首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Structural and kinetic studies have revealed two flavin conformations in p-hydroxybenzoate hydroxylase (PHBH), the in-position and the out-position. Conversion between these two conformations is believed to be essential during catalysis. Although substrate hydroxylation occurs while the flavin in PHBH is in the in-conformation, the position of the flavin during reduction by NADPH is uncertain. To investigate the catalytic importance of the out-conformation of the flavin and to clarify the mechanism of flavin reduction in PHBH, we report quantitative structure-reactivity relationships (QSAR) using PHBH substituted separately with nine derivatives of FAD modified in the 8-position and four dihydronicotinamide analogues as reducing agents. The 8-position of the FAD isoalloxazine ring was chosen for modification because in PHBH it has minimal interactions with the protein and is accessible to solvent. The chemical sequence of events during catalysis by PHBH was not altered when using any of the modified flavins, and normal products were obtained. Although the rate of reduction of PHBH reconstituted with flavin derivatives is expected to be dependent on the redox potential of the flavin, no strict correlation was observed. Instead, the rate of reduction correlated with the kappa-substituent constant, which is based on size and hydrophobicity of the 8-substituent on the FAD. Substituents that sterically hinder attainment of the out-conformation decreased the rate of flavin reduction much more than expected on the basis of the redox potential of the flavin. The results of this QSAR analysis are consistent with the hypothesis that the flavin in PHBH must move to the out-conformation for proper formation of the charge-transfer complex between NADPH and FAD that is necessary for rapid flavin reduction.  相似文献   

2.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens was replaced by a stereochemical analog, which is spontaneously formed from natural FAD in alcohol oxidases from methylotrophic yeasts. Reconstitution of p-hydroxybenzoate hydroxylase from apoprotein and modified FAD is a rapid process complete within seconds. Crystals of the enzyme-substrate complex of modified FAD-containing p-hydroxybenzoate hydroxylase diffract to 2.1 A resolution. The crystal structure provides direct evidence for the presence of an arabityl sugar chain in the modified form of FAD. The isoalloxazine ring of the arabinoflavin adenine dinucleotide (a-FAD) is located in a cleft outside the active site as recently observed in several other p-hydroxybenzoate hydroxylase complexes. Like the native enzyme, a-FAD-containing p-hydroxybenzoate hydroxylase preferentially binds the phenolate form of the substrate (pKo = 7.2). The substrate acts as an effector highly stimulating the rate of enzyme reduction by NADPH (kred > 500 s-1). The oxidative part of the catalytic cycle of a-FAD-containing p-hydroxybenzoate hydroxylase differs from native enzyme. Partial uncoupling of hydroxylation results in the formation of about 0.3 mol of 3,4-dihydroxybenzoate and 0.7 mol of hydrogen peroxide per mol NADPH oxidized. It is proposed that flavin motion in p-hydroxybenzoate hydroxylase is important for efficient reduction and that the flavin "out" conformation is associated with the oxidase activity.  相似文献   

3.
We report Hammett correlations, using 8-substituted flavins, to clarify the mechanism of hydroxylation by p-hydroxybenzoate hydroxylase (PHBH). The 8-position of the FAD isoalloxazine ring was chosen for modifications, because in PHBH it has minimal interactions with the protein, and it is accessible to solvent and away from the site of hydroxylation. Although two intermediates, a flavin-C4a-hydroperoxide and a flavin-C4a-hydroxide, are known to participate in hydroxylation, the mechanism of oxygen transfer remains controversial. Mechanisms as diverse as electrophilic aromatic substitution, diradical formation, and isoalloxazine ring opening have been proposed. In the studies reported here, it was possible to monitor spectrally each of the individual steps involved in hydroxylation, because the FAD cofactor acts as a reporter group. Thus, with PHBH, substituted separately with nine derivatives of FAD altered in the 8-position, quantitative structure-reactivity relationships (QSAR) have been applied to probe the mechanisms of formation of the flavin-C4a-hydroperoxide, the conversion to the flavin-C4a-hydroxide with concomitant oxygen transfer to the substrate, and the dehydration of the flavin-C4a-hydroxide to form oxidized FAD. The individual chemical steps in the mechanism of PHBH were not altered when using any of the modified flavins, and normal products were obtained; however, the rates of individual steps were affected, and depended on the electronic properties of the 8-substituent. Increased hydroxylation rates were observed when a more electrophilic flavin-C4a-hydroperoxide (i.e., with an electron-withdrawing substituent at the 8-position) is bound to PHBH. On the basis of QSAR analysis, we conclude that the mechanism of the hydroxylation step is best described by electrophilic aromatic substitution.  相似文献   

