteriophage concentration.  相似文献   

6.
Nucleic acid quantification is a relevant issue for the characterization of mammalian recombinant cell lines and also for the registration of producer clones. Quantitative real-time PCR is a powerful tool to investigate nucleic acid levels but numerous different quantification strategies exist, which sometimes lead to misinterpretation of obtained qPCR data. In contrast to absolute quantification using amplicon- or plasmid standard curves, relative quantification strategies relate the gene of interest to an endogenous reference gene. The relative quantification methods also consider the amplification efficiency for the calculation of the gene copy number and thus more accurate results compared to absolute quantification methods are generated. In this study two recombinant Chinese hamster ovary cell lines were analysed for their transgene copy number using different relative quantification strategies. The individual calculation methods resulted in differences of relative gene copy numbers because efficiency calculations have strong impact on gene copy numbers. However, in context of comparing transgene copy numbers of two individual clones the influence of the calculation method is marginal. Therefore especially for the comparison of two cell lines with the identical transgene any of the relative qPCR methods was proven as powerful tool.  相似文献   

7.
Asymmetric stem cell division has emerged as a major regulatory mechanism for physiologic control of stem cell numbers. Reinvigoration of the cancer stem cell theory suggests that tumorigenesis may be regulated by maintaining the balance between asymmetric and symmetric cell division. Therefore, mutations affecting this balance could result in aberrant expansion of stem cells. Although a number of molecules have been implicated in regulation of asymmetric stem cell division, here, we highlight known tumor suppressors with established roles in this process. While a subset of these tumor suppressors were originally defined in developmental contexts, recent investigations reveal they are also lost or mutated in human cancers. Mutations in tumor suppressors involved in asymmetric stem cell division provide mechanisms by which cancer stem cells can hyperproliferate and offer an intriguing new focus for understanding cancer biology. Our discussion of this emerging research area derives insight from a frontier area of basic science and links these discoveries to human tumorigenesis. This highlights an important new focus for understanding the mechanism underlying expansion of cancer stem cells in driving tumorigenesis.  相似文献   

8.
The semi-soft agar colony assay permits an invitro analysis of committed myeloid stem cell (CFU-c) proliferation capacities. In this paper this procedure has been used in combination with prior diffusion chamber culturing to determine the effect of host influences upon this committed stem cell population. This “double-seeding” procedure of first culturing bone marrow cells in diffusion chambers and then re-seeding them in agar furnishes data suggesting a relationship between invivo diffusion chamber transitional lymphocytes and invitro CFU-c seeding capacities. Diffusion chamber culturing offers a means of monitoring granulopoiesis and selects for enrichment of stem cell numbers. Detection and quantification of diffusion chamber stem cell enrichment is easily assessed by seeding chamber contents into the agar colony assay.  相似文献   

9.
Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. Cell‐replacement therapies have emerged as a promising strategy to slow down or replace neuronal loss. Compared to other stem cell types, endometrium‐derived stem cells (EDSCs) are an attractive source of stem cells for cellular therapies because of their ease of collection and vast differentiation potential. Here we demonstrate that endometrium‐derived stem cells may be transplanted into an MPTP exposed monkey model of PD. After injection into the striatum, endometrium‐derived stem cells engrafted, exhibited neuron‐like morphology, expressed tyrosine hydroxylase (TH) and increased the numbers of TH positive cells on the transplanted side and dopamine metabolite concentrations in vivo. Our results suggest that endometrium‐derived stem cells may provide a therapeutic benefit in the primate model of PD and may be used in stem cell based therapies.  相似文献   

10.
Human embryonic stem cells hold considerable potential for cell-based treatments of a variety of degenerative diseases, including diabetes, ischemic heart failure, and Parkinson's disease. However, advancing research to provide clinical-grade product requires scale-up to therapeutic quantities of stem cells and their differentiated progeny. Most human embryonic stem cell culture platforms require direct support by a fibroblast feeder layer or indirect support using fibroblast conditioned medium. Accordingly, large numbers of clinically compliant fibroblasts will be requisite for stem cell production. Published platforms for feeder production are insufficient for stem cell scale-up, being costly to operate and requiring considerable effort to prepare, maintain and harvest. Here we describe the expansion of cGMP-grade, FDA-approved human foreskin fibroblasts using cGMP-grade reagents and polystyrene-based cationic trimethyl ammonium-coated microcarriers in spinner flasks. Fibroblasts attach rapidly to the microcarriers (T(1/2)=75 min), and expand with a maximum doubling time of 22.5h. Importantly, microcarrier-expanded fibroblasts and their conditioned medium support pluripotent stem cell growth through >5 passages, enabling extended self-renewal and expansion while retaining full differentiation potential. In summary, the method described is an economical and cGMP-compliant means of producing human fibroblast cells in support of cGMP human embryonic stem cell culture.  相似文献   

