首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
H+-translocating, Mg2+-ATPase was solubilized from vacuolar membranes of Saccharomyces cerevisiae with the zwitterionic detergent N-tetradecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate and purified by glycerol density gradient centrifugation. Partially purified vacuolar membrane H+-ATPase, which had a specific activity of 18 units/mg of protein, was separated almost completely from acid phosphatase and alkaline phosphatase. The purified enzyme required phospholipids for maximal activity and hydrolyzed ATP, GTP, UTP, and CTP, with this order of preference. Its Km value for Mg2+-ATP was determined to be 0.21 mM and its optimal pH was 6.9. ADP inhibited the enzyme activity competitively, with a Ki value of 0.31 mM. The activity of purified ATPase was strongly inhibited by N,N'-dicyclohexylcarbodiimide, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide, tributyltin, 7-chloro-4-nitrobenzoxazole, diethylstilbestrol, and quercetin, but was not affected by oligomycin, sodium azide, sodium vanadate, or miconazole. It was not inhibited at all by antiserum against mitochondrial F1-ATPase or mitochondrial F1-ATPase inhibitor protein. These results indicated that vacuolar membrane H+-ATPase is different from either yeast plasma membrane H+-ATPase or mitochondrial F1-ATPase. The vacuolar membrane H+-ATPase was found to be composed of two major polypeptides a and b of Mr = 89,000 and 64,000, respectively, and a N,N'-dicyclohexylcarbodiimide binding polypeptide c of Mr = 19,500, whose polypeptide composition was also different from those of either plasma membrane H+-ATPase or mitochondrial F1-ATPase of S. cerevisiae.  相似文献   

2.
The gene for the Neurospora crassa plasma membrane H+-ATPase has been cloned and sequenced. The gene encodes for a protein of 920 amino acids with a molecular weight of 100,002. The coding region is interrupted by four introns: three near the amino terminus and one near the carboxyl terminus. The deduced amino acid sequence of the N. crassa plasma membrane H+-ATPase exhibits 75% homology to the amino acid sequence of the Saccharomyces cerevisiae plasma membrane H+-ATPase. Also, an amino acid comparison with the Na+/K+-ATPase from sheep kidney, Ca2+-ATPase from rabbit muscle, and K+-ATPase from Escherichia coli reveals that certain regions are highly conserved and suggest that these regions may serve essential functions which are common to the various cation-motive ATPases. This observation suggests that the phosphorylatable, cation-motive ATPases may function via a similar energy transduction mechanism.  相似文献   

3.
Based on hydropathy analysis, the P-type cation translocating ATPases are believed to have similar topological arrangements in the membrane, but little independent evidence exists for their precise pattern of transmembrane folding. As a first step toward defining the topology of the Neurospora plasma membrane H+-ATPase, we have mapped the orientation of the amino and carboxyl termini. In three different types of experiments, both termini of the H+-ATPase were shown to be exposed at the cytoplasmic surface of the plasma membrane: 1) antibodies specific for the amino and carboxyl termini bound to permeabilized but not intact cells; 2) inside-out plasma membrane vesicles were approximately 100-fold more effective than intact cells in competing for antibody binding; and 3) trypsin, which is known to proteolyze three sites at the amino terminus and one site at the carboxyl terminus of the purified Neurospora H+-ATPase (Mandala, S. M., and Slayman, C. W. (1988) J. Biol. Chem. 263, 15122-15128), was found in the present study to cleave the same sites in inside-out plasma membrane vesicles but not in intact cells. These results indicate that the ATPase polypeptide traverses the membrane an even number of times, in support of a previously published topological model (Hager, K. M., Mandala, S. M., Davenport, J. W., Speicher, D. W., Benz, E. J., Jr., and Slayman, C. W. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 7693-7697).  相似文献   