4.
p-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyzes a reaction in two parts: reduction of the enzyme cofactor FAD by NADPH in response to binding p-hydroxybenzoate to the enzyme and reaction of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. Three different reactions, each with specific requirements, are achieved by moving the position of the isoalloxazine ring in the protein structure. In this paper, we examine the operation of protein conformational changes and the significance of charge-transfer absorption bands associated with the reduction of FAD by NADPH when the substrate analogue, 5-hydroxypicolinate, is bound to the enzyme. It was discovered that the enzyme with picolinate bound was reduced at a rate similar to that with p-hydroxybenzoate bound at high pH. However, there was a large effect of pH upon the rate of reduction in the presence of picolinate with a pK(a) of 7.4, identical to the pK(a) of picolinate bound to the enzyme. The intensity of charge-transfer bands observed between FAD and NADPH during the reduction process correlated with the rate of flavin reduction. We conclude that high rates of reduction of the enzyme require (a) the isoalloxazine of the flavin be held by the protein in a solvent-exposed position and (b) the movement of a loop of protein so that the pyridine ring of NADPH can move into position to form a complex with the isoalloxazine that is competent for hydride transfer and that is indicated by a strong charge-transfer interaction.  相似文献   

5.
p-Hydroxybenzoate hydroxylase (PHBH) is an NADPH-dependent enzyme. To locate the NADPH binding site, the enzyme was crystallized under anaerobic conditions in the presence of the substrate p-hydroxybenzoate, the coenzyme analogue adenosine 5-diphosphoribose (ADPR), and sodium dithionite. This yielded colorless crystals that were suitable for X-ray analysis. Diffraction data were collected up to 2.7-A resolution. A difference Fourier between data from these colorless crystals and data from yellow crystals of the enzyme-substrate complex showed that in the colorless crystals the flavin ring was absent. The adenosine 5'-diphosphate moiety, which is the common part between FAD and ADPR, was still present. After restrained least-squares refinement of the enzyme-substrate complex with the riboflavin omitted from the model, additional electron density appeared near the pyrophosphate, which indicated the presence of an ADPR molecule in the FAD binding site of PHBH. The complete ADPR molecule was fitted to the electron density, and subsequent least-squares refinement resulted in a final R factor of 16.8%. Replacement of bound FAD by ADPR was confirmed by equilibrium dialysis, where it was shown that ADPR can effectively remove FAD from the enzyme under mild conditions in 0.1 M potassium phosphate buffer, pH 8.0. The empty pocket left by the flavin ring is filled by solvent, leaving the architecture of the active site and the binding of the substrate largely unaffected.  相似文献   

6.
Apo-p-hydroxybenzoate hydroxylase was reconstituted using 2'-fluoro-2'-deoxy-arabino-FAD, a synthetic flavin in which the hydroxyl of the 2'-center of the ribityl chain was replaced with fluorine in an inverted configuration. The absorbance spectral changes caused by the binding of either p-hydroxybenzoate (pOHB) or 2,4-dihydroxybenzoate (2,4-diOHB) indicated that the isoalloxazine of the artificial flavin adopts the more solvent-exposed "out" conformation rather than the partially buried "in" conformation near the aromatic substrate. In contrast, the flavin of the natural enzyme adopts the in conformation when pOHB is bound. Much of the behavior of the artificial enzyme can be rationalized in light of the preference of the flavin for the out conformation, including the weaker binding of pOHB, the tighter binding of 2,4-diOHB, and the slower reactions involved in the hydroxylation of pOHB and 2,4-diOHB. Particularly noteworthy is the enhancement of the reduction of the flavin by NADPH when pOHB is bound to the active site, consistent with the recent finding that the reaction occurs when the flavin adopts the out conformation (Palfey, B. A., Moran, G. R., Entsch, B., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 1153-1158). Thus, whereas the change that induces the out conformation is detrimental to the oxidative half-reaction, it improves the reductive half-reaction, showing that the control of the flavin position in p-hydroxybenzoate hydroxylase represents a compromise between the conflicting needs of two chemically disparate half-reactions, and demonstrating that the 2'-hydroxyl of FAD can serve as a critical control element in flavoenzyme catalysis.  相似文献   

