首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Social relationships are essential for maintaining human mental health, yet little is known about the brain mechanisms involved in the development and maintenance of social bonds. Animal models are powerful tools for investigating the neurobiological mechanisms regulating the cognitive processes leading to the development of social relationships and for potentially extending our understanding of the human condition. In this review, we discuss the roles of the neuropeptides oxytocin and vasopressin in the regulation of social bonding as well as related social behaviors which culminate in the formation of social relationships in animal models. The formation of social bonds is a hierarchical process involving social motivation and approach, the processing of social stimuli and formation of social memories, and the social attachment itself. Oxytocin and vasopressin have been implicated in each of these processes. Specifically, these peptides facilitate social affiliation and parental nurturing behavior, are essential for social recognition in rodents, and are involved in the formation of selective mother-infant bonds in sheep and pair bonds in monogamous voles. The convergence of evidence from these animal studies makes oxytocin and vasopressin attractive candidates for the neural modulation of human social relationships as well as potential therapeutic targets for the treatment of psychiatric disorders associated with disruptions in social behavior, including autism.  相似文献   

2.
Central vasopressin and oxytocin, and their homologues, modulate a multitude of social behaviors in a variety of animal taxa. All social behavior requires some level of social (re)cognition, and these neuropeptides exert powerful effects on an animal's ability to recognize and appropriately respond to a conspecific. Social cognition for many mammals, including rodents, begins at the main and accessory olfactory systems. We recently identified vasopressin expressing neurons in the main and accessory olfactory bulb and in the anterior olfactory nucleus, a region of olfactory cortex that transmits and processes information in the main olfactory system. We review this and other work demonstrating that both vasopressin and oxytocin modulate conspecific social recognition at the level of the olfactory system. We also outline recent work on the somato-dendritic release of vasopressin and oxytocin, and propose a model by which the somato-dendritic priming of these neuropeptides in main olfactory regions may facilitate the formation of short-term social odor memories. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

3.
The early-life social environment has profound effects on brain development and subsequent expression of social behavior. Oxytocin and vasopressin are expressed and released in the brain and are important regulators of social behavior. Accordingly, the early social environment may alter social behaviors via changes in the oxytocin and/or vasopressin systems. To test this hypothesis, and to gain mechanistic insights, rodent models mimicking either a deprived (e.g. maternal separation) or enriched (e.g. neonatal handling) early social environment have been utilized. Findings indeed show that differences in the quality of the early social environment are associated with brain region-specific alterations in oxytocin and vasopressin expression and oxytocin receptor and vasopressin 1a receptor binding. Early social environment-induced changes in oxytocin and vasopressin systems were associated with changes in several forms of social behavior, including maternal care, aggression, play-fighting, and social recognition. First studies provide evidence for a causal link between altered vasopressin responsiveness and impairments in social recognition in rats exposed to maternal separation and a role for epigenetic mechanisms to explain persistent increases in vasopressin expression in mice exposed to maternal separation. Overall, initial findings suggest that oxytocin and vasopressin systems may mediate early social environment-induced alterations in social behavior. Additional comprehensive studies will be necessary to advance our understanding to what extent changes in oxytocin and vasopressin underlie early social environment-induced alterations in social behavior. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