4.
Addition of hydrogen peroxide (greater than 10 mM) to aerated derepressed cells of S. cerevisiae in the absence of substrate caused a boost of endogenous respiration and both intra- and extracellular acidification, without any significant change in cellular ATP level. Furthermore, a hyperpolarization of the plasma membrane was indicated by an enhanced accumulation of tetraphenylphosphonium in the cells. The extracellular pH attained was as low as 3.5. The acidification could be suspended by the H(+)-ATPase inhibitors diethylstilbestrol and dicyclohexylcarbodiimide and was, in general, associated with an opposite flux of K+. K+ also stimulated the H(+)-ATPase activity in the purified plasma membrane fraction. These results are consistent with the plasma membrane H(+)-ATPase being involved in the H+ extrusion induced by H2O2 in the absence of substrate. Extended exposure of cells to H2O2 led eventually to an arrest of both respiration and ion fluxes that could be again lifted by depolarizing the plasma membrane. Along with differences in the cellular NADH/NAD+ ratio and in the participation of organic acids, this makes the H2O2-induced acidification distinct from that induced by glucose.  相似文献   

5.
6.
The H(+)-ATPase of the plasma membrane from Saccharomyces cerevisiae has been isolated, purified and reconstituted into asolectin liposomes. The kinetics of ATP hydrolysis have been compared for the H(+)-ATPase in the plasma membrane, in a protein/lipid/detergent micelle (isolated enzyme) and in asolectin proteoliposomes (reconstituted enzyme). In all three cases the kinetics of ATP hydrolysis can be described by Michaelis-Menten kinetics with Km = 0.2 mM MgATP (plasma membranes), Km = 2.4 mM MgATP (isolated enzyme) and Km = 0.2 mM MgATP (reconstituted enzyme). However, the maximal turnover decreases only by a factor of two during isolation of the enzyme and does not change during reconstitution; the activation of the H(+)-ATPase by free Mg2+ is also only slightly influenced by the detergent. The dissociation constant of the enzyme-Mg2+ complex Ka, does not alter during isolation and the dissociation constant of the enzyme-substrate complex, Ks, increases from Ks = 30 microM (plasma membranes) to Ks = 90 microM (isolated enzyme). ATP binding to the H(+)-ATPase ('single turnover' conditions) for the isolated and the reconstituted enzyme resulted in both cases in a second-order rate constant k1 = 2.6 x 10(4) M-1.s-1. From these observations it is concluded that the detergent used (Zwittergent TM 3-14) interacts reversibly with the H(+)-ATPase and that practically all H(+)-ATPase molecules are reconstituted into the liposomes with the ATP-binding site being directed to the outside of the vesicle.  相似文献   

7.
The plasma membrane H+-ATPase is a proton pump belonging to the P-type ATPase superfamily and is important for nutrient acquisition in plants. The H+-ATPase is controlled by an autoinhibitory C-terminal regulatory domain and is activated by 14-3-3 proteins which bind to this part of the enzyme. Alanine-scanning mutagenesis through 87 consecutive amino acid residues was used to evaluate the role of the C-terminus in autoinhibition of the plasma membrane H+-ATPase AHA2 from Arabidopsis thaliana. Mutant enzymes were expressed in a strain of Saccharomyces cerevisiae with a defective endogenous H+-ATPase. The enzymes were characterized by their ability to promote growth in acidic conditions and to promote H+ extrusion from intact cells, both of which are measures of plasma membrane H+-ATPase activity, and were also characterized with respect to kinetic properties such as affinity for H+ and ATP. Residues that when altered lead to increased pump activity group together in two regions of the C-terminus. One region stretches from K863 to L885 and includes two residues (Q879 and R880) that are conserved between plant and fungal H+-ATPases. The other region, incorporating S904 to L919, is situated in an extension of the C-terminus unique to plant H+-ATPases. Alteration of residues in both regions led to increased binding of yeast 14-3-3 protein to the plasma membrane of transformed cells. Taken together, our data suggest that modification of residues in two regions of the C-terminal regulatory domain exposes a latent binding site for activatory 14-3-3 proteins.  相似文献   