7.
Using synchrotron radiation, the X-ray diffraction intensities of crystals of p-hydroxy-benzoate hydroxylase, complexed with the substrate p-hydroxybenzoate, were measured to a resolution of 1.9 A. Restrained least-squares refinement alternated with rebuilding in electron density maps yielded an atom model of the enzyme-substrate complex with a crystallographic R-factor of 15.6% for 31,148 reflections between 6.0 and 1.9 A. A total of 330 solvent molecules was located. In the final model, only three residues have deviating phi-psi angle combinations. One of them, the active site residue Arg44, has a well-defined electron density and may be strained to adopt this conformation for efficient catalysis. The mode of binding of FAD is distinctly different for the different components of the coenzyme. The adenine ring is engaged in three water-mediated hydrogen bonds with the protein, while making only one direct hydrogen bond with the enzyme. The pyrophosphate moiety makes five water-mediated versus three direct hydrogen bonds. The ribityl and ribose moieties make only direct hydrogen bonds, in all cases, except one, with side-chain atoms. The isoalloxazine ring also makes only direct hydrogen bonds, but virtually only with main-chain atoms. The conformation of FAD in p-hydroxybenzoate hydroxylase is strikingly similar to that in glutathione reductase, while the riboflavin-binding parts of these two enzymes have no structural similarity at all. The refined 1.9 A structure of the p-hydroxybenzoate hydroxylase-substrate complex was the basis of further refinement of the 2.3 A structure of the enzyme-product complex. The result was a final R-factor of 16.7% for 14,339 reflections between 6.0 and 2.3 A and an improved geometry. Comparison between the complexes indicated only small differences in the active site region, where the product molecule is rotated by 14 degrees compared with the substrate in the enzyme-substrate complex. During the refinements of the enzyme-substrate and enzyme-product complexes, the flavin ring was allowed to bend or twist by imposing planarity restraints on the benzene and pyrimidine ring, but not on the flavin ring as a whole. The observed angle between the benzene ring and the pyrimidine ring was 10 degrees for the enzyme-substrate complex and 19 degrees for the enzyme-product complex. Because of the high temperature factors of the flavin ring in the enzyme-product complex, the latter value should be treated with caution. Six out of eight peptide residues near the flavin ring are oriented with their nitrogen atom pointing towards the ring.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
We have used the flavoenzyme p-hydroxybenzoate hydroxylase (PHBH) to illustrate that a strongly fluorescent donor label can communicate with the flavin via single-pair F?rster resonance energy transfer (spFRET). The accessible Cys-116 of PHBH was labeled with two different fluorescent maleimides with full preservation of enzymatic activity. One of these labels shows overlap between its fluorescence spectrum and the absorption spectrum of the FAD prosthetic group in the oxidized state, while the other fluorescent probe does not have this spectral overlap. The spectral overlap strongly diminished when the flavin becomes reduced during catalysis. The donor fluorescence properties can then be used as a sensitive antenna for the flavin redox state. Time-resolved fluorescence experiments on ensembles of labeled PHBH molecules were carried out in the absence and presence of enzymatic turnover. Distinct changes in fluorescence decays of spFRET-active PHBH can be observed when the enzyme is performing catalysis using both substrates p-hydroxybenzoate and NADPH. Single-molecule fluorescence correlation spectroscopy on spFRET-active PHBH showed the presence of a relaxation process (relaxation time of 23 micros) that is related to catalysis. In addition, in both labeled PHBH preparations the number of enzyme molecules reversibly increased during enzymatic turnover indicating that the dimer-monomer equilibrium is affected.  相似文献   