4.
Understanding the neurobiological substrates regulating normal social behaviours may provide valuable insights in human behaviour, including developmental disorders such as autism that are characterized by pervasive deficits in social behaviour. Here, we review the literature which suggests that the neuropeptides oxytocin and vasopressin play critical roles in modulating social behaviours, with a focus on their role in the regulation of social bonding in monogamous rodents. Oxytocin and vasopressin contribute to a wide variety of social behaviours, including social recognition, communication, parental care, territorial aggression and social bonding. The effects of these two neuropeptides are species-specific and depend on species-specific receptor distributions in the brain. Comparative studies in voles with divergent social structures have revealed some of the neural and genetic mechanisms of social-bonding behaviour. Prairie voles are socially monogamous; males and females form long-term pair bonds, establish a nest site and rear their offspring together. In contrast, montane and meadow voles do not form a bond with a mate and only the females take part in rearing the young. Species differences in the density of receptors for oxytocin and vasopressin in ventral forebrain reward circuitry differentially reinforce social-bonding behaviour in the two species. High levels of oxytocin receptor (OTR) in the nucleus accumbens and high levels of vasopressin 1a receptor (V1aR) in the ventral pallidum contribute to monogamous social structure in the prairie vole. While little is known about the genetic factors contributing to species-differences in OTR distribution, the species-specific distribution pattern of the V1aR is determined in part by a species-specific repetitive element, or 'microsatellite', in the 5' regulatory region of the gene encoding V1aR (avpr1a). This microsatellite is highly expanded in the prairie vole (as well as the monogamous pine vole) compared to a very short version in the promiscuous montane and meadow voles. These species differences in microsatellite sequence are sufficient to change gene expression in cell culture. Within the prairie vole species, intraspecific variation in the microsatellite also modulates gene expression in vitro as well as receptor distribution patterns in vivo and influences the probability of social approach and bonding behaviour. Similar genetic variation in the human AVPR1A may contribute to variations in human social behaviour, including extremes outside the normal range of behaviour and those found in autism spectrum disorders. In sum, comparative studies in pair-bonding rodents have revealed neural and genetic mechanisms contributing to social-bonding behaviour. These studies have generated testable hypotheses regarding the motivational systems and underlying molecular neurobiology involved in social engagement and social bond formation that may have important implications for the core social deficits characterizing autism spectrum disorders.  相似文献   

5.
Neuroendocrine basis of social recognition   总被引:3,自引:0,他引:3  
Studies conducted in the past two years have yielded several new insights about neuroendocrine regulation of social recognition. The social recognition deficits seen in oxytocin knockout mice have now been demonstrated in both males and females, as well as in female estrogen receptor knockout mice. The male vasopressin V1A receptor knockout mouse (but not V1B) has a profound social recognition deficit. Preliminary evidence suggests that female V1B receptor knockout mice could also have social memory deficits. Several lines of evidence have emerged that indicate that neuropeptide regulation is significantly modulated by gonadal and corticosteroid activation.  相似文献   

6.
The neuropeptides oxytocin and vasopressin have increasingly been identified as modulators of human social behaviors and associated with neuropsychiatric disorders characterized by social dysfunction, such as autism. Identifying the human brain regions that are impacted by oxytocin and vasopressin in a social context is essential to fully characterize the role of oxytocin and vasopressin in complex human social cognition. Advances in human non-invasive neuroimaging techniques and genetics have enabled scientists to begin to elucidate the neurobiological basis of the influence of oxytocin and vasopressin on human social behaviors. Here we review the findings to-date from investigations of the acute and chronic effects of oxytocin and vasopressin on neural activity underlying social cognitive processes using "pharmacological fMRI" and "imaging genetics", respectively. This article is part of a Special Issue entitled Oxytocin, Vasopressin, and Social Behavior.  相似文献   

7.
Pharmacological studies in prairie voles have suggested that the neuropeptides oxytocin and vasopressin play important roles in behaviors associated with monogamy, including affiliation, paternal care, and pair bonding. Our laboratory has investigated the cellular and neuroendocrine mechanisms by which these peptides influence affiliative behavior and social attachment in prairie voles. Monogamous prairie voles have a higher density of oxytocin receptors in the nucleus accumbens than do nonmonogamous vole species; blockade of these receptors by site-specific injection of antagonist in the female prairie vole prevents partner preference formation. Prairie voles also have a higher density of vasopressin receptors in the ventral pallidal area, which is the major output of the nucleus accumbens, than montane voles. Both the nucleus accumbens and ventral pallidum are key relay nuclei in the brain circuits implicated in reward, such as the mesolimbic dopamine and opioid systems. Therefore, we hypothesize that oxytocin and vasopressin may be facilitating affiliation and social attachment in monogamous species by modulating these reward pathways.  相似文献   