11.
Hematopoietic stem cell deficiencies cause a severe macrocytic anemia in W/Wv mice. W44/W44 mice, on the other hand, are not anemic, but, since they accept marrow implants without prior total body irradiation, they have inherited a stem cell lesion. In an attempt to identify the aberrant stem cell(s), we have determined the concentration in W44/W44 marrow of hematopoietic precursors known to be deficient in W/Wv marrow. The in vitro erythroid burst-forming units (BFU-E), the in vivo spleen colony-forming units (CFU-S), and the cells that repopulate the erythroid compartment of stem cell-deficient mice were examined. The progenitors of 7-day bursts are dramatically reduced in W/Wv marrow but are present in normal concentrations in W44/W44 marrow. W44/W44 marrow CFU-S, unlike W/Wv, generate visible spleen colonies 10 days after injection into lethally irradiated recipients. The colonies are, however, smaller and at least 2 times less numerous than those produced from equivalent numbers of +/+ marrow. An additional defect was the inability of W44/W44 stem cells to compete with genetically marked +/+ cells during erythroid repopulation. An estimate of the number of W44/W44 stem cells needed to compete with +/+ cells was provided by enriching W44/W44 progenitors fivefold. Twice as many enriched W44/W44 marrow cells as unfractionated +/+ cells were required to replace competitor cells. This suggests that there are up to 10 times fewer stem cells somewhere in the W44/W44 erythrogenerative pathway. The data support the conclusion that an erythroid progenitor less mature than the BFU-E is one of the cells most severely affected by expression of the mutant gene.  相似文献   

12.
Transplantation of insulin-producing cells offers a promising therapy to treat diabetes. However, due to the limited number of donor islet cells available, researchers are looking for different sources of pancreatic islet progenitor or stem cells. A stem cell with extensive proliferative ability may provide a valuable source of islet progenitor cells. Several studies have demonstrated that a progenitor/stem-cell population can be expanded in vitro to generate large numbers of islet progenitor cells. However, efficient and directed differentiation of these cells to an endocrine pancreatic lineage has been difficult to achieve. We discuss here various pancreatic islet stem cells that we and others have obtained from embryonic, fetal or adult human tissues. We review the progress that has been achieved with pancreatic islet progenitor cell differentiation in the last 2 decades and discuss how close we are to translate this research to the clinics.  相似文献   

13.
Aim:  To develop a convenient and accurate method for estimating the rrn operon copy number ( Y rrn ) in cells of pure prokaryotic cultures based on quantitative real-time polymerase chain reaction (qRT-PCR).
Methods & Results:  Using Escherichia coli, the Y rrn of which is known to be 7, as a reference, the rrn concentrations of target species and E. coli in sample solutions were measured based on their respective threshold cycle numbers ( C t ), whereas the cell concentrations of both species were measured by microscopic counting after staining. The Y rrn of the target species was then calculated from the initial cell concentrations and the rrn concentrations of the target species and E. coli . Using this method, the Y rrn values of four species, i.e. Xanthomonas campestris , Staphylococcus aureus , Aeromonas hydrophila and Pseudomonas fluorescens , were estimated as 1·80, 4·73, 8·58 and 5·13, respectively, comparable to their respective known values of 2, 5, 10, and 5, resulting in an average deviation of 8%.
Conclusions:  The whole cell qRT-PCR based methods were convenient, accurate and reproducible in quantification of rrn copy number of prokaryotic cells.
Significance and Impact of the Study:  qTR-PCR is a fast and reliable DNA quantification approach. Compared with previous qTR-PCR based methods measuring rrn copy number, the present method avoided the prerequisite for the information on genome size and GC content of target bacteria or a gene with known copy number, thus should be more widely applicable.  相似文献   

14.
Zhang L  Alt C  Li P  White RM  Zon LI  Wei X  Lin CP 《Cytometry. Part A》2012,81(2):176-182
Adult zebrafish are being increasingly used as a model in cancer and stem cell research. Here we describe an integrated optical system that combines a laser scanning confocal microscope (LSCM) and an in vivo flow cytometer (IVFC) for simultaneous visualization and cell quantification. The system is set up specifically for non-invasive tracking of both stationary and circulating cells in adult zebrafish (casper) that have been engineered to be optically transparent. Confocal imaging in this instrument serves the dual purpose of visualizing fish tissue microstructure and an imaging-based guide to locate a suitable vessel for quantitative analysis of circulating cells by IVFC. We demonstrate initial testing of this novel instrument by imaging the transparent adult zebrafish casper vasculature and tracking circulating cells in CD41-GFP/Gata1-DsRed transgenic fish whose thrombocytes/erythrocytes express the green and red fluorescent proteins. In vivo measurements allow cells to be tracked under physiological conditions in the same fish over time, without drawing blood samples or sacrificing animals. We also discuss the potential applications of this instrument in biomedical research.  相似文献   