8.
Protein chemistry of the Neurospora crassa plasma membrane H+-ATPase   总被引:1,自引:0,他引:1  
A highly effective procedure for fragmenting the Neurospora crassa plasma membrane H+-ATPase and purifying the resulting peptides is described. The enzyme is cleaved with trypsin to form a limit digest containing both hydrophobic and hydrophilic peptides, and the hydrophobic and hydrophilic peptides are then separated by extraction with an aqueous ammonium bicarbonate solution. The hydrophilic peptides are fractionated by Sephadex G-25 column chromatography into three pools, and the individual peptides in each pool are purified by high-performance liquid chromatography. The hydrophobic peptides are dissolved in neat trifluoroacetic acid (TFA), diluted with chloroform-methanol (1:1), and the hydrophobic peptide solution thus obtained is then fractionated by Sephadex LH-60 column chromatography in chloroform-methanol (1:1) containing 0.1% TFA. The recoveries in all of the above procedures are greater than 90%. The N-terminal amino acid sequences of three of the hydrophobic H+-ATPase peptides purified by this methodology have been determined, which establishes the position of these peptides in the 100,000 Da polypeptide chain by reference to the published gene sequence, and documents the sequencability of the hydrophobic peptides purified in this way. This methodology should facilitate the identification of a variety of amino acid residues important for the structure and function of the H+-ATPase molecule. Moreover, the overall strategy for working with the protein chemistry of the H+-ATPase should be applicable to other amphiphilic integral membrane proteins as well.  相似文献   

9.
Reconstituted proteoliposomes containing Neurospora plasma membrane H+-ATPase molecules oriented predominantly with their cytoplasmic portion facing outward have been used to determine the location of the NH2 and COOH termini of the H+-ATPase relative to the lipid bilayer. Treatment of the proteoliposomes with trypsin in the presence of the H+-ATPase ligands Mg2+, ATP, and vanadate produces approximately 97-, 95-, and 88-kDa truncated forms of the H+-ATPase similar to those already known to result from cleavage at Lys24, Lys36, and Arg73 at the NH2-terminal end of the molecule. These results establish that the NH2-terminal end of the H+-ATPase polypeptide chain is located on the cytoplasmic side of the membrane. Treatment of the same proteoliposome preparation with trypsin in the absence of ligands releases approximately 50 water-soluble peptides from the proteoliposomes. Separation of the released peptides by high performance liquid chromatography and spectral analysis of the purified peptides identified only a few peptides with the properties expected of a COOH-terminal, tryptic undecapeptide with the sequence SLEDFVVSLQR, and NH2-terminal amino acid sequence analysis identified this peptide among the possible candidates. Quantitative considerations indicate that this peptide must have come from H+-ATPase molecules oriented with their cytoplasmic portion facing outward, and could not have originated from a minor population of H+-ATPase molecules of reverse orientation. These results directly establish that the COOH-terminal end of the H+-ATPase is also located on the cytoplasmic side of the membrane. These findings are important for elucidating the topography of the membrane-bound H+-ATPase and are possibly relevant to the topography of other aspartyl-phosphoryl-enzyme intermediate ATPases as well.  相似文献   