8.
Rats dehydrated for 8 days and subsequently rehydrated were given intracerebroventricularly (i.c.v.) methoxamine hydrochloride (MX) or dihydroergotamine methanosulphonate (DHE), each in a daily dose of 10 micrograms dissolved in 10 microliter of 0.9% sodium chloride. A single dose of MX injected to normally hydrated animals increased the release of hypothalamic and neurohypophysial vasopressin but did not affect significantly the oxytocic activity in the hypothalamus as well as in the neurohypophysis. Under conditions of dehydration MX did not influence the hypothalamic vasopressin content but it stimulated the neurohypophysial vasopressin depletion. On the contrary, MX distinctly inhibited the decrease of hypothalamic and neurohypophysial oxytocin content in dehydrated animals. In rehydrated animals MX restrained some what the renewal of hypothalamic vasopressin and oxytocin storage but intensified this process in the neurohypophysis. A single dose of DHE decreased the vasopressin content in the hypothalamus as well as the oxytocin content both in the hypothalamus and neurohypophysis. Under conditions of dehydration DHE stimulated the depletion of hypothalamic vasopressin and oxytocin. On the contrary, DHE strongly inhibited the depletion of oxytocin in the neurohypophysis of dehydrated rats. DHE restrained the renewal of hypothalamic vasopressin and oxytocin stores as well as intensified this process in the neurohypophysis of subsequently rehydrated rats.  相似文献   

9.
We used in situ hybridization and immunocytochemistry to investigate a possible coexistence of vasopressin and oxytocin in hypothalamic neurons of parturient rats. We found that a fraction of magnocellular neurons in the paraventricular and supraoptic nuclei contained immunostaining for both peptides as well as oxytocin and vasopressin mRNA hybridization. Colocalization of immunoreactive vasopressin and oxytocin could be observed in some of the Herring bodies in the median eminence and the posterior lobe. No coexistence of vasopressin and oxytocin was found in pregnant or in lactating animals, indicating that the observed coexistence is transitory, perhaps mediated through changing hormonal conditions peri partum.  相似文献   

10.
Neurons that synthesize melanin-concentrating hormone (MCH) colocalize GABA, regulate energy homeostasis, modulate water intake, and influence anxiety, stress, and social interaction. Similarly, vasopressin and oxytocin can influence the same behaviors and states, suggesting that these neuropeptides may exert part of their effect by modulating MCH neurons. Using whole cell recording in MCH-green fluorescent protein (GFP) transgenic mouse hypothalamic brain slices, we found that both vasopressin and oxytocin evoked a substantial excitatory effect. Both peptides reversibly increased spike frequency and depolarized the membrane potential in a concentration-dependent and tetrodotoxin-resistant manner, indicating a direct effect. Substitution of lithium for extracellular sodium, Na(+)/Ca(2+) exchanger blockers KB-R7943 and SN-6, and intracellular calcium chelator BAPTA, all substantially reduced the vasopressin-mediated depolarization, suggesting activation of the Na(+)/Ca(2+) exchanger. Vasopressin reduced input resistance, and the vasopressin-mediated depolarization was attenuated by SKF-96265, suggesting a second mechanism based on opening nonselective cation channels. Neither vasopressin nor oxytocin showed substantial excitatory actions on lateral hypothalamic inhibitory neurons identified in a glutamate decarboxylase 67 (GAD67)-GFP mouse. The primary vasopressin receptor was vasopressin receptor 1a (V1aR), as suggested by the excitation by V1aR agonist [Arg(8)]vasotocin, the selective V1aR agonist [Phe(2)]OVT and by the presence of V1aR mRNA in MCH cells, but not in other nearby GABA cells, as detected with single-cell RT-PCR. Oxytocin receptor mRNA was also detected in MCH neurons. Together, these data suggest that vasopressin or oxytocin exert a minimal effect on most GABA neurons in the lateral hypothalamus but exert a robust excitatory effect on presumptive GABA cells that contain MCH. Thus, some of the central actions of vasopressin and oxytocin may be mediated through MCH cells.  相似文献   