9.
The flavin prosthetic group (FAD) of p-hydroxybenzoate hydroxylase (EC 1.14.13.2) from Pseudomonas fluorescens, was replaced by 6-hydroxy-FAD (an extra hydroxyl group on the carbon at position 6 of the isoalloxazine ring of FAD). The catalytic cycle of this modified enzyme was analyzed and compared to the function of native (FAD) enzyme. Transient state kinetic analyses of the multiple changes in the chemical state of the flavin were the principal methods used to probe the mechanism. Four known substrates of the native enzyme were used to probe the reaction. With the natural substrate, p-hydroxybenzoate, the 6-hydroxy-FAD enzyme activity was 12-15% of native enzyme, due to a slower release of product from the enzyme, and less than one product molecule was formed per NADPH oxidized, due to an increased rate of nonproductive decomposition of the transient peroxyflavin essential to the catalytic pathway. More extensive changes in mechanism were observed with the substrates, 2,4-dihydroxybenzoate and p-aminobenzoate. The results suggest that, during catalysis, when the reduced state of FAD is ready for oxygen reaction, the substrate is located below and close to the C-4a/N-5 edge of the isoalloxazine ring. The nature of the high extinction, transient state of flavin, formed upon transfer of oxygen to substrate is discussed. It is not a flavin cation, and is unlikely to be an oxygen-substituted analogue of N-3/C-4 dihydroflavin.  相似文献   

10.
The oxygen transfer to p-hydroxybenzoate catalyzed by p-hydroxybenzoate hydroxylase (PHBH) has been shown to occur via a C4a-hydroperoxide of the flavin. Two factors are likely to be important in facilitating the transfer of oxygen from the C4a-hydroperoxide to the substrate. (a) The positive electrostatic potential of the active site partially stabilizes the negative charge centered on the oxygen of the flavin-C4a-alkoxide leaving group during the transition state [Ortiz-Maldonado, M., Ballou, D. P., and Massey, V. (1999) Biochemistry 38, 8124-8137]. (b) The hydrogen-bonding network ionizes the substrate to promote its nucleophilic attack on the electrophilic C4a-hydroperoxide intermediate [Entsch, B., Palfey, B. A., Ballou, D. P., and Massey, V. (1991) J. Biol. Chem. 266, 17341-17349]. This ionization is also aided by the positive electrostatic potential of the active site [Moran, G. R., Entsch, B., Palfey, B. A., and Ballou, D. P. (1997) Biochemistry 36, 7548-7556]. Substituents on the flavin can specifically affect the stability of the alkoxide leaving-group, whereas changes to specific enzyme residues can affect the charge in the active site and the hydrogen-bonding network. We have used wild-type (WT) PHBH and several mutant forms, all with normal FAD and with 8-Cl-FAD substituted for FAD, to assess the relative contributions of the two effects. Lys297Met and Asn300Asp have decreased positive charge in the active site, and these variants engender approximately 35-fold slower hydroxylation rates than the WT enzyme. Substitution of 8-Cl-FAD in these mutant forms gives approximately 1.8-fold increases in hydroxylation rates, compared with a > or =4.8-fold increase for WT with this flavin. The hydroxylation catalyzed by Tyr385Phe, a mutant enzyme form with a disrupted hydrogen-bonding network that compromises the ionization of the substrate without changing the positive charge of the active site, is stimulated 1.5-fold by substituting the enzyme with 8-Cl-FAD. The substrate, tetrafluoro-p-hydroxybenzoate, is fully ionized in WT PHBH, but this phenolate is a poor nucleophile because of the electron-withdrawing effects of the fluorine substituents. With tetrafluoro-p-hydroxybenzoate as the substrate, substitution of FAD with 8-Cl-FAD in the WT enzyme stabilizes the leaving alkoxide and leads to a 2.3-fold increase in the hydroxylation rate compared to that with FAD. Either the use of substrates that do not communicate with the proton network or the mutation of amino acid residues that perturb this interaction may prevent a necessary conformational change that allows proper orientation between reactants during the hydroxylation reaction or permits the essential protonation of the initially formed nascent flavin-C4a-peroxide anion. Thus, both activation of substrate by the proton network and stabilization of the leaving alkoxide appear to be important for oxygen transfer catalyzed by PHBH. The full effect of the substituents on the flavin (4.8-fold) can only be realized when the optimal transition state can be achieved, and this optimal state is not fully realized with the mutant forms.  相似文献   

