首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We have determined functional elements required for autonomous replication of the Schizosaccharomyces pombe ars2004 that acts as an intrinsic chromosomal replication origin. Internal deletion analysis of a 940-bp fragment (ars2004M) showed three regions, I to III, to be required for autonomously replicating sequence (ARS) activity. Eight-base-pair substitutions in the 40-bp region I, composed of arrays of adenines on a DNA strand, resulted in a great reduction of ARS activity. Substitutions of region I with synthetic sequences showed that no specific sequence but rather repeats of three or more consecutive adenines or thymines, without interruption by guanine or cytosine, are required for the ARS activity. The 65-bp region III contains 11 repeats of the AAAAT sequence, while the 165-bp region II has short adenine or thymine stretches and a guanine- and cytosine-rich region which enhances ARS activity. All three regions in ars2004M can be replaced with 40-bp poly(dA/dT) fragments without reduction of ARS activity. Although spacer regions in the ars2004M enhance ARS activity, all could be deleted when an 40-bp poly(dA/dT) fragment was added in place of region I. Our results suggest that the origin activity of fission yeast replicators depends on the number of adenine/thymine stretches, the extent of their clustering, and presence of certain replication-enhancing elements.  相似文献   

4.
We investigated the binding regions of components of the origin recognition complex (ORC) in the human genome. For this purpose, we performed chromatin immunoprecipitation assays with antibodies against human Orc1 and Orc2 proteins. We identified a binding region for human Orc proteins 1 and 2 in a <1-kbp segment between two divergently transcribed human genes. The region is characterized by CpG tracts and a central sequence rich in AT base pairs. Both, Orc1 and Orc2 proteins are found at the intergenic region in the G(1) phase, but S-phase chromatin contains only Orc2 protein, supporting the notion that Orc1p dissociates from its binding site in the S phase. Sequences corresponding to the intergenic region are highly abundant in a fraction of nascent DNA strands, strongly suggesting that this region not only harbors the binding sites for Orc1 protein and Orc2 protein but also serves as an origin of bidirectional DNA replication.  相似文献   

5.
The lymphoid cell-specific proteins RAG1 and RAG2 initiate V(D)J recombination by cleaving DNA adjacent to recombination signals, generating blunt signal ends and covalently sealed, hairpin coding ends. A critical next step in the reaction is opening of the hairpins, but the factor(s) responsible has not been identified and had been thought to be a ubiquitous component(s) of the DNA repair machinery. Here we demonstrate that RAG1 and RAG2 possess an intrinsic single-stranded nuclease activity capable of nicking hairpin coding ends at or near the hairpin tip. In Mn2+, a synthetic hairpin is nicked 5 nucleotides (nt) 5' of the hairpin tip, with more distant sites of nicking suppressed by HMG2. In Mg2+, hairpins generated by V(D)J cleavage are nicked whereas synthetic hairpins are not. Cleavage-generated hairpins are nicked at the tip and predominantly 1 to 2 nt 5' of the tip. RAG1 and RAG2 may therefore be responsible for initiating the processing of coding ends and for the generation of P nucleotides during V(D)J recombination.  相似文献   