11.
The effect of centrally administered galanin (Gal; 100 pM i.c.v.) on the hypothalamo-neurohypophysial storage as well as blood plasma level of vasopressin and oxytocin was estimated in haemorrhaged (1 ml per 100 g b.w.) male Wistar rats. Gal i.c.v. treatment did not alter vasopressin and oxytocin content both in the hypothalamus and neurohypophysis as well as their concentration in blood plasma of not haemorrhaged rats. Haemorrhage decreased the hypothalamic and neurohypophysial vasopressin and oxytocin storage but increased the neurohormones plasma level in animals injected with vehicle solution. During the haemorrhage, the increase in plasma vasopressin and oxytocin was inhibited in rats previously treated i.c.v. with galanin. The hypothalamic and neurohypophysial vasopressin as well as oxytocin content significantly increased in animals treated with galanin and subsequently haemorrhaged. These results suggest that galanin may have a regulatory role in the hypothalamo-neurohypophysial function especially under condition of hypovolemia.  相似文献   

12.
Storm EE  Tecott LH 《Neuron》2005,47(4):483-486
Mammals have developed patterns of social relationships that enhance the survival of individuals and maximize the reproductive success of species. Although social stimuli and social responses are highly complex, recent studies are providing substantial insights into their neural substrates. Neural pathways employing the nonapeptides vasopressin and oxytocin play a particularly prominent role both in social recognition and the expression of appropriate social responses. New insights into social neuroscience are discussed, along with the relevance of this rapidly developing field to human relationships and disease processes.  相似文献   

13.
14.
Intracerebroventricular hANP (50 nmol) inhibits release of vasopressin and oxytocin following dehydration as well as after haemorrhage. 10 nmol/L hANP markedly inhibits vasopressin and oxytocin release in vitro from the neurointermediate lobes both under basal condition as well as during stimulation with excess (56 mM) potassium. It is suggested that ANP may serve as a modulator of vasopressin and oxytocin release. The respective processes are localized, at least in part, at the neurohypophysial level.  相似文献   

15.
Social recognition, whereby animals identify and recognize other individual conspecifics, is a crucial prerequisite for a wide range of social behaviours. There are relationships among social odours (chemical signals), parasite recognition and avoidance that are associated with hormonal, neural and genomic mechanisms in rodents. Rodents use social odours to: (i) distinguish between infected and uninfected individuals; (ii) recognize specific infected individuals; and (iii) avoid and display aversive responses to infected individuals. There are genomic correlates of this parasite recognition and avoidance in which genes expressing the neuropeptide oxytocin have roles. In this article, we provide a framework ("micronet") by which the genetic, hormonal and neural interactions associated with social behaviours and recognition and avoidance of parasitized individuals can be explored.  相似文献   

16.
In Chang liver cells the administration of oxytocin and vasopressin as well as the combined application of the two hormones will result in a positive binding imprinting for oxytocin and a negative binding imprinting for vasopressin. The hormones are able to increase the mitotic capacity of the liver cells even without previous imprinting, both in the case of treatment for 4 hours and for 24 hours; the change, however, is more marked in the case of treatment for 4 hours. Treatment for 24 hours results also in some functional imprinting.  相似文献   

17.
In vertebrates and invertebrates, oxytocin/vasopressin-like peptides modulate a variety of behaviors. The recent discovery of the gene and receptor sequences of inotocin, the insect ortholog of oxytocin/vasopressin, opens new opportunities for understanding the role of this peptide family in regulating behaviors in the most populated class of living animals. Ants live in highly organized colonies. Once a year, they produce future queens that soon leave the nest to mate and found new colonies. During the first months of their lives, ant queens display a sequence of behaviors ranging from copulation and social interactions to violent fighting. In order to investigate the potential roles of inotocin in shaping queen behavior, we measured gene expression of the inotocin receptor in the heads of Lasius niger ant queens at different points in time. The highest levels of expression occurred early in queen life when they experience crowded conditions in their mother nests and soon thereafter set out to mate. Inotocin could thus be involved in regulating social and reproductive behaviors as reported in other animals. While oxytocin and vasopressin are also involved in aggression in mammals, we found no direct link between these behaviors and inotocin receptor expression in L. niger. Our study provides a first glimpse into the roles the inotocin receptor might play in regulating important processes in ant physiology and behavior. Further studies are needed to understand the molecular function of this complex signaling system in more detail.  相似文献   