11.
Proline 293 of p-hydroxybenzoate hydroxylase from Pseudomonas aeruginosa is in a highly conserved region of the flavoprotein aromatic hydroxylases. It is thought to impart rigidity to the backbone, as it partially cradles the FAD in these hydroxylases. Thus, this residue has been substituted with serine by site-directed mutagenesis to investigate the importance of flexibility of the peptide segment in catalysis. Differential scanning calorimetry demonstrated that the mutation has decreased the stability of the folded mutant protein compared to the wild-type PHBH. The increased flexibility in the protein backbone enhanced the accessibility of the flavin hydroperoxide intermediate to the solvent, causing an increase in the elimination of H(2)O(2) from this labile intermediate and, consequently, a decrease in the efficiency of substrate hydroxylation. Additionally, the increased accessibility of this mutant form of the enzyme makes it more susceptible than the wild-type enzyme to being trapped in the hydroxyflavin intermediate form in the presence of high levels of p-hydroxybenzoate. The mutation also lowers the pK(a) of the phenolic oxygen of bound p-hydroxybenzoate, and eliminates the pH dependence of the rate constant for flavin reduction by NADPH. These experimental observations lead to a model that explains how the wild-type protein can sense the charge of the 4-substituent of the aromatic ligand and link this charge to a flavin conformational change that is required for reaction with NADPH: (i) The peptide oxygen of Pro 293 is repelled by the negative charge of the phenolic oxygen of p-hydroxybenzoate. (ii) This repulsion is transmitted through the peptide backbone, causing the movement of Asn 300. (iii) The change in the position of Asn 300 triggers the movement of the flavin from the largely buried "in" conformation to the exposed, reactive "out" conformation.  相似文献   

12.
p-Hydroxybenzoate hydroxylase is extensively studied as a model for single-component flavoprotein monooxygenases. It catalyzes a reaction in two parts: (1) reduction of the FAD in the enzyme by NADPH in response to binding of p-hydroxybenzoate to the enzyme and (2) oxidation of reduced FAD with oxygen in an environment free from solvent to form a hydroperoxide, which then reacts with p-hydroxybenzoate to form an oxygenated product. These different reactions are coordinated through conformational rearrangements of the protein and the isoalloxazine ring during catalysis. Until recently, it has not been clear how p-hydroxybenzoate gains access to the buried active site. In 2002, a structure of a mutant form of the enzyme without substrate was published that showed an open conformation with solvent access to the active site [Wang, J., Ortiz-Maldonado, M., Entsch, B., Massey, V., Ballou, D., and Gatti, D. L. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 608-613]. The wild-type enzyme does not form high-resolution crystals without substrate. We hypothesized that the wild-type enzyme without substrate also forms an open conformation for binding p-hydroxybenzoate, but only transiently. To test this idea, we have studied the properties of two different mutant forms of the enzyme that are stabilized in the open conformation. These mutant enzymes bind p-hydroxybenzoate very fast, but with very low affinity, as expected from the open structure. The mutant enzymes are extremely inactive, but are capable of slowly forming small amounts of product by the normal catalytic pathway. The lack of activity results from the failure of the mutants to readily form the out conformation required for flavin reduction by NADPH. The mutants form a large fraction of an abnormal conformation of the reduced enzyme with p-hydroxybenzoate bound. This conformation of the enzyme is unreactive with oxygen. We conclude that transient formation of this open conformation is the mechanism for sequestering p-hydroxybenzoate to initiate catalysis. This overall study emphasizes the role that protein dynamics can play in enzymatic catalysis.  相似文献   