10.
A variety of commercially available cell wall hydrolytic enzyme preparations were screened alone and in various combinations for their ability to degrade the cell wall of Neurospora crassa wild type strain 1A. A combination was found which causes complete conversion of the normally filamentous germinated conidia to spherical structures in about 1.5 h. Examination of these spheroplasts by scanning electron microscopy indicated that, although they are spherical, they retain a smooth coat that can only be removed upon prolonged incubation in the enzyme mixture (about 10 h). The 10-h incubation in the enzyme mixture appears to have no obvious detrimental effects on the integrity of the plasma membrane since the activity and regulatory properties of the glucose active transport system in 10-h spheroplasts are essentially unimpaired. Importantly, plasma membranes can be isolated from the 10-h spheroplasts by an adaptation of the concanavalin A method developed previously in this laboratory for cells of the cell wall-less sl strain, which is not the case for the 1.5-h spheroplasts. The yield of plasma membrane vesicles isolated by this procedure is 18-36% as indicated by surface labeling with diazotized [125I]iodosulfanilic acid, and the preparation is less than 1% contaminated with mitochondrial protein. The chemical composition of the wild type plasma membranes is similar to that previously reported for membranes of the sl strain of Neurospora. The isolated wild type plasma membrane vesicles also exhibit all of the functional properties that have previously been demonstrated for the sl plasma membrane vesicles. The wild type vesicles catalyze MgATP-dependent electrogenic proton translocation as indicated by the concentrative uptake of [14C]SCN- and [14C]imidazole under the appropriate conditions, which indicates that they contain the plasma membrane H+-ATPase previously shown to exist in the sl plasma membranes and that they possess permeability barrier function as well. The vesicles also contain a Ca2+/H+ antiporter as evidenced by their ability to catalyze protonophore-inhibited MgATP-dependent 45Ca2+ accumulation. Sodium dodecyl sulfate-polyacrylamide gel electrophoretic analyses of the isolated vesicles indicate that the protein composition of the wild type vesicles is roughly similar to that of the sl plasma membranes with the H+-ATPase present as a major band of Mr approximately 105,000. The wild type plasma membrane ATPase forms a phosphorylated intermediate similar to that of the sl ATPase, and the specific activity of the H+-ATPase in both wild type and sl membranes is approximately 3 mumol of Pi released/mg of protein/min.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
On the subunit composition of the Neurospora plasma membrane H+-ATPase   总被引:2,自引:0,他引:2  
The resolution-reconstitution approach has been employed in order to gain information as to the subunit composition of the Neurospora plasma membrane H+-ATPase. Proteoliposomes prepared from sonicated asolectin and a highly purified, radiolabeled preparation of the 105,000-dalton hydrolytic moiety of the H+-ATPase by a freeze-thaw procedure catalyze ATP hydrolysis-dependent proton translocation as indicated by the extensive 9-amino-6-chloro-2-methoxyacridine fluorescence quenching that occurs upon the addition of MgATP to the proteoliposomes, and the reversal of this quenching induced by the H+-ATPase inhibitor, vanadate, and the proton conductors, carbonyl cyanide m-chlorophenylhydrazone and nigericin plus K+. ATP hydrolysis is tightly coupled to proton translocation into the liposomes as indicated by the marked stimulation of ATP hydrolysis by carbonyl cyanide m-chlorophenylhydrazone and nigericin plus K+. The maximum stimulation of ATPase activity by proton conductors is about 3-fold, which indicates that at least two-thirds of the hydrolytically active ATPase molecules present in the reconstituted preparation are capable of translocating protons into the liposomes. Furthermore, as estimated by the extent of protection of the reconstituted 105,000-dalton hydrolytic moiety against tryptic degradation by vanadate in the presence of Mg2+ and ATP, the fraction of the total population of ATPase molecules that are hydrolytically active is at least 91%. Taken together, these data indicate that at least 61% of the ATPase molecules present in the reconstituted preparation are able to catalyze proton translocation. This information allows an estimation of the amount of any polypeptide in the preparation that must be present in order for that polypeptide to qualify as a subunit that is required for proton translocation in addition to the 105,000-dalton hydrolytic moiety, and an analysis of the radiolabeled ATPase preparation by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and urea rules out the involvement of any such polypeptides larger than 2,500 daltons. This indicates that the Neurospora plasma membrane H+-ATPase has no subunits even vaguely resembling any that have been found to be associated with other transport ATPases and that if this enzyme has any subunits at all other than the 105,000-dalton hydrolytic moiety, they must be very small.  相似文献   

12.
Role of the Plasma Membrane H+-ATPase in K+ Transport   总被引:2,自引:0,他引:2       下载免费PDF全文
The role of the plant plasma membrane H+-ATPase in K+ uptake was examined using red beet (Beta vulgaris L.) plasma membrane vesicles and a partially purified preparation of the red beet plasma membrane H+-ATPase reconstituted in proteoliposomes and planar bilayers. For plasma membrane vesicles, ATP-dependent K+ efflux was only partially inhibited by 100 [mu]M vanadate or 10 [mu]M carbonyl cyanide-p-trifluoromethoxyphenylhydrazone. However, full inhibition of ATP-dependent K+ efflux by these reagents occurred when the red beet plasma membrane H+-ATPase was partially purified and reconstituted in proteoliposomes. When reconstituted in a planar bilayer membrane, the current/voltage relationship for the plasma membrane H+-ATPase showed little effect of K+ gradients imposed across the bilayer membrane. When taken together, the results of this study demonstrate that the plant plasma membrane H+-ATPase does not mediate direct K+ transport chemically linked to ATP hydrolysis. Rather, this enzyme provides a driving force for cellular K+ uptake by secondary mechanisms, such as K+ channels or H+/K+ symporters. Although the presence of a small, protonophore-insensitive component of ATP-dependent K+ transport in a plasma membrane fraction might be mediated by an ATP-activated K+ channel, the possibility of direct K+ transport by other ATPases (i.e. K+-ATPases) associated with either the plasma membrane or other cellular membranes cannot be ruled out.  相似文献   