18.
J T Pan  L M Mai 《Life sciences》1990,47(26):2443-2450
The roles of oxytocin and vasopressin on prolactin secretion were studied. Adult female Sprague-Dawley rats ovariectomized for two weeks and treated with a long-acting estrogen, polyestradiol phosphate for one week were used. Hormone administration and serial blood sampling were accomplished through indwelling intra-atrial catheters which were implanted two days before the experiment. Both oxytocin (20 micrograms/rat) and vasopressin (5 micrograms/rat) stimulated prolactin secretion within 10 min after injection and the effects were diminished by 30 min. In animals pretreated with a small dose of dopamine antagonist, sulpiride (1 microgram/rat), the effect of TRH on prolactin secretion was repeatedly shown to be potentiated. Same pretreatments with two different time intervals (30 and 60 min) between sulpiride and oxytocin/vasopressin administration, however, had no effect on oxytocin- or vasopressin-stimulated prolactin secretion. A vasopressin analog, 1-deamino-[D-Arg8]-vasopressin (dDAVP), with antidiuretic but no vasopressor activity was also used in the study. It was found that unlike vasopressin, dDAVP had no effect on prolactin secretion. In conclusion, both oxytocin and vasopressin can have a stimulatory effect on prolactin secretion when given in vivo. Unlike TRH, however, the action of oxytocin or vasopressin was not augmented by pretreatments of dopamine antagonist. The action of vasopressin on prolactin secretion may be a side effect of its vasopressor activity.  相似文献   

19.
Neurophysiology of body fluid homeostasis   总被引:4,自引:0,他引:4  
1. Oxytocin as well as vasopressin is released in rats following systemic osmotic stimulation. There is evidence that, in the rat, oxytocin is a natriuretic hormone. 2. Osmotically-induced activation of oxytocin and vasopressin cells and osmotically-induced hormone secretion are diminished by ablation of tissue in the region anterior and ventral to the third ventricle (AV3V region). 3. The nature and identity of the osmoreceptors subserving oxytocin and vasopressin release are discussed.  相似文献   

20.
The content and distribution of vasopressin and oxytocin were determined during fetal development in the rat brain and pituitary by means of radioimmunoassay and immunocytochemistry. The vasopressin content in the fetal brain showed a gradual rise from day 16 of pregnancy onwards, while pituitary vasopressin rapidly increased from fetal day 19 until birth. The oxytocin content in the fetal brain was considerably lower than the vasopressin content. A decrease in oxytocin content was seen between day 16 and day 18 while from day 18 of pregnancy onwards a slight increase was found. The pituitary oxytocin content starts to rise between day 17 and 18 of pregnancy, but at term the pituitary oxytocin content was only 1/20 of the vasopressin value. Immunocytochemistry revealed that vasopressin levels in the fetal rat brain were not only due to the presence of the classical hypothalamoneurohypophyseal system, but also to the early development of exohypothalamic fibers. Vasopressin containing cells were seen from fetal day 16 in the supraoptic nucleus, and from fetal day 18 in the paraventricular nucleus. The fiber outgrowth of these cells towards the pituitary and extrahypothalamic brain sites seems to be well synchronized, as on day 17 vasopressin containing fibers could be demonstrated in the olfactory bulb as well as in the median eminence. No positive staining for oxytocin could be obtained in the fetal rat, while during the entire fetal period no positive staining was found in cell bodies in the region of the suprachiasmatic nucleus. The early peptidergic innervation of the brain, which enabled the tracing of the source of some exohypothalamic fibers, might be related to several central processes among which brain development itself is included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号