13.
para-Hydroxybenzoate hydroxylase is a flavoprotein monooxygenase that catalyses a reaction in two parts: reduction of the flavin adenine dinucleotide (FAD) in the enzyme by reduced nicotinamide adenine dinucleotide phosphate (NADPH) in response to binding p-hydroxybenzoate to the enzyme and oxidation of reduced FAD with oxygen to form a hydroperoxide, which then oxygenates p-hydroxybenzoate. These different reactions are coordinated through conformational rearrangements of the protein and isoalloxazine ring during catalysis. Earlier research showed that reduction of FAD occurs when the isoalloxazine of the FAD moves to the surface of the protein to allow hydride transfer from NADPH. This move is coordinated with protein rearrangements that are triggered by deprotonation of buried p-hydroxybenzoate through a H-bond network that leads to the surface of the protein. In this paper, we examine the involvement of this same H-bond network in the oxygen reactions-the initial formation of a flavin-C4a-hydroperoxide from the reaction between oxygen and reduced flavin, the electrophilic attack of the hydroperoxide upon the substrate to form product, and the elimination of water from the flavin-C4a-hydroxide to form oxidized enzyme in association with product release. These reactions were measured through absorbance and fluorescence changes in the FAD during the reactions. Results were collected over a range of pH for the reactions of wild-type enzyme and a series of mutant enzymes with the natural substrate and substrate analogues. We discovered that the rate of formation of the flavin hydroperoxide is not influenced by pH change, which indicates that the proton required for this reaction does not come from the H-bond network. The rate of the hydroxylation reaction increases with pH in a manner consistent with a pK(a) of 7.1. We conclude that the H-bond network abstracts the phenolic proton from p-hydroxybenzoate in the transition state of oxygen transfer. The rate of formation of oxidized enzyme increases with pH in a manner consistent with a pK(a) of 7.1, indicating the involvement of the H-bond network. We conclude that product deprotonation enhances the rate of a specific conformational change required for both product release and the elimination of water from C4a-OH-FAD.  相似文献   

14.
The catabolism of toxic phenols in the thermophilic organism Bacillus thermoglucosidasius A7 is initiated by a two-component enzyme system. The smaller flavin reductase PheA2 component catalyzes the NADH-dependent reduction of free FAD according to a ping-pong bisubstrate-biproduct mechanism. The reduced FAD is then used by the larger oxygenase component PheA1 to hydroxylate phenols to the corresponding catechols. We have determined the x-ray structure of PheA2 containing a bound FAD cofactor (2.2 A), which is the first structure of a member of this flavin reductase family. We have also determined the x-ray structure of reduced holo-PheA2 in complex with oxidized NAD (2.1 A). PheA2 is a single domain homodimeric protein with each FAD-containing subunit being organized around a six-stranded beta-sheet and a capping alpha-helix. The tightly bound FAD prosthetic group (K(d) = 10 nm) binds near the dimer interface, and the re face of the FAD isoalloxazine ring is fully exposed to solvent. The addition of NADH to crystalline PheA2 reduced the flavin cofactor, and the NAD product was bound in a wide solvent-accessible groove adopting an unusual folded conformation with ring stacking. This is the first observation of an enzyme that is very likely to react with a folded compact pyridine nucleotide. The PheA2 crystallographic models strongly suggest that reactive exogenous FAD substrate binds in the NADH cleft after release of NAD product. Nanoflow electrospray mass spectrometry data indeed showed that PheA2 is able to bind one FAD cofactor and one FAD substrate. In conclusion, the structural data provide evidence that PheA2 contains a dual binding cleft for NADH and FAD substrate, which alternate during catalysis.  相似文献   

15.
The crystal structure of the reduced form of the enzyme p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens, complexed with its substrate p-hydroxybenzoate, has been obtained by protein X-ray crystallography. Crystals of the reduced form were prepared by soaking crystals of the oxidized enzyme-substrate complex in deaerated mother liquor containing 300-400 mM NADPH. A rapid bleaching of the crystals indicated the reduction of the enzyme-bound FAD by NADPH. This was confirmed by single crystal spectroscopy. X-ray data to 2.3 A were collected on oscillation films using a rotating anode generator as an X-ray source. After data processing and reduction, restrained least squares refinement using the 1.9 A structure of the oxidized enzyme-substrate complex as a starting model, yielded a crystallographic R-factor of 14.8% for 11,394 reflections. The final model of the reduced complex contains 3,098 protein atoms, the FAD molecule, the substrate p-hydroxybenzoate and 322 solvent molecules. The structures of the oxidized and reduced forms of the enzyme-substrate complex were found to be very similar. The root-mean-square discrepancy for all atoms between both structures was 0.38 A. The flavin ring is almost completely planar in the final model, although it was allowed to bend or twist during refinement. The observed angle between the benzene and the pyrimidine ring is 2 degrees. This value should be compared with observed values of 10 degrees for the oxidized enzyme-substrate complex and 19 degrees for the enzyme-product complex. The position of the substrate is virtually unaltered with respect to its position in the oxidized enzyme. No trace of a bound NADP+ or NADPH molecule was found.  相似文献   