6.
Phosphatidylinositol 3,5-bisphosphate [PtdIns(3,5)P2] is a phospholipid that has a role in controlling membrane trafficking events in yeast and animal cells. The function of this lipid in plants is unknown, although its synthesis has been shown to be up-regulated upon osmotic stress in plant cells. PtdIns(3,5)P2 is synthesized by the PIKfyve/Fab1 family of proteins, with two orthologs, FAB1A and FAB1B, being present in Arabidopsis (Arabidopsis thaliana). In this study, we attempt to address the role of this lipid by analyzing the phenotypes of plants mutated in FAB1A and FAB1B. It was not possible to generate plants homozygous for mutations in both genes, although single mutants were isolated. Both homozygous single mutant plant lines exhibited a leaf curl phenotype that was more marked in FAB1B mutants. Genetic transmission analysis revealed that failure to generate double mutant lines was entirely due to inviability of pollen carrying mutant alleles of both FAB1A and FAB1B. This pollen displayed severe defects in vacuolar reorganization following the first mitotic division of development. The presence of abnormally large vacuoles in pollen at the tricellular stage resulted in the collapse of the majority of grains carrying both mutant alleles. This demonstrates a crucial role for PtdIns(3,5)P2 in modulating the dynamics of vacuolar rearrangement essential for successful pollen development. Taken together, our results are consistent with PtdIns(3,5)P2 production being central to cellular responses to changes in osmotic conditions.Phosphoinositides make up a minor fraction of total membrane lipids in all eukaryotic organisms. Their production is spatially restricted to the cytoplasmic leaflet of specific organellar membranes and temporally regulated by phosphatidylinositol (PtdIns) kinases and phosphatases. Three of the five hydoxyl groups of PtdIns can be phosphorylated, either singly or combinatorially, to produce seven different phosphoinositides. These different phosphoinositides can recruit and/or activate proteins with specific phosphoinositide-binding domains and have been implicated in the regulation of many important cellular functions, including membrane trafficking, cell growth, and cytoskeleton remodeling (Di Paolo and De Camilli, 2006).In animal cells, phosphorylation at the 3 position of PtdIns and its phosphorylated derivatives can be carried out by three different classes of PtdIns 3-kinase (classes I–III; Cantley, 2002). Plants and yeast only have class III PtdIns 3-kinases that are orthologs of the Saccharomyces cerevisiae protein Vps34p (Mueller-Roeber and Pical, 2002). Vps34p orthologs are thought to use PtdIns as their sole lipid substrate and produce PtdIns 3-phosphate (PtdIns3P). PtdIns3P is involved in endosomal/lysosomal protein sorting in eukaryotic cells in addition to cellular signaling events (Backer, 2008).In plants, PtdIns3P is essential for normal growth and development. Arabidopsis (Arabidopsis thaliana) plants carrying a VPS34 antisense construct have severe developmental defects (Welters et al., 1994). Furthermore, using pharmacological inhibitors of PtdIns3P production and analysis of transgenic plants defective in downstream signaling from PtdIns3P, it has been shown that this lipid has a role to play in many diverse physiological processes, such as root hair growth (Lee et al., 2008a). The phenotypes observed in studies of PtdIns3P function in plants are consistent with a role in endosomal and vacuolar trafficking in plants (Kim et al., 2001; Lee et al., 2008a), as in other eukaryotes. Recently, an attempt to generate vps34 homozygous mutant plant lines was unsuccessful due to failure of the mutant vps34 allele to transmit through the male germ line (Lee et al., 2008b).Importantly, PtdIns3P is the precursor to another phosphoinositide, PtdIns 3,5-bisphosphate [PtdIns(3,5)P2], which also has vital roles in endosomal trafficking in eukaryotes (Dove et al., 2009). Thus, it is possible that some of the effects in plants attributed to PtdIns3P in previous studies may actually be due to an inability of cells to produce PtdIns(3,5)P2. PtdIns(3,5)P2 is produced by the PtdIns3P 5-kinases PIKfyve and Fab1p in animal and yeast cells, respectively. PIKfyve/Fab1p proteins have an N-terminal FYVE domain necessary for binding to PtdIns3P-containing membranes, a central Cpn60_TCP1 (for HSP chaperonin T complex 1) homology domain, and a C-terminal kinase domain. In Arabidopsis, there are a number of genes encoding putative Fab1p homologs, but only two of them, FAB1A (At4g33240) and FAB1B (At3g14270), encode proteins having FYVE domains at their N termini (Mueller-Roeber and Pical, 2002). It is likely that these proteins are PtdIns3P 5-kinases in Arabidopsis. Despite the importance of PtdIns(3,5)P2 in yeast and animals, very little is known about its function in plants. However, it has been shown that hyperosmotic stress can induce the rapid synthesis of PtdIns(3,5)P2 in cell suspension cultures from a number of plant species (Meijer and Munnik, 2003) and in pollen tubes from tobacco (Nicotiana tabacum; Zonia and Munnik, 2004). This production is consistent with a requirement for PtdIns(3,5)P2 in vacuolar membrane reorganization, as water moves from the vacuole to the cytosol upon cells being placed under hyperosmotic stress. In animal cells, defective PtdIns(3,5)P2 production leads to cytoplasmic vacuolation of endosome-derived membranes (Ikonomov et al., 2001; Jefferies et al., 2008). It seems that there is a general requirement in all eukaryotes for PtdIns(3,5)P2 production in endomembrane remodeling. This remodeling could be mediated by proteins that bind to PtdIns(3,5)P2. A number of candidates have been identified, including yeast Svp1p (Dove et al., 2004), its mammalian homolog WIP149 (Jeffries et al., 2004), CHMP3 (Whitley et al., 2003), and Ent3p (Friant et al., 2003).In this study, we aimed to further investigate the role of PtdIns(3,5)P2 in plant physiology and the function of PIKfyve/Fab1p orthologs in Arabidopsis by generating mutant plant lines homozygous for T-DNA insertions in both FAB1A and FAB1B. We failed to generate double homozygous fab1a/fab1b knockout plants but observed subtle phenotypes in both fab1a and fab1b single homozygous plants. The data show that pollen with a fab1a/fab1b genotype has an abnormal vacuolar phenotype and does not contribute to the next generation. Our data are consistent with the hypothesis that the male gametophytic defect observed in vps34 mutant pollen (Lee et al., 2008b) is due to an inability of this pollen to generate PtdIns(3,5)P2 and is not a direct result of the lack of PtdIns3P.  相似文献   

7.
8.
9.
DNA replication of the temperate lactococcal bacteriophage TP901-1 was shown to involve the gene product encoded by orf13 and the repeats located within the gene. Sequence analysis of 1,500 bp of the early transcribed region of the phage genome revealed a single-stranded DNA binding protein analogue (ORF12) and the putative replication protein (ORF13). The putative origin of replication was identified as series of repeats within orf13 and was shown to confer a TP901-1 resistance phenotype when present in trans. Site-specific mutations were introduced into the replication protein and into the repeats. The mutations were introduced into the TP901-1 prophage by homologous recombination by using a vector with a temperature-sensitive replicon. Subsequent analysis of induced phages showed that the protein encoded by orf13 and the repeats within orf13 were essential for phage TP901-1 amplification. In addition, analyses of internal phage DNA replication showed that the ORF13 protein and the repeats are essential for phage TP901-1 DNA replication in vivo. These results show that orf13 encodes a replication protein and that the repeats within the gene are the origin of replication.  相似文献   