15.
The adult hippocampus is involved in learning and memory. As a consequence, it is a brain region of remarkable plasticity. This plasticity exhibits itself both as cellular changes and neurogenesis. For neurogenesis to occur, a population of local stem cells and progenitor cells is maintained in the adult brain and these are able to proliferate and differentiate into neurons which contribute to the hippocampal circuitry. There is much interest in understanding the role of immature cells in the hippocampus, in relation to learning and memory. Methods and mechanisms that increase the numbers of these cells will be valuable in this research field. We show here that single injections of soluble factors into the lateral ventricle of adult rats and mice induces the rapid (within one week) increase in the number of putative stem cells/progenitor cells in the hippocampus. The established progenitor marker Sox2 together with the more recently established marker Hes3, were used to quantify the manipulation of the Sox2/Hes3 double-positive cell population. We report that in both adult rodent species, Sox2+/Hes3+ cell numbers can be increased within one week. The most prominent increase was observed in the hilus of the dentate gyrus. This study presents a fast, pharmacological method to manipulate the numbers of endogenous putative stem cells/progenitor cells. This method may be easily modified to alter the degree of activation (e.g. by the use of osmotic pumps for delivery, or by repeat injections through implanted cannulas), in order to be best adapted to different paradigms of research (neurodegenerative disease, neuroprotection, learning, memory, plasticity, etc).  相似文献   

16.
This paper investigates the recent emergence of several major projects to bank and distribute large numbers of human induced pluripotent stem cells (hiPSCs) for translational research. The conceptual framework of the sociology of expectations is applied to interrogate the promise underpinning these developments. An analytic distinction is made between expectations associated with the field of hiPSC research more broadly and those specifically invested in cell banks as a form of scientific infrastructure, with the focus predominantly on the latter element. Empirical data for the analysis comes from qualitative interviews with stem cell scientists involved in a major European hiPSC banking project. In order to unpack these expectations, parallels to previous infrastructures of dissemination will be highlighted, with an emphasis on the functions of circulating and securing the quality of biological research materials.  相似文献   

17.
Summary The inhibitory effect of interferon on colony formation of myeloma stem cells in two layer plasma clot-soft agar cultures was studied. Human lymphoblast interferon inhibited in therapeutically attainable concentrations myeloma stem cell proliferation in 50% and human fibroblast interferon in 23% of the 14 myeloma patients in whom in vitro colony formation could be achieved. In interferon-sensitive patients the numbers of myeloma stem cell clusters and colonies were decreased to 34.4%–54.9% of control cultures. In addition, maturation of myeloma stem cells in differentiated plasma cells was reduced by interferon in most of these cases.  相似文献   

18.
The design, construction, and use of an autoinjection device that when used in conjunction with a liquid scintillation counter allows the detection and quantification of ATP in quantities as low as 2 pmoles is described. It provides a method for the detection and recording of the initial seconds of luminescence that occur when ATP and the luciferin-luciferase enzyme system are combined. This device can be quickly and easily fabricated at a negligable cost from readily available materials and has been routinely used for moderate numbers of determinations.  相似文献   

19.
In the era of intravascular cell application protocols in the context of regenerative cell therapy, the underlying mechanisms of stem cell migration to nonmarrow tissue have not been completely clarified. We describe here the technique of intravital microscopy applied to the mouse cremaster microcirculation for analysis of peripheral bone marrow stem cell migration in vivo. Intravital microscopy of the M. cremaster has been previously introduced in the field of inflammatory research for direct observation of leucocyte interaction with the vascular endothelium. Since sufficient peripheral stem and progenitor cell migration includes similar initial steps of rolling along and firm adhesion at the endothelial lining it is conceivable to apply the M. cremaster model for the observation and quantification of the interaction of intravasculary administered stem cells with the endothelium. As various chemical components can be selectively applied to the target tissue by simple superfusion techniques, it is possible to establish essential microenvironmental preconditions, for initial stem cell recruitment to take place in a living organism outside the bone marrow.  相似文献   

20.
It has been widely known that the giant panda (Ailuropoda melanoleuca) is one of the most endangered species in the world. An optimized platform for maintaining the proliferation of giant panda mesenchymal stem cells (MSCs) is very necessary for current giant panda protection strategies. Basic fibroblast growth factor (bFGF), a member of the FGF family, is widely considered as a growth factor and differentiation inducer within the stem cell research field. However, the role of bFGF on promoting the proliferation of MSCs derived from giant panda bone marrow (BM) has not been reported. In this study, we aimed to investigate the role of bFGF on the proliferation of BM-MSCs derived from giant panda. MSCs were cultured for cell proliferation analysis at 24, 48 and 72 hrs following the addition of bFGF. With increasing concentrations of bFGF, cell numbers gradually increased. This was further demonstrated by performing 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) cell proliferation assay, 5-Bromo-2-deoxyUridine (BrdU) labeling and cell cycle testing. Furthermore, the percentage of MSCs that were OCT4 positive increased slightly following treatment with 5 ng/ml bFGF. Moreover, we demonstrated that the extracellular signal-regulated kinase (ERK) signaling pathway may play an important role in the proliferation of panda MSCs stimulated by bFGF. In conclusion, this study suggests that giant panda BM-MSCs have a high proliferative capacity with the addition of 5 ng/ml bFGF in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号