16.
In ferredoxin-NADP(+) reductase (FNR), FAD is bound outside of an anti-parallel beta-barrel with the isoalloxazine lying in a two-tyrosine pocket. To elucidate the function of the flavin si-face tyrosine (Tyr-89 in pea FNR) on the enzyme structure and catalysis, we performed ab initio molecular orbital calculations and site-directed mutagenesis. Our results indicate that the position of Tyr-89 in pea FNR is mainly governed by the energetic minimum of the pairwise interaction between the phenol ring and the flavin. Moreover, most of FNR-like proteins displayed geometries for the si-face tyrosine phenol and the flavin, which correspond to the more negative free energy theoretical value. FNR mutants were obtained replacing Tyr-89 by Phe, Trp, Ser, or Gly. Structural and functional features of purified FNR mutants indicate that aromaticity on residue 89 is essential for FAD binding and proper folding of the protein. Moreover, hydrogen bonding through the Tyr-89 hydroxyl group may be responsible of the correct positioning of FAD and the substrate NADP(+)  相似文献   

17.
During the catalytic reactions of flavoprotein hydroxylases and bacterial luciferase, flavin peroxides are formed as intermediates [see Massey, V. and Hemmerich, P. (1976) in The Enzymes, 3rd edn (P. Boyer, ed.) pp. 421--505, Academic Press, New York]. These intermediates have been postulated to be C(4a) derivatives of the flavin coenzyme. To test this hypothesis, modified flavin coenzymes carrying an oxygen substituent at position C(4a) of the isoalloxazine ring were synthesized. They are tightly bound by the apoenzymes of D-amino acid oxidase, p-hydroxybenzoate hydroxylase and lactate oxidase; the resulting complexes show spectral properties closely similar to those of the transient oxygen adducts of the hydroxylases. The optical spectra of the lumiflavin model compounds were found to be highly dependent on the solvent environment and nature of the subsituents. Under appropriate conditions they simulate satisfactorily the spectra of the transient enzymatic oxygen adducts. The results support the proposal that the primary oxygen adducts formed with these flavoproteins on reaction of the reduced enzymes with oxygen are flavin C(4a) peroxides.  相似文献   

18.
Pejchal R  Sargeant R  Ludwig ML 《Biochemistry》2005,44(34):11447-11457
Methylenetetrahydrofolate reductases (MTHFRs; EC 1.7.99.5) catalyze the NAD(P)H-dependent reduction of 5,10-methylenetetrahydrofolate (CH(2)-H(4)folate) to 5-methyltetrahydrofolate (CH(3)-H(4)folate) using flavin adenine dinucleotide (FAD) as a cofactor. The initial X-ray structure of Escherichia coli MTHFR revealed that this 33-kDa polypeptide is a (betaalpha)(8) barrel that aggregates to form an unusual tetramer with only 2-fold symmetry. Structures of reduced enzyme complexed with NADH and of oxidized Glu28Gln enzyme complexed with CH(3)-H(4)folate have now been determined at resolutions of 1.95 and 1.85 A, respectively. The NADH complex reveals a rare mode of dinucleotide binding; NADH adopts a hairpin conformation and is sandwiched between a conserved phenylalanine, Phe223, and the isoalloxazine ring of FAD. The nicotinamide of the bound pyridine nucleotide is stacked against the si face of the flavin ring with C4 adjoining the N5 of FAD, implying that this structure models a complex that is competent for hydride transfer. In the complex with CH(3)-H(4)folate, the pterin ring is also stacked against FAD in an orientation that is favorable for hydride transfer. Thus, the binding sites for the two substrates overlap, as expected for many enzymes that catalyze ping-pong reactions, and several invariant residues interact with both folate and pyridine nucleotide substrates. Comparisons of liganded and substrate-free structures reveal multiple conformations for the loops beta2-alpha2 (L2), beta3-alpha3 (L3), and beta4-alpha4 (L4) and suggest that motions of these loops facilitate the ping-pong reaction. In particular, the L4 loop adopts a "closed" conformation that allows Asp120 to hydrogen bond to the pterin ring in the folate complex but must move to an "open" conformation to allow NADH to bind.  相似文献   