10.
Kinetoplast DNA, the trypanosome mitochondrial genome, is a network of interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Minicircles replicate after release from the network, and their progeny reattach. Remarkably, trypanosomes have six mitochondrial DNA helicases related to yeast PIF1 helicase. Here we report that one of the six, TbPIF1, functions in minicircle replication. RNA interference (RNAi) of TbPIF1 causes a growth defect and kinetoplast DNA loss. Minicircle replication intermediates decrease during RNAi, and there is an accumulation of multiply interlocked, covalently closed minicircle dimers (fraction U). In studying the significance of fraction U, we found that this species also accumulates during RNAi of mitochondrial topoisomerase II. These data indicate that one function of TbPIF1 is an involvement, together with topoisomerase II, in the segregation of minicircle progeny.  相似文献   

11.
Using purified replication factors encoded by herpes simplex virus type 1 and a 70-base minicircle template, we obtained robust DNA synthesis with leading strand products of >20,000 nucleotides and lagging strand fragments from 600 to 9,000 nucleotides as seen by alkaline gel electrophoresis. ICP8 was crucial for the synthesis on both strands. Visualization of the deproteinized products using electron microscopy revealed long, linear dsDNAs, and in 87%, one end, presumably the end with the 70-base circle, was single-stranded. The remaining 13% had multiple single-stranded segments separated by dsDNA segments 500 to 1,000 nucleotides in length located at one end. These features are diagnostic of the trombone mechanism of replication. Indeed, when the products were examined with the replication proteins bound, a dsDNA loop was frequently associated with the replication complex located at one end of the replicated DNA. Furthermore, the frequency of loops correlated with the fraction of DNA undergoing Okazaki fragment synthesis.  相似文献   

12.
The pre-sensor 1 (PS1) hairpin is found in ring-shaped helicases of the AAA+ family (ATPases associated with a variety of cellular activities) of proteins and is implicated in DNA translocation during DNA unwinding of archaeal mini-chromosome maintenance (MCM) and superfamily 3 viral replicative helicases. To determine whether the PS1 hairpin is required for the function of the eukaryotic replicative helicase, Mcm2-7 (also comprised of AAA+ proteins), we mutated the conserved lysine residue in the putative PS1 hairpin motif in each of the Saccharomyces cerevisiae Mcm2-7 subunits to alanine. Interestingly, only the PS1 hairpin of Mcm3 was essential for viability. While mutation of the PS1 hairpin in the remaining MCM subunits resulted in minimal phenotypes, with the exception of Mcm7 which showed slow growth under all conditions examined, the viable alleles were synthetic lethal with each other. Reconstituted Mcm2-7 containing Mcm3 with the PS1 mutation (Mcm3K499A) had severely decreased helicase activity. The lack of helicase activity provides a probable explanation for the inviability of the mcm3 K499A strain. The ATPase activity of Mcm2-73K499A was similar to the wild type complex, but its interaction with single-stranded DNA in an electrophoretic mobility shift assay and its associations in cells were subtly altered. Together, these findings indicate that the PS1 hairpins in the Mcm2-7 subunits have important and distinct functions, most evident by the essential nature of the Mcm3 PS1 hairpin in DNA unwinding.  相似文献   

13.
14.
15.
Initiation of herpes simplex virus type 1 (HSV-1) DNA replication during productive infection of fibroblasts and epithelial cells requires attachment of the origin binding protein (OBP), one of seven essential virus-encoded DNA replication proteins, to specific sequences within the two viral origins, oriL and oriS. Whether initiation of DNA replication during reactivation of HSV-1 from neuronal latency also requires OBP is not known. A truncated protein, consisting of the C-terminal 487 amino acids of OBP, termed OBPC, is the product of the HSV UL8.5 gene and binds to origin sequences, although OBPC's role in HSV DNA replication is not yet clear. To characterize protein-DNA complex formation at oriS in cells of neural and nonneural lineage, we used nuclear extracts of HSV-infected nerve growth factor-differentiated PC12 and Vero cells, respectively, as the source of protein in gel shift assays. In both cell types, three complexes (complexes A, B, and C) which contain either OBP or OBPC were shown to bind specifically to a probe which contains the highest-affinity OBP binding site in oriS, site 1. Complex A was shown to contain OBPC exclusively, whereas complexes B and C contained OBP and likely other cellular proteins. By fine-mapping the binding sites of these three complexes, we identified single nucleotides which, when mutated, eliminated formation of all three complexes, or complexes B and C, but not A. In transient DNA replication assays, both mutations significantly impaired oriS-dependent DNA replication, demonstrating that formation of OBP-containing complexes B and C is required for efficient initiation of oriS-dependent DNA replication, whereas formation of the OBPC-containing complex A is insufficient for efficient initiation.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号