13.
Sekler I  Pick U 《Plant physiology》1993,101(3):1055-1061
This paper describes partial purification and characterization of a vanadate-sensitive H+-ATPase from plasma membranes of Dunaliella acidophila, an extremely acidophilic unicellular alga (I. Sekler, H.U. Glaser, U. Pick [1991] J Membr Biol 121: 51-57). Purification is based on the insolubility in and stability of the enzyme in Triton X-100. The purified enzyme is highly enriched in a polypeptide of molecular mass 100 kD, which cross-reacts with antibodies against the plant plasma membrane H+-ATPase. Upon reconstitution into proteoliposomes, the enzyme catalyzes an ATP-dependent electrogenic H+ uptake. ATP hydrolysis is stimulated by lipids, is inhibited by vanadate, diethylstilbestrol, dicyclohexylcarbodiimide, erythrosine, and mercurials, and shows a sharp optimum at pH 6. Unusual properties of this enzyme, by comparison with plant plasma membrane H+-ATPases, are a higher affinity for ATP (Km = 40 [mu]M) and a larger stimulation by K+, which interacts with the enzyme from its cytoplasmic side. Comparative studies with cross-reacting antibodies, prepared against different domains of the plant H+-ATPase, suggest that the central hydrophilic domain containing the catalytic site is more conserved than the C- and N-terminal ends. The high abundance and stability of the plasma membrane H+-ATPase from D. acidophila make it an attractive model system for studies of the structure-function relations and regulation of this crucial enzyme.  相似文献   

14.
Large-scale isolation of the Neurospora plasma membrane H+-ATPase   总被引:3,自引:0,他引:3  
A method for the purification of relatively large quantities of the Neurospora crassa plasma membrane proton translocating ATPase is described. Cells of the cell wall-less sl strain of Neurospora grown under O2 to increase cell yields are treated with concanavalin A to stabilize the plasma membrane and homogenized in deoxycholate, and the resulting lysate is centrifuged at 13,500g. The pellet obtained consists almost solely of concanavalin A-stabilized plasma membrane sheets greatly enriched in the H+-ATPase. After removal of the bulk of the concanavalin A by treatment of the sheets with alpha-methylmannoside, the membranes are treated with lysolecithin, which preferentially extracts the H+-ATPase. Purification of the lysolecithin-solubilized ATPase by glycerol density gradient sedimentation yields approximately 50 mg of enzyme that is 91% free of other proteins as judged by quantitative densitometry of Coomassie blue-stained gels. The specific activity of the enzyme at this stage is about 33 mumol of P1 released/min/mg of protein at 30 degrees C. A second glycerol density gradient sedimentation step yields ATPase that is about 97% pure with a specific activity of about 35. For chemical studies or other investigations that do not require catalytically active ATPase, virtually pure enzyme can be prepared by exclusion chromatography of the sodium dodecyl sulfate-disaggregated, gradient-purified ATPase on Sephacryl S-300.  相似文献   

15.
Classical isolation procedure for plasma membrane H(+)-ATPase of Saccharomyces cerevisiae based on fractional centrifugation yielded always a roughly two-fold greater amount of membranes when starting from glucitol-preincubated than from glucose-preincubated yeast. This difference persisted all the way to the purified plasma membranes and to the purified H(+)-ATPase. The ATP-hydrolyzing activity by plasma membranes was roughly twice greater in glucose-preincubated cells than in the D-glucitol-preincubated ones while the purified enzyme was 7 times more active after glucose than after glucitol. Effects of diethylstilbestrol, suloctidil, erythrosin B, vanadate and dicarbanonaboranuide were very similar on plasma membrane-localized and purified ATPases of both forms, suggesting that both preparations contain the two ATPase forms, the glucose-preincubated one being richer in the activated form while the glucitol-preincubated one contains less of it.  相似文献   