19.
The cyclobutane pyrimidine dimer (CPD) and (6-4) photoproduct, two major types of DNA damage caused by UV light, are repaired under illumination with near UV-visible light by CPD and (6-4) photolyases, respectively. To understand the mechanism of DNA repair, we examined the resonance Raman spectra of complexes between damaged DNA and the neutral semiquinoid and oxidized forms of (6-4) and CPD photolyases. The marker band for a neutral semiquinoid flavin and band I of the oxidized flavin, which are derived from the vibrations of the benzene ring of FAD, were shifted to lower frequencies upon binding of damaged DNA by CPD photolyase but not by (6-4) photolyase, indicating that CPD interacts with the benzene ring of FAD directly but that the (6-4) photoproduct does not. Bands II and VII of the oxidized flavin and the 1398/1391 cm(-1) bands of the neutral semiquinoid flavin, which may reflect the bending of U-shaped FAD, were altered upon substrate binding, suggesting that CPD and the (6-4) photoproduct interact with the adenine ring of FAD. When substrate was bound, there was an upshifted 1528 cm(-1) band of the neutral semiquinoid flavin in CPD photolyase, indicating a weakened hydrogen bond at N5-H of FAD, and band X seemed to be downshifted in (6-4) photolyase, indicating a weakened hydrogen bond at N3-H of FAD. These Raman spectra led us to conclude that the two photolyases have different electron transfer mechanisms as well as different hydrogen bonding environments, which account for the higher redox potential of CPD photolyase.  相似文献   

20.
The FAD of p-hydroxybenzoate hydroxylase (PHBH) is known to exist in two conformations. The FAD must be in the in-position for hydroxylation of p-hydroxybenzoate (pOHB), whereas the out-position is essential for reduction of the flavin by NADPH. In these investigations, we have used 8-mercapto-FAD and 8-hydroxy-FAD to probe the movement of the flavin in catalysis. Under the conditions employed, 8-mercapto-FAD (pK(a) = 3.8) and 8-hydroxy-FAD (pK(a) = 4.8) are mainly anionic. The spectral characteristics of the anionic forms of these flavins are very sensitive to their environment, making them sensitive probes for detecting movement of the flavin during catalysis. With these flavin analogues, the enzyme hydroxylates pOHB efficiently, but at a rate much slower than that of enzyme with FAD. Reaction of oxygen with reduced forms of these modified enzymes in the absence of substrate appears to proceed through the formation of the flavin-C4a-hydroperoxide intermediate, as with normal enzyme, but the decay of this intermediate is so fast compared to its formation that very little accumulates during the reaction. However, after elimination of H2O2 from the flavin-C4a-hydroperoxide, a perturbed oxidized enzyme spectrum is observed (Eox*), and this converts slowly to the spectrum of the resting oxidized form of the enzyme (Eox). In the presence of pOHB, PHBH reconstituted with 8-mercapto-FAD also shows the additional oxidized intermediate (Eox*) after the usual oxygenated C4a-intermediates have formed and decayed in the course of the hydroxylation reaction. This Eox* to Eox step is postulated to be due to flavin movement. Furthermore, binding of pOHB to resting (Eox) follows a three-step equilibrium mechanism that is also consistent with flavin movement being the rate-limiting step. The rate for the slowest step during pOHB binding is similar to that observed for the conversion of Eox* to Eox during the oxygen reaction in the absence or presence of substrate. Steady-state kinetic analysis of PHBH substituted with 8-mercapto-FAD demonstrated that the apparent k(cat) is also similar to the rate of Eox* conversion to Eox. Presumably, the protein environment surrounding the flavin in Eox* differs slightly from that of the final resting form of the enzyme (Eox).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号