16.
17.
In a previous communication, a water-soluble, hexameric form of the Neurospora crassa plasma membrane H+-ATPase was described (Chadwick, C. C., Goormaghtigh, E., and Scarborough, G. A. (1987) Arch. Biochem. Biophys. 252, 348-356). To facilitate physical studies of the hexamers, the H+-ATPase isolation procedure has been improved, resulting in a structurally and functionally stable hexamer preparation that contains only 5 to 10% non-ATPase protein, approximately 12 mol of enzyme-bound lysophosphatidylcholine/mol of H+-ATPase monomer, and little or no residual plasma membrane phospholipid. Importantly, when activated by lysophosphatidylglycerol, which satisfies the acidic phospholipid requirement of the enzyme, the hexameric quaternary structure of the enzyme is retained, indicating that the functional properties of the water-soluble hexamers are relevant to those of the native, membrane-bound enzyme. The circular dichroism (CD) spectrum of this H+-ATPase preparation has been measured from 184 to 260 nm and used to estimate the secondary structure of the enzyme. The H+-ATPase is estimated to consist of approximately 36% helix, 12% antiparallel beta-sheet, 8% parallel beta-sheet, 11% beta-turn, and 26% other (irregular) structure. There is no change in the CD spectrum when known enzyme ligands are added to the H+-ATPase solution, suggesting that any changes in secondary structure that might occur during ligand binding and/or catalytic cycling are either minor or result in compensatory changes in secondary structure. The CD spectrum of the H+-ATPase is also compared to published spectra of the animal cell Na+/K+- and Ca2+-ATPases and is shown to be quite similar in shape and intensity, suggesting that all of these ATPases, which have significant sequence homology and are mechanistically similar, may have similar secondary structure composition as well.  相似文献   

18.
The purified plasma membrane H(+)-ATPase of Schizosaccharomyces pombe and Saccharomyces cerevisiae display, in addition to the catalytic subunit of 100 kDa, a highly mobile component, soluble in chloroform/methanol. Chloroform/methanol extraction of S. cerevisiae plasma membranes led to isolation of a low molecular weight proteolipid identical to that present in purified H(+)-ATPase. NH2-terminal amino acid sequencing revealed a 38-residue polypeptide with a calculated molecular mass of 4250 Da. The polypeptide lacks the first two NH2-terminal amino acids as compared with the deduced sequence of the PMP1 gene (for plasma membrane proteolipid) isolated by hybridization with an oligonucleotide probe corresponding to an internal amino acid sequence of the proteolipid. The polypeptide is predicted to contain an NH2-terminal transmembrane segment followed by a very basic hydrophilic domain.  相似文献   

19.
P-type ATPases convert chemical energy into electrochemical gradients that are used to energize secondary active transport. Analysis of the structure and function of P-type ATPases has been limited by the lack of active recombinant ATPases in quantities suitable for crystallographic studies aiming at solving their three-dimensional structure. We have expressed Arabidopsis thaliana plasma membrane H+-ATPase isoform AHA2, equipped with a His(6)-tag, in the yeast Saccharomyces cerevisiae. The H+-ATPase could be purified both in the presence and in the absence of regulatory 14-3-3 protein depending on the presence of the diterpene fusicoccin which specifically induces formation of the H+-ATPase/14-3-3 protein complex. Amino acid analysis of the purified complex suggested a stoichiometry of two 14-3-3 proteins per H+-ATPase polypeptide. The purified H(+)-ATPase readily formed two-dimensional crystals following reconstitution into lipid vesicles. Electron cryo-microscopy of the crystals yielded a projection map at approximately 8 A resolution, the p22(1)2(1) symmetry of which suggests a dimeric protein complex. Three distinct regions of density of approximately equal size are apparent and may reflect different domains in individual molecules of AHA2.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号